Accessory mineral microstructure and chronology reveals no evidence for late heavy bombardment on the asteroid 4-Vesta

A long-standing paradigm in planetary science is that the inner Solar System experienced a period of intense and sustained bombardment between 4.2 and 3.9 Ga. Evidence of this period, termed the Late Heavy Bombardment is provided by the 40Ar/39Ar isotope systematics of returned Apollo samples, lunar meteorites, and asteroidal meteorites. However, it has been largely unsupported by more recent and robust isotopic age data, such as isotopic age data obtained using the U-Pb system. Here we conduct careful microstructural characterisation of baddeleyite, zircon, and apatite in six different eucrites prior to conducting SIMS and LA-ICP-MS measurement of U, Th, and Pb isotopic ratios and radiometric dating. Baddeleyite, displaying complex internal twinning linked to reversion from a high symmetry polymorph in two samples, records the formation of the parent body (4574 ± 6 Ga). While structurally simple zircon records a tight spread of ages representing metamorphism between 4574 ± 14 Ma and 4487 ± 31 Ma (n = 6). Apatite, a more readily reset shock chronometer, records crystalisation ages of ~4509 Ma (n = 6), with structurally deformed grains (attributed to impact events) yielding U-Pb ages of 4228 Ma (n = 12). In concert, there is no evidence within the measured U-Pb systematics or microstructural record of the eucrites examined in this study to support a period of late heavy bombardment between 4.2 and 3.9 Ga.

1. Introduction

The Howardite-Eucrite-Diogenite (HED) clan of achondritic meteorites is believed to represent the asteroid 4-Vesta, with the eucrites sampling the basaltic crust of the differentiated planetesimal (Mittlefehldt, 2015). Crystallization ages for eucrites vary, with Hf-W ages of up to 35 Ma after calcium aluminium-rich inclusion (CAI) formation, highlighting protracted volcanism and metamorphism on the parent body (Touboul et al., 2015; Roszjar et al., 2016) following differentiation at 4565 Ma (Lugmair and Shukolyukov, 1998) and formation of the upper crust around 2.66 Myr after CAI formation (Hublet et al., 2017). Volcanism on 4-Vesta likely occurred very early in Solar System history (4567.2 ± 0.6 Ma; Misawa et al., 2005), producing the basaltic crust sampled by the eucritic meteorites. Basaltic flows likely cooled rapidly, with 5 m thick flows cooling to ambient conditions in less than a year (Yamaguchi et al., 1996). For deeper eucrites (< 12 km depth), this cooling rate slows to 1 °C/10^5 years, approximately 11 million years to cool to ambient conditions (Miyamoto and Takeda, 1977). Following formation, models suggest that a relatively thin (< 25 km) crust would have led to thermal metamorphism of the basaltic eucrites at approximately 800 – 1000 °C (Yamaguchi et al., 2009). However, this is complicated by ongoing impact heating and reworking alongside thermal metamorphism (e.g. Yamaguchi et al., 1996). For equilibrated eucrites, homogenisation of pyroxene suggests metamorphic temperatures (c. 1000 °C) were retained for at least a million years (Yamaguchi et al., 1996), in agreement with the formation of metamorphic zircon (900 °C).
at 4554.5 ± 2 Ma (Iizuka et al., 2015).

Ancient and prolonged magmatism and metamorphism is also recorded within the eucrite accessory mineral record, with younger metamorphic events dated by zircon in eucrite meteorites Berba, Cachari, Caldera, Juvinas (weighted average $^{207}\text{Pb} / {^{206}\text{Pb}}$ age of 4550.21 ± 4.4 Ma ± 11 Ma; Zhou et al., 2013; Haba et al., 2019; Haba and Wotzlaw, 2021), Camel Donga (4552.56 ± 0.69 Ma; Haba and Wotzlaw, 2021), and Agout (4554.5 ± 2 Ma; Iizuka et al., 2015), baddeleyite (monoclinic ZrO$_2$) in Alan Hills (ALHA) 80,103, ALHA 83,232 and EETA 81,006 (weighted average $^{207}\text{Pb} / {^{206}\text{Pb}}$ age of 4549 ± 18 Ma; Bukovanska et al., 1997), and apatite (Ca$_5$(PO$_4$)$_3$(F,Cl,OH)) in Agout (model $^{207}\text{Pb} / {^{206}\text{Pb}}$ age of 4524.8 ± 9.6 Ma; Koike et al., 2020). Even younger ages are more challenging to interpret; for example, $^{182}\text{Hf} / {^{180}\text{Hf}}$ ages of 4532 ± (−11 / −6) Ma and 4565 ± 0.9 Ma of zircon in basaltic eucrites (Rosšjär et al., 2016), 4531 ± 20 Ma zircon domains in Millbillillie (Hopkins et al., 2015) and 4517 ± 5 Ma apatite in Juvinas (Koike et al., 2020) could be dating either slow cooling of the crust or large impact events, leaving major uncertainties in the timing of parent body evolution.

Constraining the timing and severity of impact processes on 4-Vesta is particularly important given the role of the HED achondrites in establishing the hypothesis of late heavy bombardment (LHB) of the inner Solar System (Kring and Cohen, 2002). Originally defined by a preponderance of 3.9 billion-year-old ages measured in samples returned by the Apollo missions (Wetherill, 1975), the LHB could represent a short-lived, extreme influx of material at 3.9 Ga (Tera et al., 1974) or a prolonged period of bombardment generated through the tail end of planetary accretion (Morbidielli et al., 2012). $^{40}\text{Ar} / {^{39}\text{Ar}}$ systematics of eucrites record a preponderance of ages between 3.4 and 4.1 Ga (Marchi et al., 2013), with notable peaks at 3.5, 3.8, 3.9 and 4.0 Ga (Scott et al., 2009) which correlate with a comparable prevalence of 3.9 Ga ages which have been reported in the $^{40}\text{Ar} / {^{39}\text{Ar}}$ systematics of samples returned by the Apollo missions, as well as some lunar meteorites (Kring and Cohen, 2002). Younger impact events can also be identified within the $^{40}\text{Ar} / {^{39}\text{Ar}}$ systematics of eucrites, with NWA 1000 yielding an age of 646 ± 29 Ma which overprints an older 3922 ± 87 Ma age, which can be correlated with the proposed LHB (Takenouchi et al., 2021).

