Focused Mid-Crustal Magma Intrusion During Continental Break-Up in Ethiopia

Kevin Wong1,2, David Ferguson1, Penny Wieser3, Daniel Morgan1, Marie Edmonds4, Andemicheal Zafu Tadesse5, Gezahegn Virgu6, Jason Harvey1, and Samantha Hammond7

1School of Earth and Environment, University of Leeds, Leeds, UK, 2Now at Dipartimento di Scienze Biologiche, Geologiche e Ambientali (BiGeA), Alma Mater Studiorum Università di Bologna, Bologna, Italy, 3Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA, USA, 4Centre for the Observation and Modelling of Earthquakes, Volcanoes and Tectonics (COMET), Department of Earth Sciences, University of Cambridge, Cambridge, UK, 5Department of Geosciences, Environment and Society, Université Libre de Bruxelles (ULB), Bruxelles, Belgium, 6School of Earth Sciences, Addis Ababa University, Addis Ababa, Ethiopia, 7School of Environment, Earth and Ecosystems Sciences, The Open University, Milton Keynes, UK

Abstract Significant volumes of magma can be intruded into the crust during continental break-up, influencing rift evolution by altering the thermo-mechanical structure of the crust and its response to extensional stresses. Rift magmas additionally feed surface volcanic activity and can be globally significant sources of tectonic CO2 emissions. Understanding how magmatism may affect rift development requires knowledge on magma intrusion depths in the crust. Here, using data from olivine-hosted melt inclusions, we investigate magma dynamics for basaltic intrusions in the Main Ethiopian Rift (MER). We find evidence for a spatially focused zone of magma intrusion at the MER upper-lower crustal boundary (10–15 km depth), consistent with geophysical datasets. We propose that ascending melts in the MER are intruded over this depth range as discrete sills, likely creating a mechanically weak mid-crustal layer. Our results have important implications for how magma addition can influence crustal rheology in a maturing continental rift.

1. Introduction

Continental rifting involves the rupture of strong continental lithosphere to form new ocean basins. Evidence from active continental rifts and passive margins suggests that continental break-up often involves intrusion of substantial volumes of magma into the rifting crust (e.g., Bastow et al., 2011; Bastow & Keir, 2011; White et al., 2008). These magmas can accommodate extension via dyke intrusion and, depending on their distribution in space and time, may alter the thermo-mechanical structure of the crust (e.g., Buck, 2006; Daniels et al., 2014; Lavecchia et al., 2016; Muluneh et al., 2020). Determining how intruded melts accumulate during rift development is therefore crucial for understanding how the rheology and density structure of the crust evolves with progressive rifting, which in turn has a strong influence on how the crust responds to far-field extensional stresses during non-magmatic and magmatic rifting regimes (e.g., Bialas et al., 2010; Oliveira et al., 2022; Tetreault & Büiter, 2018).

Although the syn-rift interplay between magmatism and tectonics is a key ingredient in facilitating continental break-up (e.g., Bastow & Keir, 2011; Thybo & Nielsen, 2009), observational constraints on basaltic intrusion...
depths in active rifts obtained through petrology and geochemistry remain limited. While geophysical observations can infer depths of intrusion and crustal melt storage (e.g., through seismicity concurrently triggered during emplacement; Keir et al., 2006; Ebinger et al., 2008), only petrological observations, obtained from basaltic materials derived directly from the intruding melts themselves, can provide first-hand evidence of the magmatic conditions associated with crustal emplacement.

