For each member of the family, the underlying dynamical system possesses a topological factor with maximal pure point spectrum, and a close relation to a solenoid, which is the Kronecker factor of the system. The inflation action on the continuous hull is sufficiently explicit to permit the calculation of the corresponding dynamical zeta functions. This is achieved as a corollary of analysing the Anderson-Putnam complex for the determination of the cohomological invariants of the corresponding tiling spaces.

After an introduction to the mathematical tools, we briefly discuss pure point spectra, based on the Poisson summation formula for lattice Dirac combs. This provides an elegant approach to the diffraction formulas of infinite crystals and quasicrystals. We continue by considering classic deterministic examples with singular or absolutely continuous diffraction spectra. In particular, we recall an isospectral family of structures with continuously varying entropy. We close with a summary of more recent results on the diffraction of dynamical systems of algebraic or stochastic origin.

After a brief introduction and a summary of pure point spectra, we discuss classic deterministic examples with singular or absolutely continuous spectra. In particular, we present an isospectral family of structures with continuously varying entropy. We augment this with more recent results on the diffraction of dynamical systems of algebraic origin and various further systems of stochastic nature. A systematic approach is mentioned via the theory of stochastic processes.

Here, the problem is analysed via the autocorrelation measure of the underlying point set, where two point sets are called homometric when they share the same autocorrelation. For the class of mathematical quasicrystals within a given cut and project scheme, the homometry problem becomes equivalent to Matheron´s covariogram problem, in the sense of determining the window from its covariogram. Although certain uniqueness results are known for convex windows, interesting examples of distinct homometric model sets already emerge in the plane.

The uncertainty level increases in the presence of diffuse scattering. Already in one dimension, a mixed spectrum can be compatible with structures of different entropy. We expand on this example by constructing a family of mixed systems with fixed diffraction image but varying entropy. We also outline how this generalises to higher dimension.

averaged shelling, illustrate the difference with explicit examples, and discuss the obstacles that emerge with aperiodic order.

fixed letter densities, thereby proving exponential growth for certain ensembles with various letter densities. We derive consequences for the free energy and entropy of

ternary square-free words.