Lithosphere tearing and foundering during continental subduction: insights from Oligocene-Miocene magmatism in southern Tibet

Fabin Pan1*, Hongfei Zhang1*, Xiaobo He2*, Nigel Harris3, Hong-Kun Dai1, Qing Xiong1, Biji Luo1, Dong Liu4, Timothy Kusky1, Izhar Sadiq1

1 State Key Laboratory of Geological Processes and Mineral Resources, and School of Earth Science, China University of Geosciences, Wuhan 430074, P.R. China
2 College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, P.R. China
3 School of Environment, Earth and Ecosystem Sciences, The Open University, Milton Keynes, MK7 6AA, UK
4 State Key Laboratory of Geological Processes and Mineral Resources, and School of Earth Science and Resources, China University of Geosciences, Beijing 100083, China

* Corresponding author. e-mail: panfabin@cug.edu.cn, hfzhang@cug.edu.cn, xiaobo.he@zjou.edu.cn, phone number: +86 27 67885096, Fax: +86 27 67885096
The distribution of Oligo-Miocene magmatic rocks from southern Tibet in space and time yields critical information on the geometry and deformation of the subducted Indian lithosphere which impacts on plateau growth following the India and Eurasia collision. A growing body of geophysical evidence has shown that the subducted Indian lithosphere beneath the Tibetan Plateau has been torn apart. However, the spatiotemporal distribution and cause of the tearing remain enigmatic. Timing of the post-collisional magmatic rocks in southern Tibet exhibits four patterns of decreasing ages; magmatism began earlier in the west and east Himalayan syntaxis and evolved to two age undulations in the central southern Tibet. Seismic images show that regions of slab window (90°E and 84°E) and flattened subducted lithosphere (86°E and 81°E) are present at depth of 135 km. Correspondingly, increasing mineral crystallization temperatures (absolute value of 50 °C) were recorded in the Oligo-Miocene ultrapotassic-potassic rocks from 90°E and 84°E, while opposing trends were shown by coeval ultrapotassic-potassic rocks from 86°E and 81°E. Besides, the melting depth of the Oligo-Miocene ultrapotassic-potassic primitive melts decreases from nearly 100 km to 70 km between 81°E and 90°E, probably indicating progressive rising of the lithosphere-asthenosphere boundary. Such variations were possibly the results of the focused flow and upwelling of asthenosphere, which advanced rapidly but diachronously through weakened and torn sectors within the overlying Indian slab. The upwellings probably induced diachronously upward bending of the residual Indian slab and its flattening, which accelerated the tearing of the Indian lithosphere during continental subduction.

Keywords: Post-collisional magmatism; Lateral age variations; Magma temperature; Slab tearing; Tibetan Plateau
INTRODUCTION

Widespread discovery of ultrahigh pressure rocks worldwide indicates that continental crust with positive buoyancy can be subducted to mantle depths (Gilotti, 2013; Lanari et al., 2013; Ye et al., 2000). Cenozoic continental subduction along the Alpine belt and the Himalayan belt is observed seismically (Gao et al., 2016; Kosarev et al., 1999; Shi et al., 2020; Zhao et al., 2015). However, the interplay between the downgoing continental slab and upwelling asthenosphere from below the slab is still enigmatic. Cenozoic collision between the Indian and Eurasian continents led to thickening and uplift of the Tibetan crust since about 55 Ma (Chung et al., 2005; Coulon et al., 1986; Molnar et al., 1993; Zhu et al., 2018), which offers a classic example of geodynamic processes during continental subduction, and a testing ground for deeper understanding of collisional processes.