The Main Ethiopian Rift (MER), comprising the northernmost sector of the East African Rift system (EARS), provides a natural laboratory to examine the interplay between rift geodynamics and magmatic intrusion. This late-stage continental rift, which bridges the large fault-bound grabens of the Kenyan Rift and inferred incipient seafloor spreading in Afar (Figure 1a), has been extensively studied through multiple geophysical approaches (e.g., Bastow et al., 2011; Lavayssière et al., 2018; Wright et al., 2016). These studies suggest that significant magma intrusion has occurred in the MER lithosphere, focused under ~20 km-wide and ~60 km-long magmatic-tectonic segments (e.g., Bastow et al., 2011), where as much as half of the crustal volume may comprise new igneous material (Daniels et al., 2014; Maguire et al., 2006). The compositional and thermal effects of magma intrusion may modify the response of the Ethiopian crust to extension, controlling where and how strain is localized as rifting proceeds (e.g., Bastow & Keir, 2011; Lavecchia et al., 2016). Furthermore, degassing of intruded melts during and after emplacement contributes to the significant diffuse CO2 fluxes measured in the MER (Hunt et al., 2017).

In this study we use petrological methods to investigate the storage depths and compositional diversity of intruded basaltic magmas in the northern MER. Our constraints on magma intrusion conditions are derived from analysis of olivine-hosted silicate melt inclusions (MIs), which are small pockets of quenched magma trapped within growing crystals during crustal magma storage (e.g., Wallace et al., 2021). Unlike erupted lavas, MIs can preserve magmatic volatile contents (e.g., CO2, H2O etc., Wallace et al., 2021), allowing volatile saturation pressures, and therefore magmatic storage depths, to be determined (e.g., Ghiorsos & Gualda, 2015). Of particular importance is the volatile species CO2, which degases strongly with decreasing pressure in basaltic magmas (e.g., Dixon et al., 1995). Continental rifts, including the MER, are known to be significant sources of passively degassing magmatic CO2 (Foley & Fischer, 2017; Hunt et al., 2017; Lee et al., 2016). By considering the total CO2 in MIs, entrapped within both glass and bubble, we provide new well-constrained petrological estimates of basaltic intrusion pressures in the MER.

2. Materials and Methods

Our samples are scoriae from the Quaternary basaltic cone field located in the Gedemsa magmatic segment of the MER adjacent to the Boku Volcanic Complex (Figure 1; Tadesse et al., 2019; Nigussie, Alemu, et al., 2023). Littering the remnants of the collapsed ~500 ka Boku caldera, the later-stage ~200 ka basaltic cones and fissure flows are associated with seismic anomalies (e.g., Keranen et al., 2004), gravity anomalies (e.g., Nigussie et al., 2022; Nigussie, Mickus, et al., 2023), and rift-aligned faults characteristic of MER magmatic segments (e.g., Rooney et al., 2011). Quarries provide access into the interiors of cones, where fresh glassy basaltic scoria can be sampled.

Olivine crystals from two cones (Figure 1) were picked from disaggregated scoria, individually polished to 0.25 μm grade on glass slides to expose MIs, and mounted in epoxy resin. We have measured the compositions of 40 MIs (full methods in Supporting Information S1). 27 of these MIs contain CO2-rich vapor bubbles, which form from post-entrapment changes in pressure, volume and temperature (e.g., Maclennan, 2017; Moore et al., 2015). Bubbles can host a significant fraction of the MI CO2 budget (e.g., Hartley et al., 2014; Wieser et al., 2021). To estimate the total CO2 in MIs, essential for accurate barometry, 18 MIs were additionally assessed for bubble CO2 density using Raman spectroscopy. Our approach differs from previous studies considering MIs from the EARS in this regard, which have opted to either (a) experimentally rehomogenize the bubble (Head et al., 2011; Hudgins et al., 2015), (b) use CO2 equation of state methods (Rooney et al., 2022), or (c) select MIs without vapor bubbles wherever possible (Field, Barnie, et al., 2012; Field, Blundy, et al., 2012; A. Donovan et al., 2017; Iddon & Edmonds, 2020). Benefiting from recent developments in the calibration of the Raman method through the use of standard materials (e.g., Lamadriz et al., 2017; Wieser et al., 2021), the primary advantage of our approach is the direct measurement of bubble CO2 without making assumptions concerning post-emplacement processes or experimentally modifying MI glass compositions, which will introduce uncertainties that are difficult to assess and quantify (Rasmussen et al., 2020; Wieser et al., 2021). In addition, by selecting bubble-hosting MIs we avoid
biases towards magmatic conditions that favor bubble-free MIs, which may not be representative of crustal melt storage. By doing so, we provide robust estimates of total CO$_2$ in MIs, which can be used to determine crustal melt storage pressures.

