Synthetic route to low damping in ferromagnetic thin-films

Azzawi, S.; Umerski, A.; Sampaio, L. C.; Bunyaev, S.; Kakazei, G. N. and Atkinson, D. (2023). Synthetic route to low damping in ferromagnetic thin-films. APL Materials, 11(8), article no. 081108.

DOI: https://doi.org/10.1063/5.0147172

Abstract

Previous theory indicated that the individual monolayers within transition metal ferromagnet thin-films contribute different magnitudes to the total ferromagnetic damping. Here, the aim was to investigate if the thin-film damping could be reduced by electronic engineering of the higher damping regions via localized doping. We present new theoretical analysis and experimental results for sputtered Co thin-films in which the upper and lower surface regions were locally doped with Cr. Theory indicates that local doping does reduce the damping and the experiments show a comparable reduction of the damping with increasing local doping up to 30% Cr, while the measured damping falls further with higher local doping, which may be attributed to changes in the film structure. This work opens a route to create low-damping magnetic thin-films.

Viewing alternatives

Download history

Metrics

Public Attention

Altmetrics from Altmetric

Number of Citations

Citations from Dimensions

Item Actions

Export

About