Mantle seismic tomography on the geometry of the underthrusting Indian lithosphere is critical in deciphering the intrinsic relations between the continental collision and the rising plateau. The front of the subducted Indian lithosphere (SIL) has been suggested to extend as far as the Bangong–Nujiang suture in central Tibet (Kosarev et al., 1999; Tilmann et al., 2003). The downgoing Indian lithosphere was recently proposed to be fragmented by tearing at varying dip angles (Chen et al., 2015; Li and Song, 2018; Liang et al., 2016; Liu et al., 2020). Other studies suggest that a large portion of the Indian crust may either return to the surface via crustal-scale duplexing (Gao et al., 2016) and/or sink into the deep mantle (Shi et al., 2020) rather than underplate the base of the Asian lithosphere. Overall, geodynamic processes and their contributions to the Cenozoic deformation of the Tibetan Plateau remain the subject of much debate.
Fragmentation of the downgoing Indian lithosphere would permit or induce asthenospheric upwelling (Liang et al., 2016, Wang et al., 2022), resulting in partial melting of the overriding lithosphere. Asthenospheric materials filling the newly formed gap might cause decreasing melting depth and increasing magma temperature. Thus, the post-collisional (~30–10 Ma) magmatism in southern Tibet provides potential proxies for recording the tearing processes of the Indian lithosphere as well as deciphering the driving force(s) for Cenozoic tectonism in the Tibetan Plateau. In this paper, we carry out an integrated study comprising zircon U-Pb dating and mineral chemistry from eight ultrapotassic-potassic rocks in the central part of the Lhasa terrane and fourteen felsic dykes in both the west Himalayan syntaxis (WHS) and the east Himalayan syntaxis (EHS) (Table A1 and Fig. 1). Together with the published age results (212 dated samples) of the post-collisional magmatic rocks in southern Tibet, our aims are: (1) to establish a detailed age spectrum from WHS and EHS towards the central region of the Lhasa terrane as well as to determine magma crystallization temperature variations in southern Tibet, and (2) to discuss the possible geodynamic coupling between tearing of the Indian lithosphere and upwelling deeper asthenosphere during continental collision.

GEOLOGICAL SETTING AND SAMPLES

The “Trans-Himalayan Batholith”, which crops out north of the Indus-Yarlung Suture in southern Tibet, is dominantly composed of the Mesozoic-Cenozoic plutonic complex in the Kohistan and Ladakh island arc west of 80°E and the Lhasa terrane east of 80°E (Searle et al., 1987). The late Cretaceous to Eocene (120-40 Ma) continental arc magmatic rocks in the Trans-Himalayan Batholith directly recorded subduction of the Neo-Tethyan Ocean slab before 55
Ma and then initiation of the following India-Asia collision (e.g. Chung et al., 2005; Zhu et al., 2018). Both the WHS and EHS mark the western and eastern extremities of the Himalayan orogen in southern Tibet, and are mapped as northward loops of the Indus-Yarlung Suture, indicating giant “pop-up” structures with Indian Precambrian basement core and the Trans-Himalayan Batholith margin (Figs. 1a and 2a-b).

The post-collisional magmatic rocks in southern Tibet comprise ultrapotassic-potassic volcanics, mainly in the central and western parts of the Lhasa terrane (Fig. 1a), and calc-alkaline intrusions that are widespread but of small volume in the Trans-Himalayan Batholith. The distribution of these magmatic rocks is sometimes controlled by the N-S trending normal fault systems in southern Tibet (Figs. 1a and 2c-d). The ultrapotassic and low-silica potassic volcanics are commonly considered to be derived from the metasomatized lithospheric mantle beneath Tibet (Guo et al., 2015; Guo and Wilson, 2019; Hao et al., 2022; Mahéo et al., 2002; Miller et al., 1999; Nomade et al., 2004; Sun et al., 2018; Turner et al., 1996; Williams et al., 2004; Zhao et al., 2009), while the calc-alkaline intrusions have been suggested to be dominantly derived from the lower crust of the southern Lhasa terrane (Chung et al., 2003; Hao et al., 2021; Hou et al., 2004; Pan et al., 2012; Sun et al., 2018).