After Raman spectroscopy, all MIs were analyzed for trace and volatile elements in the glass phase by secondary ion mass spectrometry, followed by electron probe microanalysis to assess major element compositions of MI glass, carrier melt, and host olivine crystals. MI compositions were corrected for post-entrapment crystallization (PEC) using Petrolog3 software (Danyushevsky & Plechov, 2011, see Supporting Information S1). The total CO$_2$ of MIs is calculated by mass balance using the CO$_2$ measured in the MI bubble and glass (e.g., Hartley et al., 2014). To complement the MI compositional data set, we have additionally assessed major and trace element whole-rock compositions of basalts collected from several scoria cones and fissure flows in the region using x-ray fluorescence and solution inductively coupled plasma mass spectrometry respectively. All standards and geochemical data are presented in Data Set S1.

3. Results

3.1. Magma Intrusion Depths in the Main Ethiopian Rift

Our key barometric and geochemical results are presented in Figures 2 and 3 (additional figures in Supporting Information S1). MIs are entrapped within olivine crystals of composition Fo$_{76-88}$, and there are no systematic differences in major, trace, or volatile element concentrations between MIs collected from the two cones in this study (Data Set S1). CO$_2$ concentrations range from 35 to 5,770 ppm in MI glass only; MIs with CO$_2$ measurements in both the glass and vapor bubble have total combined CO$_2$ contents of 1,895–3,248 ppm, with 15%–46% of the CO$_2$ residing within the bubble (Data Set S1). Where an unanalyzed shrinkage bubble is present, CO$_2$ contents are assumed to be minima and we estimate the plausible range of total CO$_2$ using our bubble CO$_2$ density measurements (see Supporting Information S1). H$_2$O concentrations display less variability: discounting the three MIs that have clearly degassed (containing ≤0.4 wt% H$_2$O), MIs have mean H$_2$O of 1.1 ± 0.2 wt% (Figure S6 in Supporting Information S1), which is comparable to H$_2$O concentrations obtained from other MER and EARS MIs (Iddon & Edmonds, 2020; Rooney et al., 2022).

Volatile saturation pressures of MIs are calculated using the fully thermodynamic MagmaSat volatile solubility model (Ghiorso & Gualda, 2015) via the Python library VESIlcal (Iacovino et al., 2021; Wieser et al., 2022). Other volatile solubility models are considered in Supporting Information S1. Entrapment pressures for MIs for which total CO$_2$ contents are known (vapor bubble and glass), determined at a magmatic temperature of 1,200°C (Iddon et al., 2019; Wong et al., 2022), vary over a relatively narrow range from 2.5 to 4.5 kbar (Figure 2a). In
the MER these pressures correspond to depths of ~10–15 km (assuming a constant upper-mid crustal density of 2.79 g cm⁻³; Cornwell et al., 2006), among the deepest recorded volatile saturation depths for continental rift magmas (Figures 2b–2d). Pressures recorded by MIs without bubbles overlap partially with those that do have analyzed bubbles; however, the average CO₂ concentration and therefore pressure of MIs without a bubble is typically lower than those with a bubble. Two MIs for which only inclusion glass CO₂ is known record higher pressures in excess of 5 kbar (~20 km), corresponding to the MER lower crust. Overall, our barometric results show a relatively limited distribution of magma storage depths with a narrowly focused zone of intrusion centered at ~12 km depth, coincident with the seismically imaged boundary between the upper and lower crust in the MER (Maguire et al., 2006), and in close agreement with MI volatile saturation pressures from the Turkana Depression south of the MER (Figure 2c; Rooney et al., 2022).

