Activity in Centaur-like Jupiter-Family Comet 2023 RN₃

HENRY H. HSIEH 1,2, MICHAEL S. P. KELLEY 2, TIM A. LISTER 4, HELEN USHER 5, EDWARD GOMEZ 6, JOSEPH P. CHATELAIN 4, AND SARAH GREENSTREET 7,8

1 Planetary Science Institute, 1700 East Fort Lowell Rd., Suite 106, Tucson, AZ 85719, USA
2 Institute of Astronomy and Astrophysics, Academia Sinica, P.O. Box 23-141, Taipei 10617, Taiwan
3 Department of Astronomy, University of Maryland, 1113 Physical Sciences Complex, Building 415, College Park, MD 20742, USA
4 Las Cumbres Observatory, 6740 Cortona Drive Suite 102, Goleta, CA 93117, USA
5 The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK
6 Las Cumbres Observatory, School of Physics and Astronomy, Cardiff University, Queens Buildings, The Parade, Cardiff CF24 3AA, UK
7 Rubin Observatory/NSF’s NOIRLab, 950 N. Cherry Ave, Tucson, AZ 85719, USA
8 Department of Astronomy and the DIRAC Institute, University of Washington, 3910 15th Ave NE, Seattle, WA 98195, USA

(Received December 4, 2023)
Submitted to RNAAS

ABSTRACT

We present multi-filter observations of Centaur-like Jupiter-family comet 2023 RN₃ conducted as part of the Las Cumbres Observatory (LCO) Outbursting Objects Key (LOOK) Project, as well as analysis of archival data in which 2023 RN₃ was expected to be present. We find clear evidence of comet-like mass loss in the form of an extended morphology on UT 2023 November 16 and 18, and an increase in intrinsic brightness of > 4 mag between 2022 September and 2023 November. We also report broadband colors for the coma of g′ − r′ = 0.61 ± 0.03, r′ − i′ = 0.30 ± 0.03, and i′ − z′ = 0.04 ± 0.08, giving a g′r′i′ spectral slope of S′ = (12 ± 2) %/100 nm.

Keywords: Comets (280), Centaur group (215), Comae (271), Sky surveys (1464)

1. INTRODUCTION

Centaurs are ice-rich solar system bodies on unstable orbits among the giant planets, connecting trans-Neptunian objects and Jupiter-family comets (JFCs) (Tiscareno & Malhotra 2003). Exact definitions vary, but they are typically characterized as having semimajor axes (a) and perihelia (q) between the orbits of Jupiter and Neptune (Jewitt & Kalas 1998).

2023 RN₃ has q = 5.172, an eccentricity of e = 0.490, an inclination of i = 10.358°, and a Tisserand parameter of T_J = 2.907, technically placing it on a JFC-like orbit (Tancredi 2014). However, its orbit is Centaur-like under some definitions (Emel’yanenko 2005), while its distant activity (see below) makes it relevant to active Centaur studies (e.g., Jewitt 2009).

Corresponding author: Henry H. Hsieh
hsieh@psi.edu

2. OBSERVATIONS

We observed 2023 RN₃ as part of the Las Cumbres Observatory (LCO) Outbursting Objects Key (LOOK) Project (Program LTP2023B-001; Lister et al. 2022) on UT 2023 November 16 and 18 with the Teide Observatory LCO-A 1m telescope (TFN), and the 2.0m Faulkes Telescope North (FTN; Program FTPEPO2014A-004), following tentative activity detections on UT 2023 November 15 (N. Erasmus, private communication) by the ATLAS survey (Tonry et al. 2018a), and in October 2023 by P. VanWylen and L. Buzzi¹. The object had a heliocentric distance of r_h = 5.412 au and true anomaly of ν = 30.1°, and r_h = 5.414 au and ν = 30.2° (Giorgini et al. 1996) during TFN and FTN observations.

We obtained six g′- and r′-band exposures (3 × 245 s per filter) with TFN using a Sinistro camera, and two

¹ https://groups.io/g/mpml/topic/101896352
sets of simultaneous g'-, r'-, i'-, and z'-band exposures (2 × 90 s per filter) with FTN using MuSCAT3 (Narita et al. 2020). All observations were processed using LCOGT pipeline software (McCully et al. 2018).

3. RESULTS

We measure average total magnitudes of $m_g = 18.74 \pm 0.01$ and $m_r = 18.14 \pm 0.02$ from TFN data, and $m_g = 18.69 \pm 0.02$, $m_r = 18.08 \pm 0.02$, $m_i = 17.78 \pm 0.02$, $m_z = 17.68 \pm 0.03$ from FTN data. Colors from FTN data are $g' - r' = 0.61 \pm 0.03$, $r' - i' = 0.30 \pm 0.03$, and $i' - z' = 0.04 \pm 0.08$, giving a $g'r'i'$ spectral slope of $S' = (12 \pm 2) \%/100 \text{ nm}$.

