Title: Patient Decision Aids for Aortic Stenosis and Chronic Coronary Artery Disease: A Systematic Review and Meta-Analysis

Short title: Cardiac Patient Decision Aids Systematic Review

Corresponding author: Emma Harris

Author names and affiliations:

Emma Harrisa: emma.harris@open.ac.uk
Alex Benhamb: a.e.benham@hud.ac.uk
John Stephensonb: j.stephenson@hud.ac.uk
Dwayne Conwayc: dwayne.conway@nhs.net
Aun-Yeong Chongd: achong@ottawaheart.ca
Helen Curtise: helen.curtis@cht.nhs.uk
Felicity Astina: felicity.astin@open.ac.uk

a School of Health, Wellbeing and Social Care, Faculty of Wellbeing, Education and Language Studies, The Open University, Milton Keynes, MK7 6AA, UK.

b School of Human and Health Sciences, University of Huddersfield, Huddersfield, HD1 3DH UK.

c Northern General Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, S5 7AU, UK.

d University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario, K1Y 4W7, Canada.

e The Library and Knowledge Service, Calderdale Royal Hospital, Calderdale and Huddersfield NHS Foundation Trust, Halifax, HX3 0PW, UK.
ABSTRACT

Aim: Shared decision-making is recommended for patients considering treatment options for severe aortic stenosis (AS) and chronic coronary artery disease (CAD). This review aims to systematically identify and assess patient decision aids (PtDAs) for chronic CAD and AS and evaluate the international evidence on their effectiveness for improving the quality of decision-making.

Methods and Results: Five databases (Cochrane, CINAHL, Embase, MEDLINE, PsycInfo), clinical trial registers and 30 PtDA repositories/websites were searched from 2006 to March 2023. Screening, data extraction and quality assessments were completed independently by multiple reviewers. Meta-analyses were conducted using Stata statistical software. Eleven AS and 10 CAD PtDAs were identified; seven were less than five years old. Over half the PtDAs were web-based and the remainder paper-based. One AS and two CAD PtDAs fully/partially achieved international PtDA quality criteria. Ten studies were included in the review; four reported on the development/evaluation of AS PtDAs and six on CAD PtDAs. Most studies were conducted in the USA with White, well-educated, English-speaking participants. No studies fulfilled all quality criteria for reporting PtDA development and evaluation. Meta-analyses found that PtDAs significantly increased patient knowledge compared to ‘usual care’ (mean difference: 0.620; 95%CI 0.396, 0.845, p<0.001) but did not change decisional conflict.

Conclusion: Patients who use PtDAs when considering treatments for AS or chronic CAD are likely to be better informed than those who do not. Existing PtDAs may not meet the needs of people with low health literacy levels as they are rarely involved in their development.

Registration: PROSPERO: CRD42021264700
1. INTRODUCTION

Over the last 60 years, technological innovations have revolutionised the field of interventional cardiology. Two of the commonest interventions are Percutaneous coronary intervention (PCI) and transcatheter aortic valve implantation/replacement (TAVI). Over 965,000 PCIs are performed annually in the US alone\(^1\). Global projections of the annual number of TAVI procedures are estimated to rise to 300,000 implants by 2025\(^2\). Both interventions have the potential to relieve symptoms that negatively impact quality of life\(^3,4\).

Patients with chronic coronary artery disease (CAD) may experience symptoms of angina. First line treatment is medication, but if this is not effective, PCI is a treatment option to consider\(^5\). Patients with severe aortic stenosis (AS) also live with unpleasant symptoms associated with heart failure. Clinical guidelines indicate that a multi-disciplinary heart team should evaluate the degree of AS along with clinical and anatomical characteristics to inform their recommendations to patients about treatment options, such as TAVI or Surgical Aortic Valve Replacement (SAVR)\(^6\).

Whilst PCI and TAVI are different interventions, the decision-making processes share common features; the decision to go ahead with the treatment is considered to be ‘preference sensitive’. i.e. two or more treatment options exist but the ‘best’ treatment depends on how acceptable the patient views the potential risks and benefits of each\(^7\). In these situations, a process of shared decision-making (SDM) helps patients make an informed choice\(^8\). Accordingly, The American College of Cardiology and European Society for Cardiology recommend that SDM should take place before a patient agrees to an interventional procedure for chronic CAD or AS\(^5,6,9,10\).

SDM involves a two-way discussion in which patients are informed by their doctors and nurses about what a treatment involves, the benefits and risks, alternative options and what the outcome might be if they decided against having treatment. Importantly, SDM means that patients are encouraged to consider their unique preferences, goals, and values (i.e., what matters most to an individual about attributes of a health decision)\(^11,12\). In today’s clinical practice SDM may be difficult to achieve. Patients’ preferences and goals for treatment are not routinely discussed\(^13\). Moreover, patients treated with PCI
often misunderstand the treatment benefits and risks and perceive their treatment as a
‘fix’14,15. Patients considering TAVI experience uncertainty about their treatment
decision16, and want to understand the risks and benefits of all potential treatment
options and outcomes (e.g., TAVI, SAVR or no intervention)17.

Patient Decision Aids (PtDAs) are effective interventions known to improve the quality of
both the decision-making process and the choice made18. Evidence shows that PtDAs
increase patients’ knowledge about treatments and support more accurate perceptions
of associated benefits and risks18. However, PtDAs are not routinely used in clinical
practice despite the potential benefits19. Some cardiologists’ do not perceive PtDAs to
be of benefit to their patients20. Unfamiliarity and a lack of awareness of PtDAs and
disagreement with the content are also factors that compromise implementation21.

A recent meta-analysis reported that cardiology PtDAs improved two key decision
outcomes; decisional conflict and patient knowledge22. These findings support the use
of PtDAs. However, the review did not report the availability, content, and quality of the
PtDAs, include PtDAs for AS, or summarise evidence on other decision-making
constructs, leaving gaps in the evidence base. Accordingly, the aims of this review were
to 1) identify PtDAs for chronic CAD and AS that include PCI and TAVI as treatment
options, and evaluate their availability, characteristics, and quality, 2) identify and
describe the quality of studies reporting on the development and evaluation of identified
PtDAs, and 3) evaluate their effectiveness on improving the quality of the decision-
making process and the choice made. Findings will provide cardiology teams with an
international overview of available PtDAs designed to improve the quality of SDM for
chronic CAD and AS.

\section*{2. METHODS}

\subsection*{2.1. Review approach}

Our review methods were informed by previous reviews23,24 and Cochrane guidance25.
To support the robustness of this review the protocol was developed and registered on
PROSPERO (CRD42021264700) a-priori and Preferred Reporting Items for Systematic
2.2. Search strategy

A search of multiple databases, trial registries, PtDA repositories and websites was conducted, to identify eligible PtDAs and published articles that described their development or evaluation. A search strategy was developed by an Information Technologist (HC), piloted on MEDLINE (Ovid), refined, and applied to five databases in all languages: CENTRAL via the Cochrane Library, CINAHL (EBSCO), Embase, Ovid MEDLINE and APA PsycInfo (ProQuest). Four trial registers were searched: EU clinical trials register; ClinicalTrials.gov; ISRCTN Registry; ICTRP (WHO). Searches were limited to articles published since 01/01/2006, because the consensus on criteria for judging the quality of PtDAs was published in 2006 by the International Patient Decision Aid Standards (IPDAS) Collaboration. Thirty PtDA repositories/websites were also hand searched. Searches were conducted in July 2021 and updated in March 2023. See Tables S2-S7 for search terms and the list of PtDA repositories/websites.

2.3. Patient Decision Aid eligibility and selection

PtDAs were defined as tools designed to help facilitate SDM between patients and health professionals. PtDAs were eligible for inclusion if they fulfilled the following criteria:

- Identified as a PtDA, decision tool or an aid to support SDM in their name/title, or by the developers/authors, or listed within a PtDA repository.
- Designed for patients (18+ years) with chronic CAD or aortic stenosis.
- Included at least two treatment options, one of which must either be PCI or TAVI.

All identified PtDAs were independently screened for inclusion by two reviewers (EH, AB). The authors, or organisations listing PtDAs not publicly available were contacted to request a copy. Eligible PtDAs that met the criteria, but were not available in full, were included in the overview (Table 2) but not in the evaluation of PtDA characteristics (Table 2).
2.4. Article eligibility and selection

Search results were independently screened for inclusion by at least two reviewers (EH & AB/FA) in three phases; title, abstract, and full-text screening. Where disagreement occurred, consensus was achieved through discussion. Articles and study reports of any design were included providing they reported on the development, user-testing, acceptability, or evaluation of eligible PtDAs. Articles reporting on ineligible PtDAs, literature reviews, and editorials were excluded.

2.5. Data extraction

Data from each included study were independently extracted by two reviewers (EH, DC, AYC, JS, AB) into a data-sheet. Characteristics from included PtDAs were extracted by one reviewer and independently checked for accuracy by a second author. Any discrepancies in data extraction were resolved by consensus. Data were synthesised into tables and presented in a narrative.

2.6. Statistical analysis

Studies evaluating the effectiveness of PtDAs were assessed for suitability and those with the same primary endpoint pooled for a meta-analysis. Due to heterogeneity of outcome measures, only two meta-analyses were conducted on the primary interval-level outcomes of patients’ Knowledge score and Decisional Conflict score. The meta-analyses were formulated as random effects using the DerSimonian and Laird model to reflect clinical and methodological heterogeneity. For both outcomes, standardised mean differences, based on post-test statistics in intervention and control groups (intervention minus control), and associated 95% confidence intervals (CIs), were measured. For the Knowledge score outcome, clinical improvement was represented by increases in reported scores. For the Decisional Conflict score outcome, clinical improvement was represented by decreases in reported scores. Forest plots were conducted for meta-analyses of both primary outcomes, reporting synthesised estimates, and associated 95% CIs, and a Z-test for the standardised mean difference. Heterogeneity statistics were also reported, including Cochran’s Q test for heterogeneity, and the I^2 statistic.
Leave-one-out sensitivity analyses were conducted on the meta-analyses of both primary outcomes to assess the robustness of the derived estimates. Each of the \(k \) included studies were omitted in turn, and a meta-analysis was conducted based on the remaining \((k – 1)\) studies. Any study which was suspected of excessive influence was flagged as an influential study. Funnel plots were proposed for analyses of small-study effects for meta analyses in which the number of identified studies reached the recommended minimum\(^{25}\) but were not conducted. No sub-group analyses were identified. All analysis was conducted using Stata statistical software (Version 17 I/C)\(^{29}\).