3.2. Melt Inclusion Trace Element Compositions

The major element compositions of MIs overlap with carrier basalt compositions and whole-rock compositions of erupted lavas (Data Set S1; Tadesse et al., 2019; Nicotra et al., 2021). Incompatible trace element concentrations vary considerably in both MIs and lavas, but nonetheless still overlap (Figures 3a and 3b). Greater primary compositional variability is preserved in MIs over whole rocks, for example, the ratios La/Yb and Dy/Yb (Figures 3c and 3d), which persists to lower MgO in MIs.

By comparing CO₂ concentrations with trace elements with similar behavior during mantle melting (e.g., Ba, Rb), CO₂ degassing from mantle melts can be assessed (e.g., Le Voyer et al., 2018). While primary magmatic CO₂
contents are not known for MER magmas, the highest observed CO₂/Ba and CO₂/Rb ratios approach the mantle values inferred from undegassed MORB and Icelandic lavas (Rosenthal et al., 2015; Hauri et al., 2017; Le Voyer et al., 2018). Assuming that initial CO₂-trace element ratios are somewhat similar to other mantle-derived melts, CO₂/Ba systematics for MER MIs clearly show evidence for significant degassing of CO₂ prior to entrapment, with ~50%–95% of initial CO₂ likely having been exsolved during ascent to mid-crustal pressures (Figure 3e).

4. Discussion

4.1. Depths of Intrusion in the East African Rift

Our total CO₂ saturation pressures determined from vapor bubble and glass are in broad agreement with maximum pressures of melt storage estimated from MI volatiles at other EARS sectors (see Figures 2b–2d). Applying the same volatile solubility modelling performed on our MIs to literature datasets, we determine that our proposed 10–15 km depth range for basalt storage coincides with the deepest MIs at other parts of the EARS and Afar Rift (Figure 2c; e.g., A. Donovan et al., 2017; Rooney et al., 2022). Geophysical observations of crustal melt movement suggests that melt focusing at these pressures may be ubiquitous within the Eastern Branch of the EARS in addition to the MER (Reiss et al., 2021, 2022; Weinstein et al., 2017).

The lack of evidence for significant melt storage within the upper crust in our data set contrasts with the depth distributions for magma storage obtained from suites of MIs collected at large caldera-forming volcanic centers found along the MER (Figure 2; Iddon & Edmonds, 2020). Under these silicic centers, melt storage appears to extend upwards into the upper crust, where evolved magmas are generated via low pressure fractionation (Iddon & Edmonds, 2020). Notably, the maximum storage depths under caldera complexes in the EARS identified both from MI volatile saturation barometry (Figure 2; Iddon & Edmonds, 2020; Rooney et al., 2022) and from mineral barometry (Iddon et al., 2019; Rooney et al., 2005) coincides with the 10–15 km depth range observed in our data set. This depth range may therefore be the locus of initial basaltic melt emplacement along the MER, with important implications for heat distribution within the rifting crust and therefore crustal strength profiles (Buck, 2006; Daniels et al., 2014; Lavecchia et al., 2016), such as the creation of a mid-crustal weak layer (Muluneh et al., 2020). With the exception of those below caldera complexes/silicic volcanoes (e.g., Biggs...
et al., 2011), upper crustal melt bodies (<10 km depth) in the MER are likely to be ephemeral, perhaps forming during periodic intrusive-eruptive episodes (e.g., Ebinger et al., 2013).

In contrast to the extensive MI data corresponding to mid-crustal pressures, very few MIs from our data set and the MER data set of Iddon and Edmonds (2020) record pressures corresponding to the lower crust or Moho (Figure 2; e.g., Maguire et al., 2006; Lavayssière et al., 2018). Considering the evolved compositions of our olivines (mean Fo80) relative to Fo90 olivines in other MER volcanic materials (e.g., Rooney et al., 2005), we posit that an initial stage of fractionation near the Moho prior to ascent to mid-crustal pressures is necessary. This hypothesis is supported by low wavespeeds observed at Moho depths from the presence of melt in the heavily intruded lower crust (Chambers et al., 2019; Keranen et al., 2009), and numerical models suggesting that the lowermost crust is weak, hot and underlies a lower-crustal brittle-ductile transition at 20–25 km (Lavecchia et al., 2016; Muluneh et al., 2020). Melts pooling and fractionating at the base of the crust may bypass the ductile lowermost crust entirely if both density differences between melt and crust and lower crustal strain rates are sufficiently high (Muluneh et al., 2021).