However, the natural evolution of $^{40}\text{Ar} / {^{39}\text{Ar}}$ systematics coupled with a gradual decrease in impact events linked to late accretion could also yield the distribution of Ar-Ar ages observed in Apollo samples (Boehnke and Harrison, 2016). In addition, studies examining the U-Th-Pb systematics coupled with the microstructure of accessory minerals such as zircon, baddeleyite, and apatite have revealed an absence of shock-reset ages and crystallographic features that could be confidently ascribed to this cataclysmic event in lunar and martian materials (Crow et al., 2017; Moser et al., 2019). Here, we analyse the microstructure and U-Th-Pb isotope systematics of these critical accessory mineral chronometers within six eucrites to provide new, empirical constraints on the timing, duration, and extent of magmatism and bombardment events on the asteroid 4-Vesta, most notably finding no evidence for an increased impact flux around 3.9 Ga, in agreement with recent studies on howardites (Cartwright et al., 2022).

1.1. Shock barometry and chronology of accessory minerals

Shock phenomena in zircon are well documented (Moser et al., 2011; Timms et al., 2017). At 20 GPa, the zircon lattice undergoes mechanical twinning (Morozova, 2015), while transformation to the high symmetry phase reidite occurs around 40 GPa (Leroux et al., 1999). Development of (110) shock twins has a minimal effect on the U-Pb systematics of the grain (Cavosie et al., 2018). However, local heating from a remnant impact melt sheet could encourage more complete age resetting (Moser et al., 2011). Though metastable over geological timescales, the reversion of reidite to zircon produces a range of granular neoblastic domains that preserve crystallographic evidence of the precursor phase (Cavosie et al., 2018). Within a melt sheet environment such as at the Vredefort impact structure, zircon can partially to fully recrystallize, forming neoblastic domains with U-Pb systematics reset to the timing of the impact event (Cavosie et al., 2015). At extreme temperatures (>2300 °C), zircon undergoes phase segregation to Si and Zr, forming a dissolution corona around the original grain (Timms et al., 2017). Despite the extreme temperatures affecting the rim of the grain, the isotope systematics of the zircon core remain undisturbed, retaining a concordant U-Pb age of protolith crystallization (Timms et al., 2017).

Baddeleyite undergoes a series of phase transformations under increasing pressure and temperature conditions. Above 3.5 GPa, the mineral transitions through a series of orthorhombic (I, II, III) structures (Kudoh et al., 1986), while high temperatures induce transformation to a tetragonal (> 1300 °C) or cubic (> 2300 °C) phase (Hannink et al., 2000). Though these high symmetry phases are metastable under ambient conditions, the formation and reversion of these phases result in unique crystallographic assemblages of daughter baddeleyite grains that can be reconstructed to reveal the parent phase (e.g. Cayron et al., 2006). In this way, reversion twinned baddeleyite can be utilized as a shock barometer, when reverted from the high-pressure orthorhombic phase (White et al., 2018), or as an indicator of high-temperature conditions when reverted from the tetragonal or cubic phases (e.g. Timms et al., 2017, White et al., 2020). These phase changes have extreme effects on the U-Th-Pb ages of individual domains. For example, baddeleyite grains in the lunar meteorite Northwest Africa (NWA) 3163, which contain microstructural domains formed by both igneous crystallization and high symmetry reversion, record $^{232}\text{Th} / {^{208}\text{Pb}}$ ages of 4.32 Ga and 2.17 Ga across a micrometre-scale distance (White et al., 2019). When rapidly quenched from a high symmetry polymorph full reversion does not occur, with the baddeleyite grain instead developing a quasi-amorphous texture and partially to fully losing radiogenic Pb through nanometre-scale grain boundaries and localised solid-state diffusion (Darling et al., 2016).

Apatite group minerals develop numerous microstructures at increasing shock pressures, including planar deformation features (> 10 GPa; Cavosie and Lugo Centeno, 2014; Slaby et al., 2017), crystal plastic deformation (Darling et al., 2020), fracturing and brecciation (Grange et al., 2013), and mosaicism and recrystallization (> 35 GPa; Schneider et al., 2008; Slaby et al., 2017; Černok et al., 2019). The formation and evolution of these structures directly controls the chemical and volatile composition of the grain, affecting major element chemistry (Kenny et al., 2020) and isotopic compositions including Cl (Darling et al., 2020). Apatite is a more sensitive impact chronometer than baddeleyite or zircon, with a closure temperature to solid state Pb diffusion of between 375 - 600 °C (Cochrane et al., 2014; Schoene and Bowring, 2007). Pb diffusion and loss can be further enhanced by the microstructural complexity of the apatite grain, with shock deformation and recrystallization providing fast diffusion pathways that allow Pb isotopes to be used as a more effective impact recorder (e.g. McGregor et al., 2019).

In concert, the microstructural records of zircon, baddeleyite, and apatite provide unique insights into the conditions experienced by the host rock across a wide range of pressure and temperature regimes (e.g. Moser et al., 2011; Timms et al., 2017; Crow et al., 2017; White et al., 2018, 2020; Černok et al., 2019; Darling et al., 2020). By coupling quantified microstructural analysis with radiogenic age, the timing and severity of planetary processes can be measured empirically, yielding new insights into the formation and evolution of planetary bodies throughout the inner Solar System.

2. Materials and methods

2.1. Sample descriptions

In total, six unpaired eucrites have been incorporated into this study; NWA 1000, NWA 2202, and four that have not been examined since their initial classification (NWA 11,747, 11,748, 12,866, and 12,867).
Complete electron microprobe (EPMA) data, collected using a JEOL JXA8230 5-WDS electron probe microanalyzer (EPMA) instrument at the University of Toronto, for these samples can be found within the supplementary materials.

NWA 11,748 is a minimally brecciated monomictic eucrite consisting of subophitic clasts of gabbroic material set within a fine-grained matrix of the same materials (Gattacceca et al., 2020a). The main mass, totalling 27.5 g, displays a vesiculated furnace crust. Clinopyroxene (En_{38.5}Fs_{44.9}Wo_{29.6}; n = 29) displays exsolution lamella consistent with augite composition (En_{34.8}Fs_{43.0}Wo_{22.2}; n = 5), while all pyroxenes yield bulk Fe/Mn ratios of 31.49 (n = 34). Feldspar, where present, is unfractured and yields a tight spread of compositions around An_{00} ± 1.6% 2σ (n = 20). Accessory minerals include ilmenite, troilite,apatite, merrillite, zircon, and rare baddeleyite.