2.7. Quality assessment

To support the rigour of this review, three approaches were implemented to evaluate the quality of included studies and associated PtDAs. First, the quality of PtDAs was evaluated using the six qualifying and six certification criteria of the IPDAS version four checklist\(^ {30}\), which are the minimum standards for tools to be defined as a PtDA and deemed as adequate for patient use. As these criteria are designed for the evaluation of ‘full’ PtDAs, we excluded brief one-two page consultation/conversation aids from this assessment. Second, studies reporting an evaluation of PtDAs were assessed using the “Standards for UNiversal reporting of patient Decision Aid Evaluations” (SUNDAE) checklist\(^ {31}\). A modified version of this checklist was used for PtDA development studies. The IPDAS and SUNDAE checklists were independently completed by two reviewers and disagreements resolved through discussions with a third reviewer (EH & AB/FA).

To increase consistency of the assessments, three response options were developed: yes, partially, and no (Tables S8-S9 supplementary file). Third, the studies included in the meta-analyses were independently assessed by two reviewers (EH & FA/JS) for risk of bias using either the Cochrane Risk of Bias 2 tool (RoB2\(^ {32}\)) or the NHLBI Quality Assessment of Controlled Intervention Studies\(^ {33}\).

3. RESULTS

Figure 1 shows the search results for AS and PCI PtDAs combined. In summary, 10 studies were eligible and included in the review, which, in total, reported on the development or evaluation of 11 PtDAs. A further 10 PtDAs were identified from a trial registry record and from online PtDA repositories and relevant websites. Therefore, a
total of 21 PtDAs (11 AS and 10 CAD PtDAs) were included in this review. Results for
the two groups of PtDAs are presented separately by condition (AS and CAD).

3.1. Patient Decision Aids for Aortic Stenosis

3.1.1. Availability of Patient Decision Aids for Aortic Stenosis

The search identified 11 PtDAs designed for patients with AS considering TAVI (see
Table 1 for an overview). Comparative treatment options included SAVR (n=9) or
symptom management (n=2). Five PtDAs included the same content but were adapted
for use by different age groups (MAGIC TAVI vs. SAVR PtDAs34-38). PtDAs were
developed either in the USA (n=5)39-43, Canada (n=1)44,45 or by an international panel of
experts (n=5)34-38. All were written in English and seven were available in other
languages (two in Spanish and French41,42; five in Norwegian with translation of some
sections available in 12 other languages34-38). Over half (n=8) were web-based PtDAs34-
40,44 and the other three were paper based41-43. Five web-based PtDAs could be
converted into a printable format34-38. Three PtDAs were less than five years old40,42,44
but only one was publicly available42, which also fully or partially achieved all 12 IPDAS
quality criteria (see section 3.2.3).

3.1.2. Characteristics of Patient Decision Aids for Aortic Stenosis

The characteristics of eight PtDAs for AS were evaluated (Table 2)34-38,41-43. The
remaining three were unavailable for evaluation due to website deactivation39 or
ongoing development40,44.

Two types of PtDAs were identified; a PtDA booklet (eight pages) to be reviewed by the
patient at home41,42, or an ‘encounter PtDA’ (paper or web-based) to be used during the
consultation with a health professional34-38,43. The type and presentation of information
varied between PtDAs. One ‘encounter PtDA’ presented information about the risks and
benefits of treatment options on a single page43, whereas the other ‘encounter PtDAs’
were web-based and required health professionals to navigate between different
sections to present the information34-38. All PtDAs included icon arrays to present the
risks and benefits of treatment options. Patient stories were only included in the two
booklet PtDAs41,42. Three PtDAs incorporated an explicit values clarification method41-43
(i.e. determining what matters to patients about a given health decision by using an
approach that requires interaction12). The method in the two booklet PtDAs invited patients to write their hopes and concerns for the treatment options and any questions for their doctor and family41,42. The one-page ‘encounter PtDA’ invited patients to verbally respond to the question during a consultation, about what was important to them about their treatment43. This was the only PtDA to invite patients to indicate their preferred treatment. The readability score was not reported for any PtDA. Two PtDAs did not report their development method41,42.

3.1.3. Quality of Patient Decision Aids for Aortic Stenosis

Seven PtDAs34-38,41,42 were included for quality appraisal using the recommended IPDAS checklist (‘encounter PtDAs’ were excluded43). Results are summarised in Table 2 (full evaluation in Table S10, supplementary file). To ‘qualify’ as a PtDA, six IPDAS criteria need to be achieved; only the two booklet PtDAs fulfilled these41,42. In total, the PtDAs fulfilled between 67% and 92% (median 67%) of all 12 IPDAS criteria. Two IPDAS criteria were not achieved by all PtDAs: ‘Describes the condition related to the decision’ and ‘The level of uncertainty around outcome probabilities’ (i.e., the likelihood of an adverse or positive outcome occurring following treatment).

3.2. Patient Decision Aids for Chronic Coronary Artery Disease

3.2.1. Availability of Patient Decision Aids for Coronary Artery Disease

Ten PtDAs designed for patients with chronic CAD considering PCI were identified (Table 1). The comparative treatment options presented were medical therapy (n=10), lifestyle changes (n=4) and coronary artery bypass graft (CABG) surgery (n=4). The two ‘PCI Choice’ PtDAs46,47 included the same content but adapted the risks/benefits probabilities for either Class I/II or Class III stable angina. Eight PtDAs were developed in the USA46-53, two in the UK54,55, and all were only available in English. Six were web-based PtDAs48-52,54 and four were paper based46,47,53,55 (one also included a 20-min DVD53). One web-based PtDA had a paper-based version51 and two others could be converted into a printable format50,52. Four PtDAs were less than five years old48,50,52,54 but only one was publicly available48. This PtDA48 fulfilled only five of the 12 IPDAS criteria.
3.2.2. Characteristics of Patient Decision Aids for Coronary Artery Disease

The characteristics of seven PtDAs for chronic CAD were evaluated (Table 2)\(^{46-48,51,52,54,55}\). The remaining three were unavailable for evaluation\(^{49,50,53}\).

The type of PtDA, approach, and timepoint of use in the patient journey, varied. Two were short paper-based ‘encounter PtDAs’ (PCI Choice\(^{46,47}\)) to be used by the doctor with the patient in a consultation prior to diagnostic cardiac catheterisation. Three web-based PtDAs\(^{52,54}\) (one had a paper version option\(^{51}\)) could be reviewed by patients either at home or whilst in hospital before the procedure. One paper-based PtDA could be used either pre-consultation or during the consultation\(^{55}\). Details about the delivery of one web-based PtDA was absent\(^{48}\). The design of PtDAs varied from a basic table comparing treatments, to the use of multi-media to explain health conditions, treatment options and procedures. Treatment risks and benefits were presented using a wide range of approaches. All but two\(^{48,55}\) included icon arrays to convey the likelihood of risks and benefits. One PtDA\(^{48}\) omitted the major risks associated with PCI. Patient stories/scenarios were included in two PtDAs\(^{52,54}\). Two PtDAs included explicit values clarification methods; a rating scale\(^{52}\) and completion of questions about what matters to them and concerns\(^{54}\). Five PtDAs invited patients to indicate their preferred treatment\(^{46,47,51,52,54}\). A personalised summary of patients’ responses could be generated in two web-based PtDAs\(^{52,54}\). The readability level was not stated within any PtDA, although associated publications for two PtDAs reported the target reading age as 8th Grade (age 13-14 years)\(^{56,57}\). Development information was published, in varying detail, for some PtDAs\(^{46,47,51,54}\), two omitted this information\(^{48,55}\), whilst brief details about the development of clinical content was described for the remainder on the developers’ websites\(^{52}\).

3.2.3. Quality of Patient Decision Aids for Coronary Artery Disease

Five PtDAs\(^{48,51,52,54,55}\) were included for quality appraisal (two ‘encounter PtDAs’ were excluded\(^{46,47}\); Table 2). Three PtDAs\(^{51,52}\) completely fulfilled the six IPDAS ‘qualify’ criteria (Table S10). In total, the five PtDAs fulfilled between 42% and 100% (median 75%) of all 12 IPDAS criteria. Two PtDAs\(^{52,54}\) fully or partially achieved all 12 IPDAS
criteria, but are not currently publicly available to patients. The IPDAS criteria least
fulfilled across the PtDAs were ‘Providing information about the funding source’, ‘The
update policy’, and ‘The level of uncertainty around outcome probabilities’.

3.3. Overview of included studies
Table 3 provides an overview of the 10 studies included in the review (full details in
Table S11, supplementary file). One study was conducted in the UK56; the remainder in
the USA. Three reported on PtDA development and acceptability testing56,58,59, and
seven evaluated PtDA effectiveness in either an RCT60,61, or a quasi-experimental
design20,57,62-64

3.3.1. Studies reporting the development/acceptability of Patient Decision
Aids
One study58 described the development of a PtDA for AS (TAVI vs. SAVR39) that is no
longer available, and two studies56,59 described the development and acceptability of
PtDAs for chronic CAD (PCI vs. medicines only; PCI Choice46,47 and CONNECT54). The
systematic method of PtDA development recommended by IPDAS was implemented in
the two CAD PtDA studies56,59, but only the CONNECT development study56 cited a
theory underpinning the methodology (i.e., Ottawa Decision Support Framework65).
Patients and/or healthcare professionals were involved in either providing feedback or
user testing PtDAs across all development studies56,58,59. Methods included semi-
structured interviews58, cognitive interviews56, video and teleconference calls56,58, focus
groups56,59, and observations59. Participant demographics were only reported in the
CONNECT PtDA study, and was the only study that assessed health literacy levels (HL)
with 71\% of participants scoring ‘adequate’ on the Brief Health Literacy Screen56.

