Surface Passivation by Quantum Exclusion: On the Quantum Efficiency and Stability of Delta-Doped CCDs and CMOS Image Sensors in Space

Hoenk, Michael E.; Jewell, April D.; Kyne, Gillian; Hennessy, John; Jones, Todd; Shapiro, Charles; Bush, Nathan; Nikzad, Shouleh; Morris, David; Lawrie, Katherine and Skottfelt, Jesper (2023). Surface Passivation by Quantum Exclusion: On the Quantum Efficiency and Stability of Delta-Doped CCDs and CMOS Image Sensors in Space. Sensors, 23(24), article no. 9857.

DOI: https://doi.org/10.3390/s23249857

Abstract

Radiation-induced damage and instabilities in back-illuminated silicon detectors have proved to be challenging in multiple NASA and commercial applications. In this paper, we develop a model of detector quantum efficiency (QE) as a function of Si–SiO2 interface and oxide trap densities to analyze the performance of silicon detectors and explore the requirements for stable, radiation-hardened surface passivation. By analyzing QE data acquired before, during, and after, exposure to damaging UV radiation, we explore the physical and chemical mechanisms underlying UV-induced surface damage, variable surface charge, QE, and stability in ion-implanted and delta-doped detectors. Delta-doped CCD and CMOS image sensors are shown to be uniquely hardened against surface damage caused by ionizing radiation, enabling the stability and photometric accuracy required by NASA for exoplanet science and time domain astronomy.

Viewing alternatives

Download history

Metrics

Public Attention

Altmetrics from Altmetric

Number of Citations

Citations from Dimensions

Item Actions

Export

About