NWA 11,747 is a highly brecciated monomictic eucrite consisting of highly fragmented medium-grained pyroxene and feldspar set within a fine-grained groundmass of the same minerals (Gattacceca et al., 2020b). The main mass (31.97 g) preserves a fusion crust, with a thin section of the sample revealing numerous dark grey to black melt glass pockets. Vesiculated melt veins crosscut the darker matrix of the stone. Pyroxene yields bulk Fe/Mn ratios of 29.42 (n = 46). Low calcium pyroxene (En_{42.6}Fs_{46.9}Wo_{29.6}; n = 43) dominates both domains with no observable chemical variation between the clasts and matrix. High-Ca lamella (En_{35.2}Fs_{42.2}Wo_{22.6}; n = 3) occur throughout the sample. Feldspar average An_{88} composition spread between An_{50} and An_{83} (n = 25).

NWA 1000 is a large (1.2 kg) unbrecciated eucrite comprising a subophitic and variolitic texture with laths of pyroxene (< 5 mm) and plagioclase (< 4 mm). Veins of fayalitic olivine crosscut the sample. Pyroxenes are zoned from En_{00}Wo_{40} to En_{00}Wo_{40} with minor chemical variation being introduced through an early reaction between pigeonite and the olivine veins (En_{00}Wo_{00}). A bulk Fe/Mn ratio of 38 supports classification as an eucrite. Roughly 50% of the feldspars (An_{75.46}) has been transformed to maskelynite (diaplectic feldspar glass) suggesting shock pressures in excess of around 17 GPa have been achieved at least locally within the sample (Hu et al., 2023). Silica is present in mesostasis regions, though has been altered by weathering that has also yielded carbonate veins within the sample. Accessory apatite, merrillite, zircon, and baddeleyite have been found within the sample. Two aliquots for \(^{40}\text{Ar}/^{39}\text{Ar}\) analysis failed to yield an age plateau, though a cosmic ray exposure age of 30 ± 8 Ma was calculated (Kennedy et al., 2019). NWA 1000 yields Stannern-like geochemistry based on high Ti (0.29 ppm) and LREE/HREE enrichment with a negative Eu (Eu/Eu* = 0.83) displayes planar deformation features and mottled extinction suggestive of low shock pressure deformation. Carbonate weathering veins to 0.1 mm width are common, lying alongside of and often completely disjointing lithic clasts (ca. 60 mm) lying within of the black fusion crust (Gattacceca et al., 2020b).

2.2. Analytical methodology

Scanning electron microscope (SEM) work was conducted on single thin sections of NWA 11,747, 11,748, 12,866 and 12,867, as well as 1-inch epoxy mounts of NWA 1000 and 2202, utilizing Energy-Dispersive X-ray spectroscopy (EDS) to identify P-rich grains and feature scan (automated, targeted EDS of grains using Z-contrast in backscatter electron imaging to identify phases of interest) to identify high contrast Zr phases. Instruments at the University of Portsmouth (Zeiss EVO 10MA LaB6 SEM) and the University of Western Ontario (Hitachi S6600 VP-FEG SEM) were used to find and image grains, while Oxford Instruments Aztec software was used to reduce EDS data in all cases. High-resolution backscatter electron (BSE) imaging was conducted on grains of interest to identify internal fractures or inclusions. Zircon was located in all sections; apatite was located in five of the six samples (being absent only in NWA 2202) and baddeleyite was present in only four sections (absent in NWA 12,866 and 12,867).

2.2.1. Electron backscatter diffraction

Lattice orientation and internal microstructure of selectedapatite, baddeleyite and zircon were studied by electron backscatter diffraction (EBSD). EBSD analyses were undertaken using an Oxford Instruments Nordlys-nano EBSD detector mounted on the same SEM at the University of Portsmouth, UK. Data were processed using Oxford Instruments Aztec software, and then further analysis of EBSD data was undertaken using the Channel S software suite. Diffracted electrons were collected at a tilt angle of 70°, using a primary electron beam with 20 kV accelerating voltage and 1 nA probe current in variable-pressure mode (N_2 was used to maintain chamber pressure of 20–30 Pa), broadly following the approach of Darling et al. (2016) and Cernok et al. (2019). Diffraction patterns were automatically captured and indexed every 50–500 nm across manually defined areas. Apatite diffraction patterns were indexed to the chlorapatite crystal lattice parameters of Hughes et al., 1989. Baddeleyite was indexed against inorganic crystal structure database (ICSD) card 15,983 (Smith and Newkirk, 1965). Wild spike reduction was conducted on all datasets, though no other form of raw data correction was undertaken.

2.2.2. Geochronology

For baddeleyite and zircon, secondary ionization mass spectrometry (SIMS) was utilized to measure U-Pb geochronology, while laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was used to date individualapatite. Reconnaissance imaging of the target grains using SEM was conducted prior to analysis to avoid surficial cracks and fractures in zircon and baddeleyite, while EBSD allowed targeted dating of crystallographic apatite in all studied samples.
SIMS analysis of U-Pb systematics was conducted on fifteen grains in total across NWA 1000 and NWA 2202 (eight baddeleyite and seven zircon) following previously reported procedures described in Schmitt et al. (2010) using a CAMECA IMS 1270 ion microprobe housed at UCLA. An aperture-delimited primary beam of ~8 nA 16O- was focused onto a ~20 µm diameter spot. Lateral resolution was enhanced by narrowing the field aperture to an effective sampling area of 10 × 10 µm which was irradiated into the analyzed zircon or baddeleyite grain. Relative sensitivity factors for U-Pb in baddeleyite and zircon were calibrated on Phalaborwa baddeleyite and AS3 zircon references (Heaman, 2009; Paces and Miller, 1993).

LA-ICP-MS analysis of U-Pbapatite grains within NWA 11,747, 11,748, 12,866 and 12,867 was undertaken at the University of Portsmouth. For all grains, correlative EBSD was conducted prior to LA-ICP-MS analyses, which utilised an ASI RESolution 193 nm ArF excimer laser coupled to an Analytik Jena Plasma Quant Elite ICP MS. Single spot ablations were conducted using either a 30 µm, 25 µm or 15 µm spot size (based on available phosphate surface area) and operating the laser at 3 Hz and 2.5 J/cm², during a 30-second ablation. MAD apatite (Thomson et al. 2012) was used as the primary reference material to correct for mass bias, instrument drift, and laser-induced elemental fractionation, with a 207Pb/206Pb based common-Pb correction scheme to the primary reference material following Chew et al. (2014). The accuracy and precision of analyses were monitored using Xuxa apatite (573.0 ± 0.8 Ma; Schuch 2018), and McClure Mountain apatite (523.98 ± 0.12 Ma; Schoene and Bowring 2006). The results for unconstrained Tera-Wasserburg Concordia regressions for each reference material are within the uncertainty of reference U-Pb ages and common 207Pb/206Pb values.

