Introduction to the Non-Parametric Bootstrap

Berrar, Daniel (2019). Introduction to the Non-Parametric Bootstrap. In: Ranganathan, Shoba; Gribskov, Michael; Nakai, Kenta; Schönbach, Christian and Cannataro, Mario eds. Encyclopedia of Bioinformatics and Computational Biology. Reference Module in Life Sciences, 1. Elsevier, pp. 766–773.

DOI: https://doi.org/10.1016/B978-0-12-809633-8.20350-6

Abstract

The bootstrap is a computation-intensive data resampling methodology for assessing the accuracy of a statistical estimator and for making inferences about unknown population parameters. This article provides an introduction to the ordinary non-parametric bootstrap, with a focus on two applications that are of particular relevance to bioinformatics: Bootstrap confidence intervals and bootstrap error estimates of predictive performance.

Viewing alternatives

Metrics

Public Attention

Altmetrics from Altmetric

Number of Citations

Citations from Dimensions
No digital document available to download for this item

Item Actions

Export

About