3.3.2. Studies evaluating the effectiveness of Patient Decision Aids
Three AS PtDAs41-43 and seven PtDAs for chronic CAD46,47,49,51-53 were evaluated
across seven studies20,57,60-64. Sample size ranged from 12-203 participants. Most
participants were White and had an advanced level of education (i.e., completed
College). A variety of decision-making process and decisional quality outcomes were
assessed, including, patient satisfaction, treatment preference, patient-centred
communication, involvement in SDM, decisional conflict and knowledge level. Two20 out
of four studies that measured the SDM process (via the OPTION Scale66 or Control Preferences Scale67) showed a significant improvement after using a PtDA for AS (TAVI or symptom management/palliative care) and CAD (PCI, medical therapy, or CABG51). High scores for patient satisfaction, patient-centred communication (measured using CollaboRATE68) and the Preparation for Decision-making Scale69 were reported after PtDA use for both AS and chronic CAD treatments20,61-63. Patients’ treatment preference, treatment delivered or treatment concordance with patient preferences did not significantly change in any study57,61,64. Cardiologists in two studies felt that they already performed SDM consistently and that PtDAs were poorly understood by patients and negatively impacted on consultations20,60. Most patients preferred a DVD or booklet formatted PtDAs than web-based formats57,62.

3.3.3. Quality of studies

The 26-item SUNDAE checklist was used to evaluate the quality of reporting for all included studies, with results summarised in Table 3 (full evaluation in Table S12, supplementary file). Across the studies, between 50% to 89% (median 73%) of the SUNDAE criteria were completely fulfilled. Three of the four development studies either fully, or partially, satisfied all applicable SUNDAE56,59. No evaluation study achieved all 26 criteria. One criterion (item 18) was only fully achieved by one study63, because the other six evaluation studies used a bespoke patient knowledge questionnaire, which had not undergone psychometric testing. Nine SUNDAE criteria were achieved by all studies. The criteria least consistently achieved were those related to the methods and results sections (e.g., ‘Description of the development process’, ‘PtDA fidelity’, ‘Process evaluation’, and ‘Theories/models used to guide the study design and selection of evaluation measures’).

3.4. Meta-analyses

All six evaluation studies were assessed for inclusion in meta-analyses. Usable post-test data for patient knowledge and decisional conflict scores were obtained from four studies, with a total sample of 476 participants20,57,60,61, evaluating two PtDAs for AS41,42 and three for chronic CAD46,47,51. Variation in the PtDAs and the patient groups across the four studies necessitated the use of standardised measures in the meta-analyses.
Leave-one-out sensitivity analyses revealed no individual study to be exerting excessive influence on either meta-analysis (Supplementary file).

3.4.1. Patient Knowledge
Patient knowledge of treatment options was significantly greater in the PtDA groups compared with usual care in all four studies20,57,60,61. The meta-analysis determined that the synthesised estimate of the standardised mean difference in knowledge scores (PtDA – usual care) was 0.620 (95% CI 0.396 to 0.845), favouring the PtDA over usual care groups. A Z-test of the standardised mean effect indicated strong evidence at the 5% significance level for a non-zero effect (Z=5.42; \(p < 0.001 \)). Cochran’s \(\chi^2 \) test for heterogeneity indicated no evidence for statistical heterogeneity (\(\chi^2(3)=4.12; \ p = 0.248 \)). The \(I^2 \) statistic was 27.3%, which may indicate low levels of heterogeneity. Data is summarised in Figure 2.

3.4.2. Decisional conflict
Decisional conflict (measured by the validated SURE score70 or Decisional Conflict Scale71) was not significantly different between PtDA and usual care groups in all four studies20,57,60,61. However, the ‘informed’ subscale of the Decisional Conflict Scale score was significantly lower (i.e. favourable) in the PtDA groups compared with usual care57,60. The meta-analysis determined that the synthesised estimate of the standardised mean difference in decisional conflict (PtDA – usual care) was -0.159 (95% CI -0.339 to 0.022). A Z-test of the standardised mean effect revealed no evidence for a non-zero effect (Z= -1.717; \(p = 0.086 \)). Cochran’s \(\chi^2 \) test for heterogeneity indicated no evidence for statistical heterogeneity (\(\chi^2(3)=0.47; \ p = 0.925 \)). The \(I^2 \) statistic was 0.00%, indicating that heterogeneity might not be important. Data is summarised in Figure 3.

3.4.3. Risk of bias
The RoB2 tool32 was used to evaluate potential bias in the two randomised controlled studies60,61 with results indicating ‘some concerns’ (Figure 4). The two non-randomised studies20,57 were evaluated using the NHLBI Quality Assessment of Controlled Intervention Studies, and were rated as ‘fair quality’, indicating susceptibility to ‘some bias’33.
4. DISCUSSION

PtDAs are evidence-based tools known to be effective in improving the quality of SDM to help patients receive care that is ‘right’ for them. Patients who use PtDAs are more knowledgeable, informed, involved, have more accurate risk perceptions, are more confident in their treatment decision and clearer about their health goals and treatment preferences. This benefits patients because those who are more active in making treatment decisions tend to have better health outcomes and are more satisfied with their care. Within cardiology, many patients with AS and chronic CAD have unresolved decisional needs and require support when considering treatment with TAVI and planned PCI, respectively. PtDAs offer a potential solution but cardiology teams’ lack of awareness of available high-quality PtDAs is a barrier to implementation.

To the best of our knowledge, this review makes a useful contribution to the research literature as the first study to systematically identify and evaluate the availability, characteristics, and quality of PtDAs used to support SDM for AS and chronic CAD. We also report on the effectiveness of TAVI PtDAs to improve decisional quality, which extends an existing meta-analysis on SDM in cardiology settings that did not include this common interventional procedure. These findings, combined with our narrative summary of PtDA evaluation and development studies, provides a comprehensive international overview of AS and CAD PtDAs to inform cardiology practice.

4.1. Patient Decision Aid availability and quality

Our findings on the availability of PtDAs (Table 1) provide a valuable reference for cardiology teams and make an important contribution to the international literature. For the first time, internationally accepted quality criteria were used to evaluate the quality of AS and CAD PtDAs. We identified 21 PtDAs, but only one AS and one CAD PtDA were less than five years old, and currently publicly available for patient distribution. However, only the AS PtDA was rated as high-quality having fulfilled all quality criteria. Given that SDM is recommended in clinical guidelines and health policy, this lack of publicly available high-quality AS and CAD PtDAs is a significant finding that has not previously been reported. Overall, PtDAs scored poorly on criteria that address...
potentially harmful bias, which is consistent with reviews of cancer PtDAs. This highlights that information concerning the uncertainty of treatment options, funding sources and update policies, requires improvement. Doctors may be reluctant to discuss uncertainties around treatment outcomes, as they believe this will be viewed as incompetence, and will reduce patient trust and satisfaction with care. Yet from a patient perspective, higher levels of trust in cardiologists is associated with feeling listened to and involved in decisions about their health and treatments. Having an open and honest dialogue is valued by heart disease patients. Increasing cardiology teams’ awareness about patients’ communication preferences and additional SDM skills may improve this important element of SDM.

4.2. Patient Decision Aid accessibility
The PtDAs identified in this review had different designs, formats, and delivery approaches. There was a lack of consensus about the optimum characteristics for AS and CAD PtDAs. Potentially this might be because patients’ and cardiology teams’ preferences varied; a view confirmed in this review. A recent meta-analysis reported that the PtDA format (e.g. paper, computer, web-based) had no impact on effectiveness for improving SDM in cardiology settings. Our results corroborate this finding; patient knowledge and some aspects of the SDM process (patient perception of SDM and integration of SDM in consultations) were significantly improved in two studies despite using PtDAs with different formats: a printed one-page within-consultation ‘encounter PtDA’ for AS and a web-based pre-consultation PtDA for CAD. This suggests that a paper-based PtDA may be as effective as a more sophisticated digital version. However, additional research is required to corroborate this finding given the paucity of studies. We suggest that paper versions of PtDAs could be made routinely available, as a minimum, to support SDM for two reasons. First, 6-7% of adults in the US and UK have never used the internet. Second, it is recognised that the introduction of digital interventions can potentially widen health inequalities.

The overall quality of reporting, in both AS and CAD PtDA development and evaluation studies, was good, according to the recommended SUNDAE criteria. The aims, rationale, explanation of the PtDA and study methods, implications for practice and research were comprehensively described in most studies. However, most studies did
Cardiac Patient Decision Aids Systematic Review

not measure PtDA fidelity or explore potential mechanisms for their effect on decision outcomes. The demographics of patients involved in the development and/or evaluation studies were either unknown58,59, under-reported63,64, or predominantly White, English-speaking people educated to high school level or higher20,56,57,60-62. Furthermore, readability levels were not reported in any PtDA, although the target reading age for two CAD PtDAs was reported as 13-14 years in associated publications56,57. These findings are significant because it’s unclear how relevant and accessible existing AS and CAD PtDAs are for under-represented populations, which makes it challenging for cardiology teams to evaluate their appropriateness and usefulness within their clinical setting. Since patient-healthcare professional communication has the potential to reduce or increase health disparities81, it is important that the development and testing of PtDAs involve patients from diverse backgrounds.