3. Results

3.1. Accessory mineral occurrence and textures

A feature scan of NWA 11,747 revealed 54 baddeleyite grains (8.8 µm²–137.6 µm² exposed surface area) and 404 zircons (8.8 µm²–2114 µm²). Zircon grains display a range of morphologies, predominately occurring as either small, rounded grains (Fig. 1a, b) or as conglomerates of granoblastic grains (Fig. 1c, d). Baddeleyite occurs as exceptionally small grains throughout the sample (< 10 µm), rarely with small fractures cross-cutting individual crystals (Fig. 1e, f). Elemental mapping of the thin section revealed two large (> 500 µm²) calcium phosphate grains within gabbroic clasts, though smallerapatite and merrillite grains were present throughout the groundmass. Grains are highly fractured, though appear homogenous in BSE and EDS.

A high-resolution feature scan of NWA 11,748 revealed 3 baddeleyite grains (21.7–205 µm²) and 264 zircon grains (8.8 µm²–817 µm²). Zircon occurs as small, rounded grains throughout the thin section (Fig. 1f), with one of the nine grains imaged displaying minor fracturing. Baddeleyite is incredibly rare, occurring as clusters of small grains within pockets of amorphous silica (Fig. 1k,l). Mapping of the section using EDS reveals an abundance of phosphate grains across the sample, primarily occurring in the breciated matrix. Individual grains range from 5 µm to > 400 µm in length and appear largely free of fractures and inclusions in BSE imaging.

Four zircon grains (< 1 to 25 µm) were found in a scan of NWA 12,866, occurring with silica and ilmenite within both clasts and matrix of the thin section. Zircon within the matrix are small, rounded, anhedral grains, while those within clasts are polycrystalline (granular) aggregates of small zircon neoblasts. Baddeleyite was not found in the sample. Elemental mapping of NWA 12,866 reveals multipleapatite and merrillite grains within the sample, varying in size from 20 to 120 µm. Grains are highly fractured and contain up to three unique orientations of planar deformation features. Some grains are crosscut by melt veins, though otherwise appear homogenous in BSE imaging.

NWA 12,867 contains a single zircon grain (40 µm) and no baddeleyite. The zircon grain is anhedral, occurring as an irregularly shaped elongate bleb intergrown withapatite. Phosphate minerals (< 200 µm), however, were located within both the clast and matrix of the sample. Apatite andmerrillite are crosscut by irregular cracks and fractures, though appear otherwise homogenous in BSE.

3.2. Quantification of microstructure using electron backscatter diffraction (EBSD)

Zircon grains in NWA 1000, 2202, 11,747, and 11,748 are microstructurally simple, displaying < 2° of total misorientation across a single crystallographic orientation (Fig. 2a-c) and igneous zoning in

![Fig. 1. Backscatter electron (BSE) imaging of zircon (A-D) and baddeleyite (E,F) in NWA 11,747, and zircon (G-J) and baddeleyite (K,L) in NWA 11,748, to highlight the range of grain morphologies observed in the analysed eucrites. Lighter grey minerals are pyroxene, while darker grey crystals are feldspar (plagioclase).](image-url)
cathodoluminescence (CL; Fig. 2d). Within NWA 12,866, granular zircon records a range of unique crystallographic orientations, with high-angle grain boundaries dividing the sub grains (Fig. 2e). EBSD analysis of baddeleyite grains within NWA 11,748 reveals complex, irregular, micrometre- to submicrometre-scale baddeleyite domains divided by sub-grain boundaries that yield weaker electron diffraction patterns. Crystalline subdomains yield distinct, loosely clustered, orthogonally related groups of crystallographic orientations in high-angle grain boundaries dividing the sub grains (Fig. 2e). EBSD cathodoluminescence (CL; Fig. 2d). Within NWA 12,866, granular zircon reveals igneous zonation (Fig. 2a). EBSD analysis of baddeleyite grains within NWA 11,748 reveals complex, irregular, micrometre- to submicrometre-scale baddeleyite domains divided by sub-grain boundaries that yield weaker electron diffraction patterns. Crystalline subdomains yield distinct, loosely clustered, orthogonally related groups of crystallographic orientations in high-angle grain boundaries dividing the sub grains (Fig. 2e). EBSD cathodoluminescence (CL; Fig. 2d). Within NWA 12,866, granular zircon reveals igneous zonation (Fig. 2a).

Apatite reveals a range of structures across the five samples analysed, including widespread evidence for plastic deformation, amorphization, fracturing, and local recrystallization (Fig. 4). Two eucrites (NWA 11,748 and 12,867) contain minimally deformed apatite that displays < 10° cumulative misorientation across the length of each crystal. Whereas three eucrites (NWA 1000, 11,747, and 12,866) host highly deformed grains with between 30 and 50° of cumulative misorientation, with NWA 11,747 displaying grains of randomly oriented neoblasts in close association with the grain. Within NWA 1000, small regions of apatite fail to diffract, suggesting amorphization of the crystal structure on the length scale of EBSD (c. 50 nm).

3.3. Geochronology

SIMS analysis of baddeleyite within NWA 1000 reveals two age populations: ancient 207Pb/206Pb ages with a weighted average age of 4558 ± 5 Ma (2σ; n = 6) and two younger grains yielding ages of 4478 ± 20 Ma and 4457 ± 15.4 Ma (weighted average of 4468 ± 11.9 Ma). Two baddeleyite grains in NWA 2202 give ages of 4563 ± 18 Ma and 4527 ± 33 Ma. Data are reversely discordant (likely from recent Pb loss through fast diffusion along microstructural pathways; Pohlner et al., 2020), and therefore only 207Pb/206Pb ages are considered. Zircon grains yield concordant SIMS ages, with a single zircon grain in NWA 1000 recording a 207Pb/206Pb age of 4511 ± 17 Ma, while zircon in NWA 2202 displays a spread of ages between 4574 ± 15.5 Ma and 4511 ± 8.9 Ma (with a weighted average of 4542 ± 8 Ma, MSWD = 4). All zircon and baddeleyite analyses contain very low common Pb (> 99.1% radiogenic 207Pb) and are summarised in Table 1.

LA-ICP-MS analysis of apatite within NWA 1000 reveals concordant U-Pb systematics (207Pb/206Pb vs. 207Pb/235U concordia age of 4498.7 ± 6.2 Ma) with a weighted average 207Pb/206Pb age of 4486 ± 18 Ma (n = 3). NWA 11,748 records slightly discordant U-Pb age systematics, with an upper intercept age of 4527 ± 41 Ma. A weighted average 207Pb/206Pb age of 4512 ± 4.9 Ma (n = 4) supports this ancient upper intercept age. NWA 12,867 yields discordant U/Pb ages, with a weighted average of 207Pb/206Pb age of 4509 ± 34 Ma (n = 4). NWA 11,747 apatite records a spread of 207Pb/206Pb ages between 4242 ± 12 Ma and 4171 ± 16 Ma, yielding an upper intercept concordia age of 4193 ± 320 Ma (n = 4), while NWA 12,866 records 207Pb/206Pb ages between 4268 Ma and 4190 Ma (n = 8), 62% of which are discordant. Allapatite LA-ICP-MS data are reported in the supplementary data tables and summarised in Table 1 and Fig. 5.