Detailed individual sample description is shown in Table A1. The potassic-ultrapotassic rocks in this study contain phonotephrite-trachyandesite and phonotephrite-trachyandesitic dykes with porphyritic textures (Figs. 3a-3k). Phenocrysts (20-45%) for the phonotephrite-trachyandesite include clinopyroxene, phlogopite, olivine, and sanidine and the groundmass includes clinopyroxene, phlogopite, olivine, sanidine, apatite, Fe-Ti oxides, zircon, and glass. The phonotephrite-trachyandesitic dykes intruding the Pagu pluton mainly contain clinopyroxene
(10-20%), phlogopite (5-10%), hornblende (20-25%), sanidine (35-45%), orthopyroxene (<3%),
and olivine (<3%), with accessory minerals of zircon, apatite, and Fe-Ti oxides. Based on the
variable clinopyroxene (Cpx) textures, they can be divided into two types: (1) type I Cpx
commonly form crystal aggregations and show pervasive resorption textures (Figs. 3a-b, 3e, and
3g); (2) type II Cpx are commonly euhedral crystals and show zoning textures sometimes (Figs. 3c,
3f, and 3h-k). The calc-alkaline intrusions collected from the WHS and EHS are fine-grained
(0.5-2 mm) two-mica granites (Figs. 3l-3n). They are mainly composed of quartz (25-35%),
plagioclase (25-40%), K-feldspar (15-35%), biotite (1-15%) and muscovite (1-8%), with
accessory minerals of zircon, titanite, epidote, garnet, apatite and Ti-Fe oxides.

ANALYTICAL METHODS

Whole-rock samples were analyzed for major elements, using a Shimadzu sequential X-ray
fluorescence spectrometer (XRF–1800) at the State Key Laboratory of Geological Processes and
Mineral Resources (GPMR), China University of Geosciences, Wuhan. Loss on ignition (LOI)
was determined by weight loss after drying at 1000 °C. The results obtained from Chinese national
standards and repeated samples show analytical uncertainties of the XRF data of ~1 % for element
contents >10 wt% and ~5 % for element contents < 1.0 wt%. More details about the analytical
procedures were described in Ma et al. (2012). The analytical uncertainty is generally <5%. Trace
elements, including REE, were measured using Agilent 7500a ICP–MS at GPMR. Zhang et al.
(2017) showed detailed sample-digesting procedure for ICP–MS analysis and analytical precision
and accuracy.

Major element compositions of minerals were determined at GPMR, with a JEOL JXA-8230
Electron Probe Micro Analyzer (EPMA) equipped with five wavelength-dispersive spectrometers (WDS). The samples were firstly coated with a thin conductive carbon film prior to analysis. During the analysis, an accelerating voltage of 15 kV, a beam current of 10 nA and a 2-5 µm spot size were used to analyze minerals. Data were corrected on-line using a ZAF (atomic number, absorption, fluorescence) correction procedure. The peak counting time was 10 s for Na, Mg, Al, Si, K, Ca, Fe, P, Cr and 20 s for Mn, Ti. The background counting time was one-half of the peak counting time on the high- and low-energy background positions. The following standards were used: Jadeite (Na), Olivine (Si), Pyrope Garnet (Al), Diopside (Ca, Mg), Sanidine (K), Rutile (Ti), Almandine Garnet (Fe), Rhodonite (Mn), Apatite (P), Chromium Oxide (Cr).

U–Pb zircon dating was conducted by LA–ICP–MS at GPMR. Zircon 91500 was used as external standard for U–Pb dating, and was repeatedly analyzed every 5 analyses. Time-dependent drifts of U–Th–Pb isotopic ratios were corrected using a linear interpolation (with time) for every five analyses according to the variations of 91500 (i.e., 2 zircon 91500 + 5 samples + 2 zircon 91500) (Liu et al., 2010). Preferred U–Th–Pb isotopic ratios used for zircon 91500 are from Wiedenbeck et al. (Wiedenbeck et al., 1995). The uncertainties of preferred values for the external standard 91500 were propagated to the combined errors of the samples. Concordia diagrams and weighted mean calculations were made using Isoplot/Ex_ver3 (Ludwig, 2003). Trace elements of the external standard 91500 are present in the Appendix Table 4, and their mean values are roughly comparable with the published data (Liu et al., 2010).