Morphologically, 2023 RN$_3$ is clearly extended (Figure 1), with an elliptical coma with major and minor axis FWHMs of 3′0 and 2′6, compared to stellar FWHMs of $\sim 1′′/8$ in TFN data.

Figure 1. Single-exposure (90 s) r'-band images from FTN of 2023 RN$_3$ and a nearby field star with corresponding contour plots. Panels are $15″ \times 15″$.

4. ARCHIVAL DATA ANALYSIS

Using the Canadian Astronomy Data Center’s SSOIS service2 (Gwyn et al. 2012), we identified two images (50 s each in g- and i'-band) obtained on UT 2022 September 14 with DECam (Flaugher et al. 2015) on the 4m Blanco Telescope for which 2023 RN$_3$ was expected in the field of view. We do not detect the object down to 3-σ limiting magnitudes of $m_{g,\text{lim}} = 22.5$ and $m_{i,\text{lim}} = 21.5$ (confirming non-detections reported by K. Ly1), corresponding to absolute magnitudes of $H_{g,\text{lim}} > 15.3$ and $H_{i,\text{lim}} > 14.3$ (assuming $G = 0.15$). Using these limits, 2023 RN$_3$ should have had $m_g > 22.9$ and $m_i > 21.90$ during our TFN and FTN observations, meaning that its intrinsic brightness increased by >4 mag, presumably from ejected dust, since 2022.

We thank N. Erasmus, A. Fitzsimmons, and L. Denneau for alerting us to 2023 RN$_3$'s possible activity.

This work uses observations from the Las Cumbres Observatory (LCO) global telescope network and using MuSCAT3, developed by the Astrobiology Center and supported by JSPS KAKENHI (JP18H05439) and JST-PRESTO (JPMJPR1775), at Faulkes Telescope North on Maui, HI, operated by LCO. Some observations were made via the Comet Chasers education project, part of the DeepSky2DeepImpact project funded by STFC(UK), which accesses LCO through the Faulkes Telescope Project (supported by the Dill Faulkes Educational Trust).

This project used data from the Dark Energy Camera, which was constructed by the Dark Energy Survey collaboration. Funding was provided by the DOE and NSF (USA), MISE (Spain), STFC (UK), HETFCE (UK), NCSA (UIUC), KICP (Univ. Chicago), CCAPP (Ohio State), MIFPA (Texas A& M), CNPQ, FAPERJ, FINEP (Brazil), MINECO (Spain), DFG (Germany) and DES Collaborating Institutions (Argonne Lab, UC Santa Cruz, Univ. Cambridge, CIEMAT-Madrid, Univ. Chicago, Univ. College London, DES-Brazil Consortium, Univ. Edinburgh, ETH Zürich, Fermilab, Univ. Illinois, ICE (IEEC-CSIC), IFAE Barcelona, Lawrence Berkeley Lab, LMU München and the Excellence Cluster Universe, Univ. Michigan, NOIRLab, Univ. Nottingham, Ohio State Univ., OzDES Membership Consortium, Univ. Pennsylvania, Univ. Portsmouth, SLAC National Lab, Stanford, Univ. Sussex, and Texas A&M). DECam observations were obtained at Cerro Tololo Interamerican Observatory at NSF’s NOIRLab (Prop. 2021A-0275; PI: A. Rest), which is managed by AURA under a cooperative agreement with NSF.

This work used NASA’s Astrophysics Data System.

Facilities: Blanco (DECam), FTN (MuSCAT3), LCOGT

Software: astrometry.net (Lang et al. 2010), astropy (Robitaille et al. 2013), BANZAI (McCully et al. 2018), JPL Horizons3 (Giorgini et al. 1996), PyRAF (Greenfield & White 2000), RefCat2 (Tonry et al. 2018b), SAOImageDS9 (Joye & Mandel 2003), sbpy (Mommer et al. 2019), SSOIS (Gwyn et al. 2012), uncertainties (v3.0.2, E. O. Lebigot)

3 https://ssd.jpl.nasa.gov/horizons/app.html
REFERENCES

Jewitt, D. 2009, AJ, 137, 4296,
 doi: 10.1088/0004-6256/137/5/4296

 doi: 10.1086/311356

Lang, D., Hogg, D. W., Mierle, K., Blanton, M., & Roweis, S. 2010, Astronomical Journal, 139, 1782,
 doi: 10.1088/0004-6256/139/5/1782

 doi: 10.21105/joss.01426

Tancredi, G. 2014, Icarus, 234, 66,
 doi: 10.1016/j.icarus.2014.02.013

Tiscareno, M. S., & Malhotra, R. 2003, AJ, 126, 3122,
 doi: 10.1086/379554
