Classification of the Central Effects of Transcutaneous Electroacupuncture Stimulation (TEAS) at Different Frequencies: A Deep Learning Approach Using Wavelet Packet Decomposition with an Entropy Estimator

Uyulan, Çağlar; Mayor, David; Steffert, Tony; Watson, Tim and Banks, Duncan (2023). Classification of the Central Effects of Transcutaneous Electroacupuncture Stimulation (TEAS) at Different Frequencies: A Deep Learning Approach Using Wavelet Packet Decomposition with an Entropy Estimator. Applied Sciences, 13(4), article no. 2703.

DOI: https://doi.org/10.3390/app13042703

Abstract

The field of signal processing using machine and deep learning algorithms has undergone significant growth in the last few years, with a wide scope of practical applications for electroencephalography (EEG). Transcutaneous electroacupuncture stimulation (TEAS) is a well-established variant of the traditional method of acupuncture that is also receiving increasing research attention. This paper presents the results of using deep learning algorithms on EEG data to investigate the effects on the brain of different frequencies of TEAS when applied to the hands in 66 participants, before, during and immediately after 20 min of stimulation. Wavelet packet decomposition (WPD) and a hybrid Convolutional Neural Network Long Short-Term Memory (CNN-LSTM) model were used to examine the central effects of this peripheral stimulation. The classification results were analysed using confusion matrices, with kappa as a metric. Contrary to expectation, the greatest differences in EEG from baseline occurred during TEAS at 80 pulses per second (pps) or in the ‘sham’ (160 pps, zero amplitude), while the smallest differences occurred during 2.5 or 10 pps stimulation (mean kappa 0.414). The mean and CV for kappa were considerably higher for the CNN-LSTM than for the Multilayer Perceptron Neural Network (MLP-NN) model. As far as we are aware, from the published literature, no prior artificial intelligence (AI) research appears to have been conducted into the effects on EEG of different frequencies of electroacupuncture-type stimulation (whether EA or TEAS). This ground-breaking study thus offers a significant contribution to the literature. However, as with all (unsupervised) DL methods, a particular challenge is that the results are not easy to interpret, due to the complexity of the algorithms and the lack of a clear understanding of the underlying mechanisms. There is therefore scope for further research that explores the effects of the frequency of TEAS on EEG using AI methods, with the most obvious place to start being a hybrid CNN-LSTM model. This would allow for better extraction of information to understand the central effects of peripheral stimulation.

Viewing alternatives

Download history

Metrics

Public Attention

Altmetrics from Altmetric

Number of Citations

Citations from Dimensions

Item Actions

Export

About