Copy the page URI to the clipboard
Daddi-Moussa-Ider, Abdallah; Lisicki, Maciej and Gekle, Stephan
(2018).
DOI: https://doi.org/10.1007/s00707-017-1965-6
Abstract
In this paper, we present an analytical calculation of the rotational mobility functions of a particle rotating on the centerline of an elastic cylindrical tube whose membrane exhibits resistance toward shearing and bending. We find that the correction to the particle rotational mobility about the cylinder axis depends solely on membrane shearing properties, while both shearing and bending manifest themselves for the rotational mobility about an axis perpendicular to the cylinder axis. In the quasi-steady limit of vanishing frequency, the particle rotational mobility nearby a no-slip rigid cylinder is recovered only if the membrane possesses a non-vanishing resistance toward shearing. We further show that for the asymmetric rotation along the cylinder radial axis a coupling between shearing and bending exists. Our analytical predictions are compared and validated with corresponding boundary integral simulations where a very good agreement is obtained.