4.3. Comparisons with other meta-analyses

Our meta-analyses found significantly improved levels of patient knowledge following the use of two AS PtDAs41,42 and three CAD PtDAs46,47,51, compared to usual care. This finding is consistent with a recent meta-analysis of cardiology PtDAs22. However, our meta-analysis found no significant difference in decisional conflict between PtDA and usual care groups, in contrast to other reviews18,22. There are several potential explanations for this finding. The five PtDAs42,43,46,47,51 evaluated may have limited function in eliciting preferences. Decisional conflict may have already been low in participants at baseline and/or in usual care groups7, 37, 53, 75 or the measure may have a ceiling effect. Another explanation relates to educational attainment. A large proportion of participants across the four studies had achieved a high-school education level or higher which is known to be associated with lower decisional conflict82.

Although not included in our meta-analysis due to heterogeneity of study designs, outcome measures indicating the quality of the decision-making process were significantly greater following the use of PtDAs across some20,57,61-63 but not all studies60,64 and no negative outcomes were reported. The inconsistent findings might be explained by differences in study designs, outcomes, measurement instruments, and the PtDAs themselves. Given the wide variety of measures used to evaluate the quality of SDM, consensus on the most appropriate is recommended.
4.4. Implementation of Patient Decision Aids in clinical practice

None of the PtDAs were evaluated in a large-scale randomised controlled trial that appeared to be sufficiently powered with a low risk of bias, possibly due to difficulties with recruitment and/or PtDA implementation. Several factors influence the successful implementation of PtDAs; a PtDA that is too complex or competes with existing practice is unlikely to be used77. Involvement and commitment from senior leadership and the clinical teams is an enabler to the use of PtDAs as is engagement of the family and significant others77. Successful strategies to integrate PtDAs into clinical settings include training the entire cardiology team, linking PtDA outcomes with organisational priorities, proactively encouraging patients to engage with the PtDA, and reflecting on existing pathways to identify opportunities for PtDA use and SDM conversations77. The latter strategy could be particularly useful for elective PCI where the timing of PtDA delivery is challenging because diagnosis and treatment often occur together in the same procedure83. Providing PtDAs and seeking patients’ treatment preferences and goals earlier in the severe AS pathway should be considered13.

4.5. Strengths and limitations

We comprehensively and systematically searched multiple databases, trial registers and 30 online sources to identify AS and CAD PtDAs and their development and evaluation studies. However, we may not have identified all eligible PtDAs and six were not available so an evaluation of their characteristics and quality was not possible. The wide range of measurement instruments used to evaluate the quality of SDM limited the number meta-analyses conducted and made cross study comparisons challenging. Nevertheless, this review provides a high-quality international review of AS and CAD PtDAs.

5. Conclusions

A diverse range of AS and CAD PtDAs have been developed over the past 16 years, but few are up to date and currently available. To increase the transparency around PtDA quality and effectiveness information about the uncertainty of treatment outcomes, funding sources and future updates should be added. The 'voice' of underserved populations and those with low health literacy levels is needed in the development or evaluation of PtDAs as to date this has been lacking. Paper-based versions of digital
PtDAs should be available to avoid widening health inequalities associated with the digital divide. We recommend that cardiology teams use the most up-to-date and highest quality PtDAs available. We concluded that patients who use PtDAs when considering treatments for AS or chronic CAD are likely to be better informed than those who do not.

AUTHOR CONTRIBUTIONS
Conceptualization: EH, FA, DC; Methodology: EH, FA; Formal analysis: EH, JS; Investigation: EH, FA, AB, DC, AYC, HC; Project administration: EH; Visualization: EH, FA, JS; Writing – original draft: EH, FA, JS; Writing – review & editing: EH, FA, AB, JS, DC, AYC, HC.

ACKNOWLEDGEMENTS
We would like to thank Professor Richard Thomson for his expert guidance and support in the development of this review. We send thanks to Ellie Price for conducting the initial search of clinical trial registers. We would also like to thank the authors who provided further detail about their PtDA and research study.

FUNDING
This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

DATA AVAILABILITY
The data underlying this review are available in the article and in its online supplementary material.

CONFLICTS OF INTEREST
FA, EH, and DC, received research funding in a competitive peer review process from Grow MedTech ((POF000186, POF000103) and the National Institute of Health and Care Research (NIHR204012) to develop and test a PCI PtDA called CONNECT, which is included in this review. A second author (AB), not involved in the development or testing of CONNECT, assessed its quality. AYC receives honoraria and an unrestricted grant from Abbott. AB, JS, and HC have no conflicting interests.
REFERENCES

Cardiac Patient Decision Aids Systematic Review

34. MAGIC Evidence Ecosystem Foundation (BMJ RapidRecs). TAVI versus SAVR for patients with severe symptomatic aortic stenosis at low to intermediate perioperative risk: for patients above 85 years with severe symptomatic aortic stenosis, at low or intermediate perioperative risk.

https://app.magicapp.org/#/guideline/1308

35. MAGIC Evidence Ecosystem Foundation (BMJ RapidRecs). TAVI versus SAVR for patients with severe symptomatic aortic stenosis at low to intermediate perioperative risk: for patients 75-85 years with severe symptomatic aortic stenosis who are at low or intermediate perioperative risk.

https://app.magicapp.org/#/guideline/1308

36. MAGIC Evidence Ecosystem Foundation (BMJ RapidRecs). TAVI versus SAVR for patients with severe symptomatic aortic stenosis at low to intermediate perioperative risk: for patients aged 65 to < 75 years and eligible for transfemoral TAVI or SAVR. https://app.magicapp.org/#/guideline/1308
37. MAGIC Evidence Ecosystem Foundation (BMJ RapidRecs). TAVI versus SAVR for patients with severe symptomatic aortic stenosis at low to intermediate perioperative risk: for patients aged < 65 years and eligible for transfemoral TAVI or SAVR. https://app.magicapp.org/#/guideline/1308
38. MAGIC Evidence Ecosystem Foundation (BMJ RapidRecs). TAVI versus SAVR for patients with severe symptomatic aortic stenosis at low to intermediate perioperative risk who cannot undergo transfemoral TAVI but can undergo transapical approach. https://app.magicapp.org/#/guideline/1308
42. American College of Cardiology. A decision aid for treatment options for severe aortic stenosis for patients deciding between TAVI and surgery. https://www.cardiosmart.org/assets/decision-aid/choosing-between-tavr-and-surgery
43. American College of Cardiology. Severe Aortic Stenosis Decision Aid.
45. Mayo Foundation for Medical Education and Research. PCI Choice: Class I/II Stable Angina. https://carethatfits.org/pci-choice/
48. Option Grid Collaborative. Angina: treatment options Option Grid™
50. www.ebsco.com
51. Duke University Medical Center clinicians and Healthwise. Coronary Artery Disease: What treatment would you prefer? https://doi.org/10.1161/circoutcomes.118.005244
Cardiac Patient Decision Aids Systematic Review

Cardiac Patient Decision Aids Systematic Review

GRAPHICAL ABSTRACT LEGEND
AS: aortic stenosis; CAD: coronary artery disease; CI: Confidence Interval; PtDAs: Patient Decision Aids; PCI: Percutaneous Coronary Intervention; TAVI: Transcatheter Aortic Valve Implantation

TABLE TITLES AND LEGENDS
Table 1. Overview of PtDAs

Table 2: Characteristics of PtDAs
* Only paper version evaluated, web version unavailable. EVC: Explicit values clarification; HCP: Healthcare professional; Tx: Treatment

Table 3. Overview of studies
*: statistical significance (p<0.05); **Sum of scores on 3-item questionnaire, max score, 12; lower values indicate higher health literacy. ↔: no change; ↑: higher value/score; ↓: lower value/score AS: aortic stenosis; CAD: coronary artery disease; CSE: Cardiac Self-Efficacy; DAOH: Days Alive And Out Of Hospital; DCS: Decisional Conflict Scale; DM: Diabetes Mellitus; GAD-7: Generalised Anxiety Disorder-7; IPDAS: International Patient Decision Aid Standards; NS: not significant (p>0.05); OMT: optimal medical therapy; PCI: percutaneous coronary intervention; PtDA: patient decision aid; RCT: Randomised Controlled Trial; SD: standard deviation; SDM: shared decision-making; SAVR: Surgical Aortic Valve Replacement; TAVR: Transcatheter Aortic Valve Replacement; UC: usual care

FIGURE TITLES AND LEGENDS
Figure 1: PRISMA 2020 flow-diagram
Figure 2: Forest plot for the meta-analysis of patient knowledge scores
Figure 3: Forest plot for meta-analysis of decisional conflict scores
Figure 4: Risk of bias summary using the Cochrane RoB2 tool
NOVELTY BOX

- This is the first review to systematically identify and evaluate the availability, characteristics, and quality of patient decision aids for use in severe aortic stenosis and chronic coronary artery disease patient pathways.
- A barrier to implementing shared decision-making for people with heart disease or aortic stenosis is the lack of high quality, up to date, publicly available patient decision aids.
- Existing patient decision aids are not tailored to meet the needs of people with low health literacy levels or from underserved populations.
- Patient decision aids in this review improved patient knowledge but decisional conflict scores were unchanged, possibly due to a ceiling effect.
Table 1. Overview of PtDAs