Deep CO₂ degassing in the MER, likely derived from degassing of magmas as they ascend towards the weak mid-crust, is focused along discrete fault zones (Hunt et al., 2017; Raggiunti et al., 2023). By making assumptions on the volumes of melt intruded into the crust (e.g., Iddon & Edmonds, 2020), we determine that the difference between expected CO₂ concentrations in primary mantle melts and those recorded in MIs is sufficient to generate the CO₂ fluxes measured from surface degassing (Figure 3e Hunt et al., 2017, see Supporting Information S1). The restriction of significant degassing to localized regions in the MER (Hunt et al., 2017) may suggest that some regions are subject to active intrusion at the present day whereas other portions are not. Future studies should aim to constrain this periodicity of melt emplacement.

4.2. Compositional Heterogeneity in Melt Inclusions

Variability in absolute trace element concentrations (Figures 3a and 3b) could result from fractional crystallization of distinct parental melts and/or mixing between variably fractionated melts with distinct origins. In contrast, the broader distribution of trace element ratios observed in MIs relative to whole rocks (Figures 3c and 3d) can only be inherited from the compositional heterogeneity of parental mantle-derived melts. Such variability, derived from the melting of multiple source lithologies (e.g., Shorttle & Maclennan, 2011) and/or unmixing fractional mantle melts (e.g., Gurenko & Chaussidon, 1995), is preserved at lower MgO contents.

Physical interactions between intrusive bodies therefore appear to be restricted, and we infer that intruded magmas reside in a series of discrete bodies emplaced over a relatively narrow depth range. The slightly lower degree of compositional diversity observed in erupted lavas (Figures 3c and 3d), even at higher MgO, suggests that some mixing does occur prior to eruption and that dyke intrusion into the upper crust may involve partially homogenized melts sourced from multiple mid-crustal sills. Erupted melts extend to lower MgO than the MIs (after PEC corrections), and pre-eruptive mixing and homogenization therefore likely occurs during a final stage of differentiation within upper crustal magma bodies.

4.3. Basaltic Melt Focusing in the Main Ethiopian Rift

The barometric and compositional data from our MIs suggest that intrusion in the MER crust is characterized by emplacement of multiple discrete magma bodies over a relatively narrow depth range coincident with the seismically identified upper-lower crustal boundary. Although our results do not directly constrain the geometry of intrusive bodies, we suggest, based on the narrow range of MI entrapment depths, that these are likely mid-crustal sill complexes. This model is supported by geophysical observations of the MER crust. Strong horizontally oriented seismic anisotropy observed in the MER at depths of 5–15 km is consistent with the presence of sills (Bastow et al., 2010; Chambers et al., 2021; Kendall et al., 2006). Low seismic moment earthquakes in northern MER magmatic segments are distributed within a narrow depth band between 8 and 16 km and have been interpreted as being triggered by movement or emplacement of mid-crustal melts (Daly et al., 2008; Keir et al., 2006). High-Vp, high-Vp/Vs and high-density bodies are inferred to be present at these depths below Ubo and other MER segments (Cornwell et al., 2006; Daly et al., 2008; Keranen et al., 2004; Nigussie et al., 2022), as are high-conductivity crustal anomalies (Whaler & Hautot, 2006), all indicative of partially molten mid-crustal intrusions. Our results are also in good agreement with empirical observations relating MER cone clustering to
intrusion depths (Mazzarini et al., 2013). To summarize, the melt storage depths resolved directly using petrological methods concur closely with the deepest intrusion pressures determined using geophysical techniques.