RESULTS

Major and trace elements
The calc-alkaline intrusions from the WHS and EHS are weakly peraluminous (A/CNK=1.00–1.08) and contain high SiO₂ (71.72–75.16 wt.%) and Al₂O₃ (14.03–15.28 wt.%) and variable K₂O (1.95–7.72 wt.%) with K₂O/Na₂O of 0.4–2.9. They are relatively enriched in Rb, Ba, Th, and U and show strongly variable total REE contents (5.2–110.6 ppm) and fractionated REE patterns [(La/Yb)_N=3–65].

The ultrapotassic-potassic rocks have a wide range of SiO₂ contents (48.4–63.2 wt.%), and high MgO (>3 wt.%, except sample YBJ15) and K₂O (5.0–8.6 wt.%) contents with high K₂O/Na₂O ratios of 1.4–4.4 (Fig. 4). They contain low TiO₂ (0.75–1.47 wt.%) and CaO (3.19–7.86 wt.%) contents and high Cr (423–48 ppm) and Ni (284–24 ppm) content. They showed comparable enrichment of Rb, Ba, Th, and LREE values and negative HFSEs (e.g. Nb, Ta, P and Ti) anomalies in the trace element spider diagram (Fig. 5a). In the chondrite-normalized REE pattern, these mafic intrusions displayed fractionated REE patterns with (La/Yb)_N ratios of 44–73 and no obvious Eu anomalies (Eu/Eu*= 0.63–0.93) (Table A1 and Fig. 5b).

U–Pb zircon geochronology

Zircons from the studied two-mica granites in the WHS and EHS are commonly euhedral, with variable crystal lengths of 50–400 μm and aspect ratios of 1:1–6:1 (Fig. 6). In CL images, they commonly show dark color and clear oscillatory zoning or patchy zoning (Fig. 6). A few zircons showing light color could be inherited or captured zircons (Figs. 6c and 6e). Zircons from the potassic-ultrapotassic rocks are euhedral to subhedral, with crystal lengths of 50 to 100 μm and aspect ratios of 1:1–3:1. Two types of zircons are recognized based on CL imaging (Figs. 6j-6q). Zircons in samples YLS03, PG09, and YBJ15 show clear broad oscillatory zoning and sector
zoning, while zircons in the other four samples show clear oscillatory zoning. The U–Pb zircon age data are given in Table A2.

Twelve analyses from sample HH-29 yield 206Pb/238U ages between 32.0±0.5 Ma and 34.3±0.7 Ma, with a weighted mean of 32.7±0.5 Ma (MSWD=3.0) (Fig. 7a). Thirteen analyses from HH-30 yield 206Pb/238U ages between 21.8±0.3 Ma and 22.9±0.2 Ma, with a weighted mean of 22.4±0.2 Ma (MSWD=2.3) (Fig. 7b). Eleven analyses from sample HH-31 give 206Pb/238U ages ranging from 29.5±0.6 Ma to 32.7±0.8 Ma, with a weighted mean of 31.6±0.5 Ma (MSWD=4.0) (Fig. 7c). Fifteen analyses from sample HH-33 yield 206Pb/238U ages between 30.1±0.3 Ma and 32.1±0.6 Ma, with a weighted mean of 31.0±0.4 Ma (MSWD=3.6) (Fig. 7d). For sample HH-35, seven U–Pb isotopic analyses on zircon crystals give 206Pb/238U ages varied from 21.4±0.3 Ma to 22.0±0.3 Ma, with a weighted mean of 21.5±0.2 Ma (MSWD=0.7) (Fig. 7e). Fourteen analyses from sample HH-36 yield 206Pb/238U ages ranging from 29.9±0.6 Ma to 33.5±0.7 Ma, with a weighted mean of 32.0±0.6 Ma (MSWD=4.8) (Fig. 7f). Twelve analyses from HH-37 yield 206Pb/238U ages ranging from 27.4±0.2 Ma to 29.3±0.3 Ma, with a weighted mean of 28.2±0.4 Ma (MSWD=4.4) (Fig. 7g). Twelve analyses from T974 yield 206Pb/238U ages ranging from 29.0±0.5 Ma to 30.5±0.8 Ma, with a weighted mean of 29.7±0.4 Ma (MSWD=4.4) (Fig. 7h).

