Copy the page URI to the clipboard
Qin, Rongshan
(2024).
DOI: https://doi.org/10.3390/ma17122854
Abstract
The experimentally obtained material microstructure can be used to calculate a material’s properties and identify microstructure–property relationships. The key procedure to enable this is to interpret the observed microstructure accurately. This work reports on a newly developed computational method to serve such a purpose. The method is based on cubic spline interpolation and a simple search algorithm. Parameterisation was accomplished via the comparison between its preliminary statistical results and the information in a phase diagram. The method was applied to analyse the quenched microstructure of multicomponent and multiphase metallic-oxide materials. The im-portance of adequate parameterisation is demonstrated. The results provide a good explanation for the experimentally measured electric conductance behaviour. Further application of the method to the deformation of materials is discussed. The algorithms are directly available for the analysis of the three-dimensional microstructure of materials.