<table>
<thead>
<tr>
<th>PtDA</th>
<th>Treatment options</th>
<th>Author(s) and/or developing organisation</th>
<th>Date developed or updated</th>
<th>Country and language</th>
<th>Format</th>
<th>Availability</th>
<th>Source of identification</th>
</tr>
</thead>
<tbody>
<tr>
<td>PtDAs for aortic stenosis treatment options</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADVICE: Navigating Aortic Valve Treatment Choices(^\text{39})</td>
<td>• TAVI • SAVR</td>
<td>Brennan JM, et al., Duke University</td>
<td>2017</td>
<td>USA, English</td>
<td>Web-based</td>
<td>Not available: Website deactivated.</td>
<td>Literature(^\text{5}) identified via online sources(^\text{4})</td>
</tr>
<tr>
<td>Aortic Stenosis Choice (CHOICE-AS)(^\text{44,45})</td>
<td>• TAVI • SAVR</td>
<td>Lauck S, et al.(^\text{45})</td>
<td>Ongoing</td>
<td>Canada, English</td>
<td>Web-based</td>
<td>Not currently available. PtDA development and testing study ongoing. Contact authors for access.</td>
<td>Online sources(^\text{b})</td>
</tr>
<tr>
<td>Aortic valve improved treatment approaches (AVITA) too(^\text{40})</td>
<td>• No valve replacement (medications/comfort care) • TAVI • SAVR</td>
<td>Shared Decision-Making Resources collaborating with Edward Lifesciences</td>
<td>Ongoing</td>
<td>USA, English</td>
<td>Web-based</td>
<td>Not currently available. PtDA development and pilot study ongoing. Contact authors for access.</td>
<td>Trial registry NCT04755426</td>
</tr>
<tr>
<td>A decision aid for treatment options for severe aortic stenosis (TAVI vs Symptom Management)(^\text{41})</td>
<td>• Symptom Management (Taking medications only) • TAVI</td>
<td>American College of Cardiology</td>
<td>August 2017</td>
<td>USA, English, Spanish, French</td>
<td>Eight-page booklet (pdf)</td>
<td>(https://www.cardiosmart.org/assets/decision-aid/choosing-between-tavr-and-symptom-management\)</td>
<td>Literature(^\text{6}) (^3)</td>
</tr>
<tr>
<td>A decision aid for treatment options for severe aortic stenosis for patients deciding between TAVI and surgery(^\text{42})</td>
<td>• TAVI • SAVR</td>
<td>American College of Cardiology</td>
<td>July 2020</td>
<td>USA, English, Spanish, French</td>
<td>Eight-page booklet (pdf)</td>
<td>(https://www.cardiosmart.org/assets/decision-aid/choosing-between-tavr-and-surgery\)</td>
<td>Literature(^\text{6}) (^1,63)</td>
</tr>
<tr>
<td>Severe Aortic Stenosis Decision Aid(^\text{43})</td>
<td>• Symptom Management (Palliative care)</td>
<td>American College of Cardiology</td>
<td>2014</td>
<td>USA, English</td>
<td>One-page pdf</td>
<td>(https://sharedcardiology.org/tools/ and available in Figure 1 in published study(^\text{20})</td>
<td>Literature(^\text{2}) (^0)</td>
</tr>
<tr>
<td>PtDA</td>
<td>Treatment options</td>
<td>Author(s) and/or developing Organisation</td>
<td>Date developed or updated</td>
<td>Country and language</td>
<td>Format</td>
<td>Availability</td>
<td>Source of identification</td>
</tr>
<tr>
<td>------</td>
<td>-------------------</td>
<td>--</td>
<td>---------------------------</td>
<td>----------------------</td>
<td>--------</td>
<td>--------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>TAVI versus SAVR for patients with severe symptomatic aortic stenosis at low to intermediate perioperative risk: for patients above 85 years with severe symptomatic aortic stenosis, at low or intermediate perioperative risk</td>
<td>TAVI • SAVR</td>
<td>MAGIC Evidenc e Ecosystem Foundation (BMJ RapidRecs)</td>
<td>May 2017</td>
<td>Multiple countries, English, Norwegian; partial translation into 12 other languages on website</td>
<td>Web-based with option to create a 13-page pdf</td>
<td>https://app.magicapp.org/#/guideline/1308</td>
<td>Online sources^a</td>
</tr>
<tr>
<td>TAVI versus SAVR for patients with severe symptomatic aortic stenosis at low to intermediate perioperative risk: for patients 75-85 years with severe symptomatic aortic stenosis who are at low or intermediate perioperative risk</td>
<td>TAVI • SAVR</td>
<td>MAGIC Evidenc e Ecosystem Foundation (BMJ RapidRecs)</td>
<td>May 2017</td>
<td>Multiple countries, English, Norwegian; partial translation into 12 other languages on website</td>
<td>Web-based with option to create a 13-page pdf</td>
<td>https://app.magicapp.org/#/guideline/1308</td>
<td>Online sources^a</td>
</tr>
<tr>
<td>PtDA</td>
<td>Treatment options</td>
<td>Author(s) and/or developing Organisation</td>
<td>Date developed or updated</td>
<td>Counry and language</td>
<td>Format</td>
<td>Availability</td>
<td>Source of identification</td>
</tr>
<tr>
<td>------</td>
<td>-------------------</td>
<td>--</td>
<td>--------------------------</td>
<td>---------------------</td>
<td>--------</td>
<td>-------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>TAVI versus SAVR for patients with severe symptomatic aortic stenosis at low to intermediate perioperative risk: for patients aged 65 to < 75 years and eligible for transfemoral TAVI or SAVR</td>
<td>• TAVI • SAVR</td>
<td>MAGIC Evidenc e Ecosyste m Foundati on (BMJ RapidRe cs)</td>
<td>May 2017</td>
<td>Multiple countri es, English , Norweg ian; partial translat ion into 12 other langua ges on website</td>
<td>Web-based with option to create a 13-page pdf</td>
<td>https://app.magica pp.org/#/guideline/1308</td>
<td>Online sources</td>
</tr>
<tr>
<td>TAVI versus SAVR for patients with severe symptomatic aortic stenosis at low to intermediate perioperative risk: for patients aged < 65 years and eligible for transfemoral TAVI or SAVR</td>
<td>• TAVI • SAVR</td>
<td>MAGIC Evidenc e Ecosyste m Foundati on (BMJ RapidRe cs)</td>
<td>May 2017</td>
<td>Multiple countri es, English , Norweg ian; partial translat ion into 12 other langua ges on website</td>
<td>Web-based with option to create a 13-page pdf</td>
<td>https://app.magica pp.org/#/guideline/1308</td>
<td>Online sources</td>
</tr>
<tr>
<td>TAVI versus SAVR for patients with severe symptomatic aortic stenosis at low to intermediate perioperative risk who cannot undergo</td>
<td>• TAVI • SAVR</td>
<td>MAGIC Evidenc e Ecosyste m Foundati on (BMJ RapidRe cs)</td>
<td>May 2017</td>
<td>Multiple countri es, English , Norweg ian; partial translat ion into 12 other langua</td>
<td>Web-based with option to create a 13-page pdf</td>
<td>https://app.magica pp.org/#/guideline/1308</td>
<td>Online sources</td>
</tr>
</tbody>
</table>
PtDA Table

<table>
<thead>
<tr>
<th>PtDA</th>
<th>Treatment options</th>
<th>Author(s) and/or developing Organisation</th>
<th>Date developed or updated</th>
<th>Country and language</th>
<th>Format</th>
<th>Availability</th>
<th>Source of identification</th>
</tr>
</thead>
<tbody>
<tr>
<td>transfoemoral TAVR but can undergo transapical approach<sup>38</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ges on website</td>
<td></td>
</tr>
</tbody>
</table>

PtDAs for chronic coronary artery disease treatment options

<table>
<thead>
<tr>
<th>PtDA</th>
<th>Treatment options</th>
<th>Date developed or updated</th>
<th>Country and language</th>
<th>Format</th>
<th>Availability</th>
<th>Source of identification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angina treatment options Option Grid™<sup>49</sup></td>
<td>Medical Management, Stenting (angioplasty)</td>
<td>Option Grid Collaborative 2015/16</td>
<td>USA, English</td>
<td>Web-based</td>
<td>Out of date: no longer available.</td>
<td>Literature<sup>4</sup></td>
</tr>
<tr>
<td>Chest Pain (Stable Angina) Treatment Options Option Grid™<sup>50</sup></td>
<td>Non-invasive treatment (medicines, lifestyle changes), Invasive treatment (stent or bypass surgery)</td>
<td>Dynamed Decision Systems, EBSCO Health December 2021.</td>
<td>USA, English</td>
<td>Web-based with option to create a 4-page pdf</td>
<td>Not publicly available. Contact EBSCO Health for cost (www.ebsco.com).</td>
<td>Online sources<sup>d</sup></td>
</tr>
<tr>
<td>CONNECT: COroNary aNgioplasty dECision Tool<sup>54</sup></td>
<td>Medicines only, Coronary angiogram test and treatment with coronary</td>
<td>Harris, E, et al.<sup>56</sup> February 2021</td>
<td>UK, English</td>
<td>Web-based</td>
<td>Not currently publicly available. Randomised feasibility study ongoing. Contact authors for access.</td>
<td>Literature<sup>5</sup></td>
</tr>
</tbody>
</table>