Twelve analyses from sample YLS03 yield 206Pb/238U ages between 12.7±0.5 Ma and 14.3±0.6 Ma, with a weighted mean of 13.8±0.2 Ma (MSWD=0.9) (Fig. 7j). Eleven analyses from 19CZ08 yield 206Pb/238U ages between 10.9±0.2 Ma and 11.8±0.3 Ma, with a weighted mean of 11.2±0.2 Ma (MSWD=1.1) (Fig. 7k). Twelve analyses from sample 19CZ37 give 206Pb/238U ages ranging from 10.9±0.63 Ma to 11.7±0.3 Ma, with a weighted mean of 11.3±0.1 Ma (MSWD=1.1) (Fig. 7l). Eleven analyses from sample 19CZ53 yield 206Pb/238U ages between 11.0±0.2 Ma and
12.1±0.3 Ma, with a weighted mean of 11.4±0.1 Ma (MSWD=1.0) (Fig. 7m). For sample YBJ15, twelve U–Pb isotopic analyses on zircon crystals give $^{206}\text{Pb}^{238}\text{U}$ age intercepted at 10.2±0.6 Ma (MSWD=2.1) (Fig. 7n). Twelve analyses from sample PG02 yield $^{206}\text{Pb}^{238}\text{U}$ ages between 14.0±0.4 Ma and 15.8±0.4 Ma, with a weighted mean of 15.0±0.4 Ma (MSWD=2.6) (Fig. 7o). Twelve analyses from PG04 yield $^{206}\text{Pb}^{238}\text{U}$ ages ranging from 14.1±0.4 Ma to 15.4±0.4 Ma, with a weighted mean of 14.6±0.3 Ma (MSWD=1.8) (Fig. 7p). Ten analyses from PG09 yield $^{206}\text{Pb}^{238}\text{U}$ age intercepted at 10.7±0.4 Ma (MSWD=3.0) (Fig. 7q).

Mineral composition

Clinopyroxenes in the ultrapotassic-potassic rocks from both Chazi (86°E) and Pagu-Yangying (90°E) are composed of diopside and augite. They have high MgO and FeO contents with Mg# of 92-63 (Table A3 and Fig. 8). The augite grains have higher Al$_2$O$_3$ and TiO$_2$ contents, and similar Na$_2$O, compared to those of the diopside grains for both the Chazi (86°E) and Pagu-Yangying (90°E) ultrapotassic-potassic rocks. A few augite grains from sample PG04 contain slightly higher Cr$_2$O$_3$ contents than other clinopyroxene grains. The variable Mg# values of clinopyroxene in these samples indicate that they have experienced magmatic evolution with varying degrees.

The temperature and pressure conditions of these evolved magmas are estimated from multiple geobarometers and thermometers (Ferry and Watson, 2007; Neave and Putirka, 2017; Putirka, 2008), which are listed in Table A3 and Table A4. The estimated Cpx temperature data are tested for equilibrium conditions using three criteria: (1) the estimated Fe-Mg exchange coefficient is 0.27±0.03 (Table A3); (2) the predicted and observed Cpx components are roughly comparable
The substitution of Ti in zircon is primarily for Si (Ferry and Watson, 2007). Thus, the Ti-in-zircon thermometer depends on the activity of SiO$_2$ (a_{SiO2}) and TiO$_2$ (a_{TiO2}). According to their SiO$_2$ and TiO$_2$ contents, a_{SiO2} and a_{TiO2} are 1 and 0.7 for the granitoids from the WHS and EHS and 0.7 and 0.9 for the ultrapotassic-potassic rocks (except YBJ15), respectively. a_{SiO2} and a_{TiO2} are 0.9 and 0.7 for YBJ15 for its relatively higher SiO$_2$ and lower TiO$_2$ contents (Table A1). Ti-in-zircon thermometry indicates that most magmatic zircons from the WHS and EHS crystallized in the range 600-750 °C (Table A4), while zircons from the central Lhasa terrane (85°E to 90°E) show higher crystallization temperatures (700-900 °C, Table A4). These estimated temperatures are coincident with formation of the WHS and EHS zircons and the central Lhasa terrane zircons in silicic magmas and mafic-intermediate magmas, respectively.