4. Discussion

4.1. Magmatism and cooling on the eucrite parent body

Structurally complex baddeleyite grains are observed here in NWA 11,748, which contain evidence for reversion twinning indicative of a precursor high temperature (> 1300 °C) or pressure (> 5 GPa) polymorph (White et al., 2018 & 2020). These structures are unlikely to be produced through igneous processes alone, as baddeleyite (monoclinic-ZrO2) would crystallize directly from the melt either untwined or with simple 180°/<001> twin relationships (White et al., 2018). As such, baddeleyite grains must have formed prior to exposure to the high pressure or temperature event which facilitated transformation to the high symmetry zirconia polymorph, and as such baddeleyite could preserve evidence for the earliest accretion and differentiation processes on the eucrite parent body. In concert, baddeleyite in NWA 1000 and NWA 2202 preserve the oldest measured U-Pb ages (c. 4558 Ma) within the six samples studied, supportive of eucrite formation within the first few million years of Solar System history (e.g. Hopkins et al., 2015; Hubleit et al., 2017).

The youngest baddeleyite age in NWA 1000 (4457 ± 15.4 Ma) likely reflects either continued global thermal metamorphism on the eucrite parent body or impact-induced Pb diffusion and age resetting (Jourdan et al., 2020). The extensive crystal plastic deformation observed in...
apatite in NWA 1000, which appears slightly older (4486 ± 18 Ma) than two of the baddeleyite grains, suggests an impact event around 4460 Ma which reset, or partially reset, the Pb isotope systematics of apatite and baddeleyite within the sample.

The suite of zircon analysed in this study, despite containing no evidence for shock annealing or deformation, records a spread of ages between baddeleyite crystallization (4557 Ma) and 4487 ± 31.2 Ma in NWA 2202. Though comparable young ages in eucritic zircon (e.g. 4530 Ma) have previously been attributed to impact resetting (Hopkins et al., 2016), this absence of microstructural features associated with impact-induced Pb loss (such as (112) micro twin lamella or granoblastic textures) suggests an endogenic origin for the grains. Eucritic zircon could also be formed during burial metamorphism, whereby partial melting of silica-rich mesostasis and ilmenite (FeTiO$_3$) leads to a reaction between Si and Zr (Haba et al., 2014; Iizuka et al., 2015). Theoretically, heating from an impact-induced melt sheet could produce a similar temperature regime (900 – 1000 °C) in underlying target rocks, resulting in fresh zircon growth. However, baddeleyite grains in NWA 2202 yield 207Pb-206Pb ages of 4563 ± 18 Ma and 4527 ± 33 Ma, predating zircon formation. Baddeleyite would undergo a phase transition to the high-symmetry tetragonal polymorph (t-ZrO$_2$) at these pressure-temperature conditions (Timms et al., 2017), before producing an array of reversion microstructures during the transition back to the ambient monoclinic structure (White et al., 2018). These structures act as low-temperature diffusion pathways for Pb loss, and as such the retention of ancient 207Pb-206Pb ages suggests no exposure to metamorphic or annealing conditions. As such, we move forward on the assumption that the spread of zircon ages in NWA 2202 can be attributed to endogenic mechanisms.

The spread of ages preserved within the clasts and matrix of brecciated eucrite NWA 2202 are thus attributed to thermal alteration on 4-Vesta until at least 4487 Ma, falling outside of young zircon ages (> 4532 Ma) supportive of prolonged Vestan magmatism (Roszjar et al., 2016). Given the brecciated nature of the sample, the stratigraphic depth of formation for these clasts is poorly constrained, though the younger ages suggest formation at depth on the parent body (potentially up to 20 km deep) prior to excavation and brecciation (e.g. Iizuka et al., 2019). This interpretation is further supported by U-Pb analysis of minimally deformed apatite grains in NWA 1000, NWA 11,748 and NWA 12,867, which all preserve ages around ~4500 Ma that are likely attributed to cooling of the parent body. These microstructurally constrained ages are supported by high precision Th-U-Pb and Zircon U-Pb data from Camel Donga of 4552.56 ± 0.69 Ma (Haba and Wotzlaw, 2021) and Agoult of 4554.5 ± 2 Ma (Iizuka et al., 2015), as well as 40Ar/39Ar ages from cumulate eucrites Moore County and Moama (> 4531 ± 11 Ma; Jourdan et al., 2020). This data thus provide further support for early global metamorphism on the eucrite parent body (Iizuka et al., 2015; Haba and Wotzlaw, 2021), potentially driven by sustained magmatism (Roszjar et al., 2016) and prolonged cooling of the eucrite source through insulating crustal layers (4514 ± 6 Ma; Jourdan et al., 2020).

Previous 40Ar/39Ar data from three polymict eucrites, which yielded apparent age plateaus of between 4543 ± 56 Ma and 4491 ± 16 Ma, were ascribed to widespread resetting during an impact event at 4500 ± 4 Ma (Kennedy et al., 2019). However, the absence of any structural or isotopic evidence for this event in the six eucrites studied here suggests that any impact at this time would have to be small and localized and is unlikely to represent a significant resetting event on the eucrite parent body (Fig. 6). The absence of clear impact resetting at 4500 Ma in the 40Ar/39Ar systematics of howardites NWA 1929 and Dho 485 further supports this interpretation (Cartwright et al., 2022).

4.2. Timing and severity of bombardment events recorded by eucrites

Given the highly brecciated nature of five of the six studied eucrites (NWA 2202, NWA 11,747, NWA 11,748, NWA 12,866, and NWA 12,867), and the polymict nature of three (NWA 2202, NWA 12,866, and NWA 12,867), the analysed samples were exposed to impact gardening and reprocessing within an array of geological terranes on the surface of the eucrite parent body (e.g. Kennedy et al., 2019; Jourdan et al., 2024). The absence of shock features in the ancient baddeleyite and zircon examined here suggests that large early impact events, such as the mesosiderite-forming hit-and-run event at 4525.39 ± 0.85 Ma (Haba et al., 2019) or remnant impactors from the moon forming impact at around 4470 Ma (Bottke et al., 2015), were not recorded in a globally diverse range of eucrites. Interestingly, the sampled eucrites also do not record isotopic evidence for either the Rheasilvia (3.5 ± 0.1 Ga) or Veneneia (3.7 ± 0.1 Ga) crater-forming impact events (Schmedemann et al., 2014), though these ages are generally under-represented for eucrites as a whole (including in 40Ar/39Ar age systematics; Jourdan et al., 2024).