^a...
<table>
<thead>
<tr>
<th>PtDA</th>
<th>Treatment options</th>
<th>Author(s) and/or developing Organisation</th>
<th>Date developed or updated</th>
<th>Country and language</th>
<th>Format</th>
<th>Availability</th>
<th>Source of identification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coronary Artery Disease: What treatment would you prefer?</td>
<td>Angioplasty, if beneficial, AND medicines</td>
<td>Duke University Medical Center clinicians and Healthwise</td>
<td>2015</td>
<td>USA, English</td>
<td>Web-based; 8-page paper version available within publication</td>
<td>Web version: access unknown. Paper version shown in the supplementary material in published study. Link</td>
<td>Literature^5^7</td>
</tr>
<tr>
<td>PCI Choice: Class I/II Stable Angina</td>
<td>Medicines alone</td>
<td>Mayo Foundation for Medical Education and Research</td>
<td>2012</td>
<td>USA, English</td>
<td>Two-page pdf</td>
<td>Link</td>
<td>Literature^5^9,60</td>
</tr>
<tr>
<td>PCI Choice: Class III Stable Angina</td>
<td>Medicines alone</td>
<td>Mayo Foundation for Medical Education and Research</td>
<td>2012</td>
<td>USA, English</td>
<td>Two-page pdf</td>
<td>Link</td>
<td>Literature^5^9,60</td>
</tr>
<tr>
<td>Should I Have Angioplasty for Stable Chest Angina?</td>
<td>Take medicines and have a healthy lifestyle</td>
<td>Healthwise</td>
<td>Update d 2022</td>
<td>USA, English</td>
<td>Web-based with option to create a 19-</td>
<td>Link Licence required for distribution to patients or consumers.</td>
<td>Literature^8^2</td>
</tr>
<tr>
<td>PtDA</td>
<td>Treatment options</td>
<td>Author(s) and/or developing Organisation</td>
<td>Date developed or updated</td>
<td>Country and language</td>
<td>Format</td>
<td>Availability</td>
<td>Source of identification</td>
</tr>
<tr>
<td>------</td>
<td>-------------------</td>
<td>--</td>
<td>--------------------------</td>
<td>-----------------------</td>
<td>--------</td>
<td>-------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td></td>
<td>• Angioplasty, along with taking medicines and having a healthy lifestyle</td>
<td>Health Dialog and Foundation for Informed Medical Decision Making</td>
<td>2014 version</td>
<td>USA, English</td>
<td>Booklet (36-page paper) and DVD (20 min)</td>
<td>Not publicly available. Contact Health Dialog for cost.</td>
<td>Literature^2</td>
</tr>
</tbody>
</table>

Treatment Choices for Stable Chest Discomfort^3

- Medical therapy
- Percutaneous coronary intervention (PCI)
<table>
<thead>
<tr>
<th>PtDA</th>
<th>Format & Delivery</th>
<th>Design & Development</th>
<th>EVC method</th>
<th>Tx preference indication</th>
<th>Other interaction</th>
<th>Risk/benefit presentation</th>
<th>Patien t storie s</th>
<th>No. of IPDA S criteri a achieved</th>
</tr>
</thead>
<tbody>
<tr>
<td>PtDAs for aortic stenosis treatment options</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A decision aid for treatment options for severe aortic stenosis (TAVI vs Symptom Management)⁴¹</td>
<td>Paper booklet reviewed by patient pre-consultation</td>
<td>Colour text, graphics, text boxes, photos of people, images to explain disease and procedure. 15-min video on website. Development not described.</td>
<td>4 questions with open-text responses about hopes, concerns, questions for HCPs and family</td>
<td>None</td>
<td>-</td>
<td>Side-by-side list & icon arrays (100 heart icons); natural frequencies (denominator : 100); positive & negative framing</td>
<td>2 scener ios. Patien t’s tx choice shown</td>
<td>Fully: 11 Partial ly: 0 Not met: 1</td>
</tr>
<tr>
<td>A decision aid for treatment options for severe aortic stenosis for patients deciding between TAVI and surgery⁴²</td>
<td>Paper booklet reviewed by patient pre-consultation</td>
<td>Colour text, graphics, text boxes, photos of people, images to explain disease and procedure. 18.5-min video on website. Development not described.</td>
<td>4 questions with open-text responses about hopes, concerns, questions for HCPs and family</td>
<td>None</td>
<td>-</td>
<td>Side-by-side list & icon arrays (10 people icons); natural frequencies (denominator : 10 & 100); mostly negative framing used; positive & negative used for survival</td>
<td>2 scener ios. Patien t’s tx choice shown</td>
<td>Fully: 11 Partial ly: 1 Not met: 0</td>
</tr>
<tr>
<td>Severe Aortic Stenosis Decision Aid⁴³</td>
<td>Brief 1-page paper ‘Encounter PtDA’ reviewed during consultation with HCP</td>
<td>Colour text, text boxes, graphs Development briefly described²⁰</td>
<td>Conversatio n guide with 1 question asking the patient "What matters most to you?"</td>
<td>Open-text response to indicate patient and HCP’s shared decision</td>
<td>-</td>
<td>Side-by-side list, icon arrays (100 circles) & line graphs; positive & negative framing</td>
<td>None</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Table 2: Characteristics of PtDAs
<table>
<thead>
<tr>
<th>PtDA</th>
<th>Format & Delivery</th>
<th>Design & Development</th>
<th>EVC method</th>
<th>Tx preference indication</th>
<th>Other interaction</th>
<th>Risk/benefit presentation</th>
<th>Patient stories</th>
<th>No. of IPDA S criteri a achieved</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAVI versus SAVR for patients with severe symptomatic aortic stenosis at low to intermediate perioperative risk (5 versions for different age groups^34-^38)</td>
<td>Web-based interactive ‘Encounter PtDA’ reviewed during consultation with HCP</td>
<td>Text, pop-up boxes, black/white icons Clinical content review described on website. Option to download as pdf.</td>
<td>None</td>
<td>None</td>
<td>Web version only: HCP navigates between sections to guide discussion and explore outcomes the patient wants to discuss</td>
<td>Icon arrays (1000 people icons); side-by-side natural frequencies (denominator : 1000); mix of positive or negative framing</td>
<td>None</td>
<td>Fully: 8 Partially: 3 Not met: 1</td>
</tr>
</tbody>
</table>