Focusing of ascending basaltic melts at this depth range can, to a first order, be attributed to MER crustal density structure, as the mean density of the lower crust exceeds that of our MIs (mean of 2.708 g cm$^{-3}$, calculated after PEC corrections using DensityX, Iacovino and Till (2019); cf. e.g., Cornwell et al. (2006)). Driven by density differences, basaltic melts will rise to mid-crustal depths before they achieve neutral buoyancy, stall and crystallize. The upper crust, comparatively less dense than the lower crust, will limit the ascent of basalt melts beyond the focusing zone (Cornwell et al., 2006; Mickus et al., 2007).

Melt focusing in the mid-crust could also be attributed to the rheological structure of the crust. Numerical models based on seismic observations suggest that the 10–15 km depth range resolved using our MIs coincides with the weakest part of the Ethiopian crust, which is sandwiched between two strong brittle layers in the upper and mid-lower crust (Muluneh et al., 2020). The strong, lower-density brittle crust above this ductile zone, combined with the density limitations discussed above, likely inhibits further ascent of the buoyant melt (Cornwell et al., 2006; Muluneh et al., 2020). Melt may only progress directly to the surface through the breaking of dyke-induced faults (e.g., Casey et al., 2006), by exploiting pre-existing crustal weaknesses (e.g., Le Corvec et al., 2013), or after extensive fractionation to form lower-density silicic melts (e.g., Gleeson et al., 2017).

We therefore hypothesize that the intrusion and emplacement of melts into this weak, ductile mid-crust will have a strong effect on the overall rheology of the rifting crust, which in turn may govern how the crust locally accommodates strain in response to far-field extensional stresses. Ductile stretching may accommodate crustal deformation at a different rate or manner relative to the brittle layers above and below this weak zone, in turn possibly dictating that future batches of melt are focused in the same region. Indeed, the development of crustal sill systems in the MER may arise from pulsed emplacement of magmas from the lower crust or mantle (e.g., Annen et al., 2015). Stacked sills formed in this manner may maintain high localized temperatures in the crust, which can facilitate further intrusion of melt at shallower pressures, or may themselves contract during cooling to generate accommodation space for further intrusions (Magee et al., 2016). Future numerical or analog models of rift deformation in Ethiopia must account for the development of a hot, ductile, weak layer in the crust, and the influences such a layer may have on overall crustal rheology.

5. Summary

The results of our study are summarized in Figure 4. Through the careful analysis of major, trace, and volatile elements in olivine-hosted MIs, we propose that stacked mid-crustal sills in the depth range of 10–15 km are the dominant form of magmatic storage in the MER (Figures 4a and 4b). Intrusions are known to be discrete...
and horizontally oriented from trace element variability (Figure 3) and seismic anisotropy respectively (e.g., Chambers et al., 2021), and develop as a consequence of repeated magma intrusion into the mid-crust during the progression of late-stage continental rifting. Initially crystallizing at or near the Moho, mantle-derived magmas bypass the ductile lowermost crust to arrive at the Ethiopian mid-crust, heralded by seismic activity during emplacement (Figure 4c). These melts, stored as discrete sills in the weak, ductile mid-crust, are blocked from further ascent by a strong, lower density upper crust (Figure 4d). The diverse range of trace element ratios observed in MIs gives evidence to limited melt mixing in the crust; partial mixing of magmas between sills may occur in the shallow crust prior to eruption (Figure 3). Petrological evidence for mid-crustal sills in the MER presented in this study is in agreement with geophysical observations (e.g., Keranen et al., 2004), and the volatile composition of basalts comprising these bodies are consistent with CO2 degassing rates measured at the rift floor (Hunt et al., 2017). The presence of hot sills in the MER mid-crust has important implications for how intruding melts in late-stage rifts affect and are affected by the rheological structure of the crust, and should be considered a key element in future development of continental rifting models.

Data Availability Statement

The complete data set of geochemical analyses and melt inclusion microscope photographs is available within Zenodo repository (https://doi.org/10.5281/zenodo.7930488).

References

References From The Supporting Information

WONG ET AL.
10 of 11