Extensively deformed and recrystallized apatite grains within NWA 1000, NWA 11,748 and NWA 12,867, which all preserve ages around ~4500 Ma that are likely attributed to cooling of the parent body. These microstructurally constrained ages are supported by high precision Th-U-Pb and Zircon U-Pb data from Camel Donga of 4552.56 ± 0.69 Ma (Haba and Wotzlaw, 2021) and Agoult of 4554.5 ± 2 Ma (Iizuka et al., 2015), as well as 40Ar/39Ar ages from cumulate eucrites Moore County and Moama (> 4531 ± 11 Ma; Jourdan et al., 2020). This data thus provide further support for early global metamorphism on the eucrite parent body (Iizuka et al., 2015; Haba and Wotzlaw, 2021), potentially driven by sustained magmatism (Roszjar et al., 2016) and prolonged cooling of the eucrite source through insulating crustal layers (4514 ± 6 Ma; Jourdan et al., 2020).

Previous 40Ar/39Ar data from three polymict eucrites, which yielded apparent age plateaus of between 4543 ± 56 Ma and 4491 ± 16 Ma, were ascribed to widespread resetting during an impact event at 4500 ± 4 Ma (Kennedy et al., 2019). However, the absence of any structural or isotopic evidence for this event in the six eucrites studied here suggests that any impact at this time would have to be small and localized and is unlikely to represent a significant resetting event on the eucrite parent body (Fig. 6). The absence of clear impact resetting at 4500 Ma in the 40Ar/39Ar systematics of howardites NWA 1929 and Dho 485 further supports this interpretation (Cartwright et al., 2022).

4.2. Timing and severity of bombardment events recorded by eucrites

Given the highly brecciated nature of five of the six studied eucrites (NWA 2202, NWA 11,747, NWA 11,748, NWA 12,866, and NWA 12,867), and the polymict nature of three (NWA 2202, NWA 12,866, and NWA 12,867), the analysed samples were exposed to impact gardening and reprocessing within an array of geological terranes on the surface of the eucrite parent body (e.g. Kennedy et al., 2019; Jourdan et al., 2024). The absence of shock features in the ancient baddeleyite and zircon examined here suggests that large early impact events, such as the mesosiderite-forming hit-and-run event at 4525.39 ± 0.85 Ma (Haba et al., 2019) or remnant impactors from the moon forming impact at around 4470 Ma (Bottke et al., 2015), were not recorded in a globally diverse range of eucrites. Interestingly, the sampled eucrites also do not record isotopic evidence for either the Rheasilvia (3.5 ± 0.1 Ga) or Veneneia (3.7 ± 0.1 Ga) crater-forming impact events (Schmedemann et al., 2014), though these ages are generally under-represented for eucrites as a whole (including in 40Ar/39Ar age systematics; Jourdan et al., 2024).

Extensively deformed and recrystallized apatite grains within NWA...
11,747 and NWA 12,866 record $^{207}\text{Pb} - ^{206}\text{Pb}$ ages of between 4269 \pm 13 Ma and 4171 \pm 16 Ma. Correlating microstructure (EBSD) and U-Pb age dating (LA-ICP-MS) of apatite grains is highly suggestive of impact-induced Pb loss and age resetting, revealing at least one significant impact event on the asteroid 4-Vesta around 4170 Ma. Given the sensitivity of apatite to age resetting, whereby grains start to lose Pb through solid-state diffusion at < 570 °C (significantly lower than baddeleyite and zircon (900 °C); Cherniak, 2010), it is significant that the highly deformed grains within our analysed population still preserve U-Pb ages older than peak LHB at 4.1 Ga (Nemchin et al., 2009). Assuming the inner Solar System was exposed to both more frequent and more severe impact events during a period of late heavy bombardment (e.g. Kring and Cohen, 2002), it is expected that at least some of the accessory minerals analysed within these six eucrites would preserve isotopic or structural evidence of the event given the expected wide-spread generation of highly heated materials (Marchi et al., 2013). For example, it has previously been shown that the boundary domains in reversion twinned baddeleyite are highly sensitive to Pb loss during low temperature (greenschist-facies; < 450 °C) metamorphic events (White et al., 2017). However, despite showing comparable microstructures, the grain population analysed here displays no evidence for Pb loss at any point following crystallization c. 4558 Ma ago. A large impact event could also be recorded by merrillite in the Juvinas meteorite (4150.3 \pm 10.4 Ma) and apatite in the Stannern meteorite (4143.0 \pm 12.5 Ma).

Fig. 4. EBSD of apatite grains in three of the eucrites studied (NWA 11,747, 11,748 and 1000). Phosphate minerals could not be located in NWA 2202. Apatite in NWA 11,748 are highly crystalline (A), displaying minimal crystal plastic deformation (B) and minimal spread of orientations in inverse pole figure (IPF) colouring (C). Apatite in NWA 11,747 appears more damaged, with inclusions and open fractures cross cutting the grain (D). Grains are deformed, hosting up to 18° of internal crystal plastic deformation (E) and a large spread of similar orientations in IPF (F). Apatite in NWA 1000 also appear fractured and are surrounded by poorly diffracting domains of maskelynite (G). Grains are deformed by up to 35° of internal crystal plastic deformation (H), resulting in a wide spread of orientations in IPF maps and pole figures, which also displays the number of individual pixels (n) measured by EBSD and incorporated into the maps (I).
of the event is again absent in the ancient baddeleyite and zircon crys-
tallographic record. While this could reconcile the younger apatite ages...

A summary of all U-Pb analyses on eucrites reported in this study. For each sample, a selection of characterised baddeleyite (Badd.), zircon and apatite grains were...