PtDAs for chronic CAD treatment options

<p>| Angina treatment: Stents, drugs, lifestyle changes - What’s best?^48 | Website . Delivery not specified | Text, colour image to explain procedure. Development not described. | None | None | - | Only states one risk (blockage reforming). Likelihood not provided. | None | Fully: 5 Partially: 2 Not met: 5 |
| CONNEC T: COroNary aNgioplasty dECision Tool^54,^56 | Web-based reviewed by patient pre-consultation. Person Customised summar y to be shared with HCP during consultation | Text: drop-down boxes, pop-up boxes, tables, colour icons, colour diagrams to explain disease and procedure, multiple short animated videos, | Open-text box for patient to add the top 3 things that matter most to them when considerin g their tx options | Multiple choice question with ‘not sure’ as an option. A smiley face 5-point Likert scale to indicate level of certain | Patient input: navigation between sections; 6-item multiple-choice Angina Symptom Evaluation Questionnaire; Open-text box to add worries or questions. Generates personal summary of answers. | Side-by-side comparison table; icon arrays (1000 people icons for PCI risks, 100 people for benefits of both options); natural frequencies (denominator : 1000, 5000); positive & negative framing | Text and audio quotes from 5 fictional patient s. Tx choice not shown. | Fully: 12 Partially: 0 Not met: 0 |</p>
<table>
<thead>
<tr>
<th>PtDA</th>
<th>Format & Delivery</th>
<th>Design & Development</th>
<th>EVC method</th>
<th>Tx preference indication</th>
<th>Other interaction</th>
<th>Risk/benefit presentation</th>
<th>Patient stories</th>
<th>No. of IPDA S criteria achieved</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coronary Artery Disease: What treatment would you prefer? (paper version only)(^51)</td>
<td>Web and paper reviewed by patient on the day of diagnostic angiogram</td>
<td>Paper version: Text, colour graphics, table, pictures and icons, colour diagrams to explain disease and procedures. Development described briefly. (^57)</td>
<td>None</td>
<td>One question asking patient to record preferred tx</td>
<td>-</td>
<td>Side-by-side lists, icon arrays (100 people icons); natural frequencies (denominator: 1000); negative framing</td>
<td>None</td>
<td>Fully: 9 Partially: 0 Not met: 3</td>
</tr>
<tr>
<td>Deciding what to do about stable angina(^55)</td>
<td>Paper-based reviewed by patient pre-consultation or with HCP during consultation</td>
<td>Text, diagram, tables. Development not described.</td>
<td>None</td>
<td>None</td>
<td>6 questions for the patient to consider (no space for patient answers)</td>
<td>Side-by-side comparison table; positively framed natural frequencies for symptom improvement for PCI/CABG option only (denominator: 100); negatively framed natural frequencies (denominator: 100) for medicines option; descriptive words for PCI</td>
<td>None</td>
<td>Fully: 9 Partially: 1 Not met: 2</td>
</tr>
<tr>
<td>PtDA</td>
<td>Format & Delivery</td>
<td>Design & Development</td>
<td>EVC method</td>
<td>Tx preference indication</td>
<td>Other interaction</td>
<td>Risk/benefit presentation</td>
<td>Patient stories</td>
<td>No. of IPDA S criteria achieved</td>
</tr>
<tr>
<td>----------------------------</td>
<td>------------------</td>
<td>----------------------</td>
<td>-------------</td>
<td>--------------------------</td>
<td>------------------</td>
<td>---------------------------</td>
<td>-----------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>PCI Choice (2 versions for either Class I/II or Class III Stable Angina(^{46,47}))</td>
<td>Brief 2-page paper ‘Encounter PtDA’ reviewed during consultation with HCP</td>
<td>Colour text, text boxes, colour icons. Development fully described(^{59}).</td>
<td>None</td>
<td>Two questions asking for preferred tx</td>
<td>None</td>
<td>Side-by-side icon arrays (100 circles icons); natural frequencies (denominator: 100) with positive & negative framing</td>
<td>None</td>
<td>N/A</td>
</tr>
<tr>
<td>Should I Have Angioplasty for Stable Chest Angina?(^{52})</td>
<td>Web-based pre-consultation. Delivery determined by distributor. In publication(^{52}), the link to the PtDA website was emailed to patients’ pre-consultation.</td>
<td>Web: Text, drop-down boxes, pop-up boxes, tables, colour diagrams to explain procedure with real angiogram x-ray image. Clinical content review described on website. Option to download as pdf.</td>
<td>Rating scales: Four 7-point ‘importance’ Likert scales for 3 pre-set attributes & 1 open-box for patient to add other important attributes/values.</td>
<td>Two 7-point Likert scales to indicate preferred tx and level of certainty with choice</td>
<td>Patient input: navigation between sections; 3-item yes/no knowledge test; 3 yes/no questions about support & understanding, open-text box to add worries or questions. Generates personal summary of answers.</td>
<td>Side-by-side list; icon arrays (100 people icons); side-by-side natural frequencies (denominator: 100) with positive & negative framing for benefits; Negative framing for PCI risks</td>
<td>Quote s from 4 fictional patients. Tx choice shown.</td>
<td>Fully: 9 Partially: 3 Not met: 0</td>
</tr>
<tr>
<td>Study details</td>
<td>Study design</td>
<td>Methods, sample, and setting</td>
<td>Results</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>--------------</td>
<td>-----------------------------</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Studies reporting on the development, acceptability, and evaluation of PtDAs for aortic stenosis treatment options</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brennan et al. 58 2020, USA</td>
<td>Multi-methods development study of risk calculator and PtDA for patients with AS (ADVICE39)</td>
<td>Setting: Duke University Medical Center 1) Development of risk calculator: Patient survey (SAVR n=10; TAVR n=10); Registry data review and questionnaire by 3 caregivers and 5 patients to identify patient characteristics to include in risk models. 2) Feedback on risk calculator: 4 rounds of semi-structured interviews with 6 TAVR and SAVR patients and caregivers. 3) SDM education resource development: multiple teleconference calls with a multi-disciplinary team including 7 patients and 3 caregivers to determine content. 4) Feedback on PtDA: Review by patient and caregiver stakeholders and semi-structured interviews with 6 patients scheduled for TAVR.</td>
<td>• Web-based and mobile risk calculator developed. Risk models included 1-year outcomes for mortality, stroke, discharge location and QoL • Patient and caregivers wanted risks to be presented in multiple ways (numeric and pictographs) and for a personalised interpretation of their data. Website readability scores: FRE: 60.93; FKGL: 7.02 • Web-based resource developed with links to the risk calculator but no longer accessible (website deactivated). • Feedback incorporated into resource. Website visits in 11 months: 2589 users. Average time on website: 1.5 min. 'Engaged users' n=817.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coylewright et al. 20 2020, USA</td>
<td>Single-centre nonrandomised pre-test post-test pilot study with 3 patient groups: UC (no PtDA); cardiologist’s 1st use of PtDA (Severe Aortic Stenosis Decision Aid43); cardiologist’s 5th use of PtDA</td>
<td>Setting: 2 TAVR centres in Northern New England 35 patients (56% female) with severe AS, at high or prohibitive surgical risk, for whom HCPs agree potential equipoise for TAVR and SAVR. UC: Each cardiologist (n=4) or pair (n=1) audio recorded a consultation without PtDA with 5 patients each (25 total). Patients’ mean (SD) age: 85 (7.5) years; 75% achieved high-school education or greater. 1st use of PtDA: Each cardiologist/pair used the PtDA with 1 patient (5 total). Patients’ mean (SD) age: 82 (10.5) years; 100% achieved high-school education or greater (1 missing response). 5th use of PtDA: Each cardiologist/pair’s 5th time of using the PtDA with a patient (n=5). Patients’ mean (SD) age*: 93 (2.7) years; 80% achieved high-school education or greater.</td>
<td>• SURE score for decisional conflict: ↔ • Post-consultation knowledge: ↑ with PtDA* • OPTION score for SDM: ↑ with PtDA* • Patient satisfaction: ↑ with PtDA*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study details</td>
<td>Study design</td>
<td>Methods, sample, and setting</td>
<td>Results</td>
<td>No. of SUNDAE items met</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>--------------</td>
<td>-----------------------------</td>
<td>---------</td>
<td>-----------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Einfeld 63 2020, USA</td>
<td>Single-centre uncontrolled pre-post intervention (peer support and use of PtDAs in patients considering TAVR) pilot study with 1 patient group 2 PtDAs: Treatment options for severe aortic stenosis- TAVI vs Symptom Management41 and Treatment options for severe aortic stenosis for patients deciding between TAVI and surgery42</td>
<td>Setting: Community hospital in Pacific Northwest Patients with AS (n=12; 63-89 years; 42% Female) eligible for TAVR participated in peer-support (Mended Hearts programme). TAVR PtDAs integrated into UC consultations.</td>
<td>• Preparation for Decision Making Scale (post PtDA use): All patients felt that the PtDAs were ‘somewhat’ to ‘a great deal’ helpful in preparing for decision-making. • 11 patients completed peer-support • GAD-7 score: 4 patients ↓ anxiety, 5 ↔, 2 patients ↑ • Perceived cardiac self-efficacy with CSE scale before and after peer support: ↑ in 58% patients</td>
<td>Full: 19 Partial: 3 Not: 4 N/a: 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valentine et al. 61 2022, USA</td>
<td>Single-centre pilot 1:1 RCT (PtDA vs UC) of a PtDA delivered to patients with AS considering TAVR or SAVR. PtDA: Treatment options for severe aortic stenosis for patients deciding between TAVI and surgery42 Comparator: UC in-clinic discussion of treatment options, risks, and benefits, and an animation of the TAVR procedure. No written materials.</td>
<td>Setting: Massachusetts General Hospital, USA Patients (n=60, 100% White) with mild or moderate AS being assessed for either TAVR or surgical SAVR were randomised to PtDA or UC group. PtDA (n=31): mean age 74 (SD 6) years; 39% female; 89% achieved College education or greater. UC (n=28): mean age 71 (SD 8) years; 25% female; 75% achieved College education or greater.</td>
<td>• SURE scale for decisional conflict: ↔ • Knowledge: ↑ with PtDA* • CollaboRATE score: ↑ with PtDA* • SDM process scale: ↔ • Treatment preference: ↔ • Treatment received: ↔ • Preference concordance: ↑ with PtDA (NS) • Informed patient-centred decision: ↑ with PtDA (NS) 68% reported reviewing all the PtDA</td>
<td>Full: 19 Partial: 2 Not: 4 N/a: 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Studies reporting on the development, acceptability, and evaluation of PtDAs for chronic coronary artery disease treatment options

