Citation

URL
https://oro.open.ac.uk/98722/

License
None Specified

Policy
This document has been downloaded from Open Research Online, The Open University's repository of research publications. This version is being made available in accordance with Open Research Online policies available from Open Research Online (ORO) Policies

Versions
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type setting, copy editing or publisher branding
Multiplex PCR Assay to Detect High Risk Lineages of Salmonella Typhi

*Department of Medicine, University of Cambridge, UK

Introduction

- Typhoid fever infections remain a significant public health issue with up to 21 million infections and 161,000 deaths per year
- Current methods of ID require culture and sequencing to determine the specific lineage
- H58 (4.3.1) is the main circulating lineage of S. Typhi in many South Asian countries and associated with high levels of antibiotic resistance
- XDR Typhi strains (4.3.1.1.P1) are additionally resistant to ceftriaxone, further limiting antibiotic treatment options
- There is an increased need for rapid molecular tests to identify and track these high-risk lineages for treatment decisions, surveillance and vaccine prioritisation

Methods

- **Figure 1.** Our SNP-based multiplex PCR assay detects Salmonella species down to lineage level:

<table>
<thead>
<tr>
<th>Subspecies</th>
<th>Salmonella enterica subsp. enterica</th>
<th>Serovar</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. Typhi</td>
<td>S. Paratyphi A</td>
<td></td>
</tr>
<tr>
<td>Non-XDR/Non-H58</td>
<td>4.3.1.1.P1 (XDR)</td>
<td>Low risk</td>
</tr>
<tr>
<td>H58</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Building on previous work identifying SNPs specific for particular lineages
- STY0307 and SSPA0850 conserved genes used for S. Typhi and S. Paratyphi A targets
- For H58/XDR lineages, primers designed with SNP plus additional mutations to confer specificity to target

Results

- **Figure 2.** Pairwise alignment of CT18 reference against H58 (A) and XDR (B):

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>2,348,880</th>
<th>2,348,888</th>
<th>2,348,902</th>
<th>2,348,914</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. Typhi CT18</td>
<td>ACGGGGTTAACGCGGGG</td>
<td>ACGGGGTTAACGCGGGG</td>
<td>ACGGGGTTAACGCGGGG</td>
<td>ACGGGGTTAACGCGGGG</td>
<td></td>
</tr>
<tr>
<td>H58 509F</td>
<td>ACGGGGTTAACGCGGGG</td>
<td>ACGGGGTTAACGCGGGG</td>
<td>ACGGGGTTAACGCGGGG</td>
<td>ACGGGGTTAACGCGGGG</td>
<td></td>
</tr>
<tr>
<td>S. Typhi H58</td>
<td>ACGGGGTTAACGCGGGG</td>
<td>ACGGGGTTAACGCGGGG</td>
<td>ACGGGGTTAACGCGGGG</td>
<td>ACGGGGTTAACGCGGGG</td>
<td></td>
</tr>
</tbody>
</table>

- **Figure 3.** Gel image of positive PCR reactions (S. Typhi 227bp, S. Paratyphi A 374bp):

- A total of 36 bacterial DNA including non-Typhi Salmonella and non-Salmonella species → 100% specificity with no false positives
- Additional 75 DNA samples originally identified as S. Typhi by MALDI-TOF MS → 13/75 PCR positive for only S. Paratyphi A → confirmed by WGS

Conclusions

- PCR assay to distinguish S. Paratyphi A / S. Typhi + and H58 / XDR lineages
- Clinical and environmental sample testing planned
- Potential low-cost alternative to WGS for lineage level detection for rapid diagnostics and environmental surveillance

References