Pyxel 1.0: an open source Python framework for detector and end-to-end instrument simulation

Arko, Matej; Prod’homme, Thibaut; Lemmel, Frédéric; Serra, Benoit; George, Elizabeth; Kelman, Bradley; Pichon, Thibault; Biancalani, Enrico and Gilbert, James (2022). Pyxel 1.0: an open source Python framework for detector and end-to-end instrument simulation. Journal of Astronomical Telescopes, Instruments, and Systems, 8(04), article no. 048002.



Detector modeling is becoming more and more critical for the development of new instruments in scientific space missions and ground-based experiments. Modeling tools are often developed from scratch by each individual project and not necessarily shared for reuse by a wider community. To foster knowledge transfer, reusability, and reliability in the instrumentation community, we developed Pyxel, a framework for the simulation of scientific detectors and instruments. Pyxel is an open-source and collaborative project, based on Python, developed as an easy-to-use tool that can host and pipeline any kind of detector effect model. Recently, Pyxel has achieved a new milestone: the public release and launch of version 1.0, which simplified third-party contributions and improved ease of use even further. Since its launch, Pyxel has been experiencing a growing user community and is being used to simulate a variety of detectors. We give a tour of Pyxel’s version 1.0 changes and new features, including a new interface, parallel computing, and new detectors and models. We continue with an example of using Pyxel as a tool for model optimization and calibration. Finally, we describe an example of how Pyxel and its features can be used to develop a full-scale end-to-end instrument simulator.

Viewing alternatives

Download history


Public Attention

Altmetrics from Altmetric

Number of Citations

Citations from Dimensions

Item Actions