Coylewright et al. 59 2012, USA | Multi-phase development and single-centre acceptability study of PtDA (PCI Choice46,47) for patients with stable CAD | Setting: Mayo clinic 1) Evidence review and synthesis. 3) Prototype PtDA developed by 2 HCPs plus designer. | • Evidence from clinical guidelines and trials informed the risk and benefit information in the PtDA • Encounter PtDA developed, to be used ‘upstream’ from PCI procedure itself | Fully: 13 Partially:5 Not met: 0 N/a: 8 |
<table>
<thead>
<tr>
<th>Study details</th>
<th>Study design</th>
<th>Methods, sample, and setting</th>
<th>Results</th>
<th>No. of SUNDAE items met</th>
</tr>
</thead>
<tbody>
<tr>
<td>facing treatment with either OMT or PCI+OMT</td>
<td>4) Tested by Diabetes Research Advisory Group (15-20 community members with DM), and Cardiovascular Patient and Family Advisory Council (over 25 patients and family members) to develop first prototype. 5) Observed use in clinical setting with 25 patients. Revised PtDA over 1-2 weeks after each clinical observation.</td>
<td>• Preference for reduction in text and increased use of pictographs to illustrate risks and benefits of OMT and PCI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coylewright et al. 60 2016, USA</td>
<td>Single-centre, randomised controlled (1:1) trial of PtDA (PCI Choice46,47) vs. UC (no PtDA)</td>
<td>Setting: Mayo clinic. 124 Patients with stable CAD considering OMT +/- PCI treatment randomised to PtDA or UC group. PtDA (n=65): mean age 69 (SD 10.9) years; 28% female; 100% White; 65% achieved College education or greater. UC (n=59): mean age 68 (SD 10.2) years; 25% female; 98% White; 71% achieved College education or greater.</td>
<td>• Overall DCS: ↔ • Informed subscale of DCS: ↓ with PtDA (NS) • Knowledge: ↑ with PtDA* • OPTION Scale for SDM: ↔ • PtDA fidelity score: 70.9%. contamination (i.e. discussion of SDM items) occurred in UC (50.6%) but significantly fewer SDM items were discussed compared to PtDA consultations*</td>
<td>Full: 18 Partial: 5 No: 3 N/a: 0</td>
</tr>
<tr>
<td>Doll et al. 57 2019, USA</td>
<td>Two-part study: A) Single-centre prospective nonrandomised controlled pre-post-test study of PtDA (Coronary Artery Disease: What treatment would you prefer?51) vs. UC (no PtDA, no treatment preferences) B) Pilot cluster randomised study embedded within above study</td>
<td>Setting: Duke University Hospital. A) 203 patients with chest pain, angina (acute and chronic) or NSTEMI, referred for diagnostic coronary angiography and considering treatment with either medical therapy, PCI or CABG, nonrandomised to PtDA or UC group. UC (n=100): median age (IQR) 64 (56-70) years; 34% female; 76% White; 63% achieved College education or greater; Health literacy** mean (SD) 2 (2.6). PtDA (n=103): median age (IQR) 63 (55-72) years; 43% female; 71% White; 71% achieved College education or greater; Health literacy** mean (SD) 1.5 (2.1). B) 103 patients in PtDA group randomised 50:53 to preference group (cardiologist received patients’ treatment preferences) or control group (preferences not shared).</td>
<td>• Overall DCS: ↔ • Informed subscale of DCS: ↓ with PtDA* • Values clarity subscale of DCS: ↓ with PtDA* • Control Preferences Scale: ↑ sense of SDM with PtDA* • Knowledge: ↑ with PtDA* • Treatment preference: ↔ • Treatment received and concordance with patient preference: ↔</td>
<td>Full: 13 Partial: 8 Not: 5 N/a: 0</td>
</tr>
<tr>
<td>Study details</td>
<td>Study design</td>
<td>Methods, sample, and setting</td>
<td>Results</td>
<td>No. of SUNDAE items met</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---</td>
<td>---</td>
<td>--</td>
<td>------------------------</td>
</tr>
<tr>
<td>Harris et al. 2022, UK</td>
<td>Multi-phase, multi-centre development and acceptability testing of a PtDA for people with stable angina considering elective coronary angioplasty treatment (CONNECT)</td>
<td>Setting: 2 District General Hospitals in Northern England. 34 patients and 29 HCPs in total involved in various stages 1) Steering Group convened, evidence review, and 3 co-design workshops with 4 cardiologists, 9 nurses, & 9 members of heart support groups. 2) Alpha-testing of prototype 1 (cognitive interviews and acceptability questionnaire) with 9 HCPs and 6 patients, 1 patient/partner dyad in non-clinical settings. Patient sample: mean age 63 (SD 11) years; 29% female; 85% achieved College education; 71% had adequate HL. 3) PtDA refined and prototype 2 developed following consultations with 10 service users, 7 HCPs and the Steering Group. Feedback on prototype 2 collated from 9 new volunteers from community heart support groups, 1 Steering Group lay member, and 2 consultant cardiologists.</td>
<td>• Web-based PtDA designed to be delivered at point of referral for PCI. Clinical evidence informed risks and benefits of treatment options. • Participants felt the PtDA was acceptable, usable, comprehensible, desirable; has potential to facilitate SDM; and may improve patient safety via evaluation & communication of symptoms. Some cardiologists disagreed with the risk information content. • CONNECT prototype 2 achieved all 12 applicable mandatory qualifying and certification criteria of the IPDAS checklist. Preferences for risk presentation varied.</td>
<td>Full: 16 Partial: 2 Not: 0 N/a: 8</td>
</tr>
<tr>
<td>Hinsberg et al. 2018, USA</td>
<td>Single-centre randomised comparator pilot trial to compare effects of two PtDAs for stable angina. DVD/booklet PtDA: Treatment Choices for Stable Chest Discomfort* Web-based PtDA: Should I Have Angioplasty for Stable Chest Angina?</td>
<td>Setting: Massachusetts General Hospital Heart Centre Patients (n=28) who had recently made decisions about treatment of stable CAD were randomised to DVD/paper booklet PtDA or web-based PtDA. ** DVD/booklet PtDA** (n=15): mean age 73 (SD 11.6) years; 60% female; 100% White; 80% achieved College education or greater. ** Web-based PtDA** (n=13): mean age 67 (SD 10.62) years; 23% female; 92% White; 54% achieved College education or greater.</td>
<td>• Total knowledge scores: ↑ with DVD/booklet PtDA* • Treatment preference for PCI: ↑ with web-based PtDA (NS) • Patient satisfaction: ↑ with DVD/booklet PtDA (NS) • Viewed all the PtDA: ↑ with DVD/booklet PtDA (p=0.05)</td>
<td>Full: 19 Partial: 4 Not: 2 N/a: 1</td>
</tr>
<tr>
<td>Scalia et al. 2018, USA</td>
<td>Cross-sectional observational study to evaluate whether Option Grid PtDAs change treatment preferences and which items of the PtDA are most important to users</td>
<td>Audit data collected from users of Option Grid PtDAs who had an account on the Option Grid website, over a 19-month period (June 2015 onwards). User responses in the PtDAs were collected from the top 5 most-used PtDAs. The Angina PtDA was accessed and fully completed by 88 users (47% female; 11% Hispanic; 46% not Hispanic, 43% ethnicity not stated.</td>
<td>For Angina treatment options: no significant preference shift between medical management and stenting; p=0.200.</td>
<td>Full: 16 Partial: 6 Not: 2 N/a: 2</td>
</tr>
<tr>
<td>Study details</td>
<td>Study design</td>
<td>Methods, sample, and setting</td>
<td>Results</td>
<td>No. of SUNDAE items met</td>
</tr>
<tr>
<td>---------------</td>
<td>--------------</td>
<td>-----------------------------</td>
<td>---------</td>
<td>------------------------</td>
</tr>
<tr>
<td>PtDA: Angina treatment options Option Grid[^49]</td>
<td>age range: 11% 20-30 yrs, 16% 31-40 yrs, 18% 41-50 yrs, 17% 51-60 yrs, 10% ≥ 60 yr, 27% not stated.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Cardiac Patient Decision Aids Systematic Review

Identification of studies or PtDAs via databases and registers

Records identified from:
- CINAHL (EBSCO) n = 2792
- MEDLINE (OVID) n = 2045
- PsycInfo (ProQuest) n = 1531
- EMBASE (OVID) n = 766
- Central (Cochrane) n = 188
- Trial Registers n = 241
Total: 7563

Duplicates removed: n = 496

Title/abstracts screened n = 7067

Records excluded: n = 7022

Full text screened: n = 33
Trial registry records screened: n = 12
Total: n = 45

Ineligible study type: n = 3
Not a PtDA: n = 8
PtDA for a different decision: n = 10
Ineligible study outcome: n = 2
Qualitative study: n = 2
Ineligible PtDA: n = 1
Trial records excluded: n = 11 (n = 5 linked to full-text articles; n = 4 no response from authors; n = 2 PtDA ineligible)
Total: n = 37

Included:
- n = 7 studies, which reported on 8 PtDAs
- n = 1 PtDA from a trial registry record
Total: n = 37

Records assessed for eligibility: n = 24

Reports excluded:
- PtDA not eligible (n = 10)
- Duplicates (n = 2)
Total: n = 12

Included:
- n = 3 studies, which reported on 3 PtDAs
- n = 9 PtDAs

Total included:
- Studies: n = 10 (7 identified from database and 3 from the ‘other methods’ searches)
- PtDAs: n = 21 (11 identified from the included studies; 1 from trial registry records; 9 via ‘other methods’ searches)

Figure 1
167x102 mm (x DPI)
Cardiac Patient Decision Aids Systematic Review

Table

<table>
<thead>
<tr>
<th>Study</th>
<th>SMD (95% CI)</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coylewright 2018</td>
<td>0.91 (0.54, 1.28)</td>
<td>26.13</td>
</tr>
<tr>
<td>Coylewright 2020</td>
<td>0.59 (0.16, 1.03)</td>
<td>20.75</td>
</tr>
<tr>
<td>Doll 2019</td>
<td>0.43 (0.15, 0.71)</td>
<td>37.86</td>
</tr>
<tr>
<td>Valentine 2022</td>
<td>0.63 (0.11, 1.16)</td>
<td>15.26</td>
</tr>
<tr>
<td>Overall, DL ($I^2 = 27.3%, p = 0.248$)</td>
<td>0.62 (0.40, 0.84)</td>
<td>100.00</td>
</tr>
</tbody>
</table>

NOTE: Weights are from random-effects model

Favours control treatment

Favours intervention

Figure 2

158×58 mm (x DPI)
Cardiac Patient Decision Aids Systematic Review

<table>
<thead>
<tr>
<th>Study</th>
<th>Effect (95% CI)</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coylewright 2016</td>
<td>-0.19 (-0.55, 0.16)</td>
<td>26.23</td>
</tr>
<tr>
<td>Coylewright 2020</td>
<td>-0.10 (-0.52, 0.32)</td>
<td>18.21</td>
</tr>
<tr>
<td>Doll 2019</td>
<td>-0.20 (-0.48, 0.07)</td>
<td>43.02</td>
</tr>
<tr>
<td>Valentine 2022</td>
<td>-0.02 (-0.53, 0.49)</td>
<td>12.54</td>
</tr>
<tr>
<td>Overall, DL (I² = 0.0%, p = 0.925)</td>
<td>-0.16 (-0.34, 0.02)</td>
<td>100.00</td>
</tr>
</tbody>
</table>

NOTE: Weights are from random-effects model

Figure 3
158x69 mm (x DPI)
Cardiac Patient Decision Aids Systematic Review

<table>
<thead>
<tr>
<th></th>
<th>D1</th>
<th>D2</th>
<th>D3</th>
<th>D4</th>
<th>D5</th>
<th>Overall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coylewright et al. 2016</td>
<td>.svg</td>
<td>.svg</td>
<td>.svg</td>
<td>.svg</td>
<td>.svg</td>
<td>.svg</td>
</tr>
<tr>
<td>Valentine et al. 2022</td>
<td>.svg</td>
<td>.svg</td>
<td>.svg</td>
<td>.svg</td>
<td>.svg</td>
<td>.svg</td>
</tr>
</tbody>
</table>

- **D1**: Randomisation process
- **D2**: Deviations from the intended interventions
- **D3**: Missing outcome data
- **D4**: Measurement of the outcome
- **D5**: Selection of the reported result

![Green](+).svg: Low risk

![Yellow](!).svg: Some concerns

Figure 4

167x59 mm (x DPI)
Cardiac Patient Decision Aids Systematic Review

Patient decision aids for aortic stenosis and chronic coronary artery disease: A systematic review and meta-analysis

To identify patient decision aids (PtDAs) for aortic stenosis (AS) and chronic coronary artery disease (CAD) and evaluate their quality, development and effectiveness

Methods

- Adults with AS or chronic CAD
- PtDAs
- Other decision-making interventions or usual care
- PtDA characteristics, quality, and acceptability. Decision-making and quality outcomes

Results

- Systematic review
 - 11 PtDAs for AS and 10 for CAD identified
 - 3 PtDA development studies and 7 evaluation studies included

- Meta-analysis
 - Four studies included in meta-analyses
 - PtDAs significantly increased patient knowledge compared to 'usual care', but did not change decisional conflict

- Quality
 - One PtDA for AS and two for CAD fully or partially achieved all 12 quality criteria
 - No studies fulfilled all 26 PtDA reporting criteria

Graphical Abstract

167x121 mm (x DPI)

- There is a lack of high-quality, publicly available, PtDAs for people with AS and CAD
- PtDAs improved patient knowledge but decisional conflict scores were unchanged
- Existing PtDAs for AS and CAD are not tailored to meet the needs of people with low health literacy levels or from underserved populations