Table 1

<table>
<thead>
<tr>
<th>Sample</th>
<th>Mineral</th>
<th>207Pb/206Pb Age (Ma)</th>
<th>2σ</th>
<th>206Pb/238U</th>
<th>2σ</th>
<th>207Pb/235U</th>
<th>2σ</th>
<th>207Pb/206Pb</th>
<th>2σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>NWA 1000</td>
<td>Badd.</td>
<td>4547</td>
<td>15.7</td>
<td>1.289</td>
<td>0.107</td>
<td>109.600</td>
<td>4.600</td>
<td>0.616</td>
<td>0.007</td>
</tr>
<tr>
<td></td>
<td>Badd.</td>
<td>4562</td>
<td>8.62</td>
<td>1.420</td>
<td>0.091</td>
<td>121.900</td>
<td>3.930</td>
<td>0.623</td>
<td>0.004</td>
</tr>
<tr>
<td></td>
<td>Badd.</td>
<td>4555</td>
<td>11.2</td>
<td>1.195</td>
<td>0.107</td>
<td>102.100</td>
<td>4.550</td>
<td>0.620</td>
<td>0.005</td>
</tr>
<tr>
<td></td>
<td>Badd.</td>
<td>4561</td>
<td>3.66</td>
<td>1.385</td>
<td>0.110</td>
<td>113.800</td>
<td>4.710</td>
<td>0.622</td>
<td>0.002</td>
</tr>
<tr>
<td></td>
<td>Badd.</td>
<td>4557</td>
<td>5.66</td>
<td>1.562</td>
<td>0.113</td>
<td>133.700</td>
<td>4.860</td>
<td>0.621</td>
<td>0.002</td>
</tr>
<tr>
<td></td>
<td>Badd.</td>
<td>4547</td>
<td>9.14</td>
<td>1.523</td>
<td>0.096</td>
<td>129.400</td>
<td>4.090</td>
<td>0.617</td>
<td>0.004</td>
</tr>
<tr>
<td></td>
<td>Badd.</td>
<td>4478</td>
<td>20</td>
<td>1.687</td>
<td>0.123</td>
<td>136.700</td>
<td>4.850</td>
<td>0.588</td>
<td>0.008</td>
</tr>
<tr>
<td></td>
<td>Badd.</td>
<td>4457</td>
<td>15.36</td>
<td>1.797</td>
<td>0.106</td>
<td>143.500</td>
<td>4.260</td>
<td>0.579</td>
<td>0.006</td>
</tr>
<tr>
<td></td>
<td>Zircon</td>
<td>4510</td>
<td>17.16</td>
<td>1.046</td>
<td>0.056</td>
<td>86.680</td>
<td>2.340</td>
<td>0.601</td>
<td>0.007</td>
</tr>
<tr>
<td></td>
<td>Apatite</td>
<td>4491.4</td>
<td>15.6</td>
<td>1.040</td>
<td>0.036</td>
<td>86.01</td>
<td>2.19</td>
<td>0.593</td>
<td>0.006</td>
</tr>
<tr>
<td></td>
<td>Apatite</td>
<td>4494.9</td>
<td>17.5</td>
<td>1.002</td>
<td>0.035</td>
<td>82.30</td>
<td>1.96</td>
<td>0.595</td>
<td>0.007</td>
</tr>
<tr>
<td></td>
<td>Apatite</td>
<td>4474.4</td>
<td>15.0</td>
<td>1.020</td>
<td>0.035</td>
<td>81.91</td>
<td>1.94</td>
<td>0.586</td>
<td>0.006</td>
</tr>
<tr>
<td>NWA 11,748</td>
<td>Apatite</td>
<td>4514.0</td>
<td>23.1</td>
<td>0.957</td>
<td>0.029</td>
<td>82.00</td>
<td>1.21</td>
<td>0.603</td>
<td>0.010</td>
</tr>
<tr>
<td></td>
<td>Apatite</td>
<td>4513.3</td>
<td>8.5</td>
<td>0.935</td>
<td>0.026</td>
<td>77.56</td>
<td>0.41</td>
<td>0.602</td>
<td>0.004</td>
</tr>
<tr>
<td></td>
<td>Apatite</td>
<td>4513.9</td>
<td>9.5</td>
<td>0.952</td>
<td>0.028</td>
<td>78.98</td>
<td>0.42</td>
<td>0.602</td>
<td>0.004</td>
</tr>
<tr>
<td></td>
<td>Apatite</td>
<td>4509.7</td>
<td>8.5</td>
<td>1.021</td>
<td>0.030</td>
<td>84.22</td>
<td>0.51</td>
<td>0.601</td>
<td>0.004</td>
</tr>
<tr>
<td>NWA 11,747_1</td>
<td>Apatite</td>
<td>4242.4</td>
<td>12.3</td>
<td>0.950</td>
<td>0.028</td>
<td>65.82</td>
<td>0.48</td>
<td>0.500</td>
<td>0.004</td>
</tr>
<tr>
<td></td>
<td>Apatite</td>
<td>4188.9</td>
<td>23.3</td>
<td>0.955</td>
<td>0.030</td>
<td>64.82</td>
<td>0.74</td>
<td>0.483</td>
<td>0.008</td>
</tr>
<tr>
<td></td>
<td>Apatite</td>
<td>4171.4</td>
<td>16.4</td>
<td>0.966</td>
<td>0.029</td>
<td>62.63</td>
<td>0.67</td>
<td>0.477</td>
<td>0.005</td>
</tr>
<tr>
<td></td>
<td>Apatite</td>
<td>4203.9</td>
<td>21.0</td>
<td>0.891</td>
<td>0.028</td>
<td>60.67</td>
<td>0.87</td>
<td>0.483</td>
<td>0.007</td>
</tr>
<tr>
<td>NWA 12,866_1</td>
<td>Apatite</td>
<td>4190.5</td>
<td>16.5</td>
<td>0.961</td>
<td>0.030</td>
<td>63.91</td>
<td>2.02</td>
<td>0.483</td>
<td>0.005</td>
</tr>
<tr>
<td></td>
<td>Apatite</td>
<td>4220.4</td>
<td>9.9</td>
<td>0.891</td>
<td>0.026</td>
<td>60.50</td>
<td>1.81</td>
<td>0.493</td>
<td>0.003</td>
</tr>
<tr>
<td></td>
<td>Apatite</td>
<td>4232.3</td>
<td>8.8</td>
<td>0.908</td>
<td>0.027</td>
<td>62.16</td>
<td>1.86</td>
<td>0.497</td>
<td>0.003</td>
</tr>
<tr>
<td></td>
<td>Apatite</td>
<td>4203.9</td>
<td>29.0</td>
<td>0.871</td>
<td>0.029</td>
<td>58.58</td>
<td>2.10</td>
<td>0.488</td>
<td>0.010</td>
</tr>
<tr>
<td></td>
<td>Apatite</td>
<td>4247.1</td>
<td>16.3</td>
<td>0.902</td>
<td>0.028</td>
<td>62.33</td>
<td>1.93</td>
<td>0.502</td>
<td>0.006</td>
</tr>
<tr>
<td></td>
<td>Apatite</td>
<td>4240.6</td>
<td>9.4</td>
<td>0.909</td>
<td>0.027</td>
<td>62.65</td>
<td>1.89</td>
<td>0.500</td>
<td>0.003</td>
</tr>
<tr>
<td></td>
<td>Apatite</td>
<td>4269.5</td>
<td>13.0</td>
<td>0.936</td>
<td>0.029</td>
<td>65.78</td>
<td>2.08</td>
<td>0.510</td>
<td>0.005</td>
</tr>
<tr>
<td></td>
<td>Apatite</td>
<td>4229.5</td>
<td>18.3</td>
<td>1.073</td>
<td>0.037</td>
<td>68.11</td>
<td>2.38</td>
<td>0.496</td>
<td>0.006</td>
</tr>
<tr>
<td>NWA 12,867_1</td>
<td>Apatite</td>
<td>4370.2</td>
<td>193.6</td>
<td>0.885</td>
<td>0.080</td>
<td>83.71</td>
<td>9.45</td>
<td>0.546</td>
<td>0.072</td>
</tr>
<tr>
<td></td>
<td>Apatite</td>
<td>4360.0</td>
<td>181.0</td>
<td>0.817</td>
<td>0.078</td>
<td>74.02</td>
<td>7.27</td>
<td>0.542</td>
<td>0.067</td>
</tr>
<tr>
<td></td>
<td>Apatite</td>
<td>4520.3</td>
<td>37.2</td>
<td>1.829</td>
<td>0.119</td>
<td>148.07</td>
<td>8.93</td>
<td>0.605</td>
<td>0.016</td>
</tr>
<tr>
<td></td>
<td>Apatite</td>
<td>4511.4</td>
<td>165.9</td>
<td>0.860</td>
<td>0.067</td>
<td>86.60</td>
<td>8.27</td>
<td>0.601</td>
<td>0.069</td>
</tr>
</tbody>
</table>

