Copy the page URI to the clipboard
Ivison, R.J.; Greve, T.R.; Dunlop, J.S.; Peacock, J.A.; Egami, E.; Smail, I.; Ibar, E.; van Kampen, E.; Aretxaga, I.; Babbedge, T.; Biggs, A.D.; Blain, A.W.; Chapman, S.C.; Clements, D.L.; Coppin, K.; Farrah, D.; Halpern, M.; Hughes, D.H.; Jarvis, M.J.; Jenness, T.; Jones, J.R.; Mortier, A.M.J.; Oliver, S.; Papovich, C.; Perez-Gonzalez, P.G.; Pope, A.; Rawlings, S.; Rieke, G.H.; Rowan-Robinson, M.; Savage, R.S.; Scott, D.; Seigar, M.; Serjeant, S.; Stevens, J.A.; Vaccari, M.; Wagg, J. and Willott, C.J.
(2007).
DOI: https://doi.org/10.1111/j.1365-2966.2007.12044.x
URL: http://adsabs.harvard.edu/abs/2007MNRAS.380..199I
Abstract
Determining an accurate position for a submillimetre (submm) galaxy (SMG) is the crucial step that enables us to move from the basic properties of an SMG sample - source counts and 2D clustering - to an assessment of their detailed, multiwavelength properties, their contribution to the history of cosmic star formation and their links with present-day galaxy populations. In this paper, we identify robust radio and/or infrared (IR) counterparts, and hence accurate positions, for over two-thirds of the SCUBA HAlf-Degree Extragalactic Survey (SHADES) Source Catalogue, presenting optical, 24-μm and radio images of each SMG. Observed trends in identification rate have given no strong rationale for pruning the sample. Uncertainties in submm position are found to be consistent with theoretical expectations, with no evidence for significant additional sources of error. Employing the submm/radio redshift indicator, via a parametrization appropriate for radio-identified SMGs with spectroscopic redshifts, yields a median redshift of 2.8 for the radio-identified subset of SHADES, somewhat higher than the median spectroscopic redshift. We present a diagnostic colour-colour plot, exploiting Spitzer photometry, in which we identify regions commensurate with SMGs at very high redshift. Finally, we find that significantly more SMGs have multiple robust counterparts than would be expected by chance, indicative of physical associations. These multiple systems are most common amongst the brightest SMGs and are typically separated by 2-6 arcsec, at z∼ 2, consistent with early bursts seen in merger simulations.