(Koike et al., 2020); while this could reconcile the younger apatite ages...

In total, 32 unique U-Th-Pb analyses of baddeleyite, zircon, and apatite reveal new insights into the formation and evolution of the eucrite parent body (4-Vesta). Ages of reversion twinned baddeleyite in the samples studied here support early magmatism on the parent body around 4558 Ma, in close agreement with previous studies (e.g. 4560 Ma baddeleyite in Juvinas; Bukovanska et al., 1997). Structurally simple zircon grains record ages between crustal formation and 4487 ± 31.2 Ma, which likely records a significant metamorphic event on 4-Vesta. The six eucrites analysed contain no geochemical evidence for a hypothesized period of late heavy bombardment, making our results consistent with those from accessory minerals on the Moon (Crow et al., 2017) and Mars (Moser et al., 2019), as well as studies of howardites (Cartwright et al., 2022) and diogenites (Jordau et al., 2024). This conclusion is supported by the microstructural state of the analysed minerals, which fail to record indicative evidence of shock deformation beyond crystal plastic deformation within > 4.1 Ga apatite. This study also highlights the potential of apatite as a shock chronometer (e.g. Cernok et al., 2019), whereby the correlated analysis of microstructure and U-Pb isotopes facilitates significantly enhanced interpretation of generated age data, here placing new constraints on the evolution of the asteroid 4-Vesta.

5. Conclusions

This study combined measurements of quantified microstructure and U-Th-Pb isotope systematics in apatite, baddeleyite, and zircon to yield empirical new insights into the formation and evolution of 4-Vesta. Baddeleyite grains, which contain crystallographic evidence for the former presence of a high symmetry precursor phase (White et al., 2018 & 2020), yield U-Pb ages of 4558 Ma, in agreement with the age of the crustal formation on 4-Vesta (4561 Ma; Hopkins et al., 2015; Hublet et al., 2017). Granular zircon grains in NWA 12,866 are suggestive of a large impact event around 4.23 Ga, based on apatite Pb-Pb chronology from the same sample. Zircon grains in NWA 1000 and NWA 2202 yield Pb-Pb ages suggestive of prolonged crustal metamorphism between 4557 and 4510 Ma, while structural characterisation of these grain populations rule out impact resetting of the measured U-Pb systematics. In concert, these analyses provide no structural or isotopic evidence for...
impact deformation or age resetting during the hypothesised late heavy bombardment on the eucrite parent body, suggesting that an uptick in bombardment intensity and the rate was either significantly lower than previously estimated, or did not affect the asteroid 4-Vesta.

CRediT authorship contribution statement

L.F. White: Writing – original draft, Validation, Project administration, Methodology, Investigation, Formal analysis, Data curation, Conceptualization, Writing – review & editing. **D.E. Moser:** Writing – review & editing, Resources, Methodology, Investigation, Funding acquisition, Formal analysis, Data curation, Conceptualization. **J.R. Darling:** Conceptualization, Data curation, Formal analysis, Investigation, Methodology. **B.G. Rider-Stokes:** Data curation, Formal analysis, Investigation, Methodology, Writing – original draft, Writing – review & editing. **B. Hyde:** Investigation, Writing – review & editing. **K.T. Tait:** Resources, Investigation, Funding acquisition, Data curation, Formal analysis. **K. Chamberlain:** Formal analysis, Investigation. **A.K. Schmitt:** Formal analysis, Investigation. **J. Dunlop:** Data curation, Formal analysis, Investigation. **M. Anand:** Validation, Writing – review & editing.
Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgements

This research was supported by an STFC grant to M.A. (grant #ST/T000228/1 and #ST/X001180/1), an NSERC Discovery Grant to K. T. T., and a Hatch postdoctoral fellowship to L.F.W. We thank Dr. Yanan Liu (University of Toronto) for assistance with collection of EPMA data used to type meteorites NWA11747, NWA11748, NWA2866, and NWA2867, and we thank Ian Nicklin for discussions around sample selection. We also thank Julia Cartwright and an anonymous reviewer whose comments significantly improved this manuscript, and Frederic Moynier for editorial handling.

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.epsl.2024.118694.

References

Cherniak, D.J. 10. Diffusion in accessory minerals: zircon, titanite, apatite, mozhite and xenotime. In: Diffusion in Minerals and Melts, Zhang, Y., & Cherniak, D. J. Eds; Reviews in Mineralogy and Geochemistry; Mineralogical Society of America. 72, 827-869.

Smith, D.K., Newkirk, W., 1965. The crystal structure of baddeleyite (monoclinic ZrO$_2$).

Schuch, C.S., 2018. Caracterização De Apatitas Da Provincia Borborema, NE Do Brasil, Como Materiais De Referencia Para Geocronologia U-Pb Via LA-ICP-MS. Monografia (Graduação em Engenharia Geológica) - Escola de Minas, Universidade Federal de Ouro Preto, Ouro Preto.