DISCUSSION

Spatiotemporal variations of post-collisional magmatism in southern Tibet

The U-Pb zircon age data show that the magma crystallization ages of the two-mica granite and ultrapotassic-potassic rocks in this study lie in the ranges 33-22 Ma and 15-10 Ma (Table A1), respectively. In order to depict an integrated spatial-temporal evolution of the post-collisional magmatism in southern Tibet, we summarize 107 samples from the Oligocene-Miocene potassic-ultrapotassic rocks and 105 samples from coeval calc-alkaline magmatic rocks published in this region (Table A5 and Fig. 1b). Our age data, together with the age data in the literature,
show roughly three decreasing age variations from 75°E to 90°E (from 33 to 19 Ma for 74°E-79°E, from 26 to 15 Ma for 80°E-85°E, and from 23 to 18 Ma for 85°E-90°E, respectively) and one decreasing age variation from 30 to 20 Ma for 95°E to 90°E (Fig. 1b).

Our former geochronological results of the post-collisional calc-alkaline rocks in the east Himalayan syntaxis formed between 30 and 21 Ma and exhibited a decreasing age variation from east to west in the eastern part of the Lhasa terrane (Pan et al., 2012). The two-mica granite samples in the west Himalayan syntaxis exhibit comparable formation ages (33-22 Ma). Some existing Oligocene outliers do not follow the decreasing trends described above. These intrusions are characterized by small volumes and 5-15 Myr earlier than the dominant magmatism flares along the neighboring longitude, which might be locally formed by the hysteresis response to the break-off of the Neo-Tethyan oceanic slab.

Melting depth variations of the ultrapotassic-potassic rocks

The ultrapotassic rocks in southern Tibet are considered to be primarily derived from a metasomatized mantle source and then contaminated by ancient crustal materials (Guo et al., 2015; Miller et al., 1999; Williams et al., 2004; Zhao et al., 2009). All the analyzed ultrapotassic-potassic rocks except sample YBJ15 have high MgO (3.16-9.18 wt.%) and K₂O (5.01-8.63 wt.%) contents with K₂O/Na₂O ratios of 1.43-4.35, high Cr (76.5-423 ppm) and Ni (57.1-284 ppm) (Table A1). They show comparable geochemical compositions with these ultrapotassic magmas (Figs. 4 and 5). These features imply that these rocks are mantle-derived. Sample YBJ15 exhibits consistent trace-element composition patterns with other ultrapotassic-potassic rocks in this study (Fig. 5), suggesting that it is also mantle-derived.
Mantle-derived melts were commonly originated from partial melting of peridotite (Walter, 1998), which is the dominant component in the upper mantle (Green and Ringwood, 1967). However, silica-deficient alkali melts, generally containing higher SiO₂ and Ni contents and lower MgO and CaO contents than those of peridotite-derived melts (Herzberg, 2011), were increasingly attributed to partial melting of pyroxenite source (Dasgupta et al., 2010; Lambart et al., 2013). The ultrapotassic magmas in southern Tibet show high SiO₂ and Ni concentrations and relatively low MgO and CaO contents, which indicate derivation from partial melting of pyroxenitic mantle source (Guo et al., 2015). Our samples show comparable geochemical compositions with these ultrapotassic magmas (Figs. 4 and 5), implying that they were also originated from the pyroxenite source.

The melting pressure of pyroxenite-derived primary melts can be constrained by the reverse model (Herzberg, 2011). High-Mg (>7 wt.%) ultrapotassic rocks are relatively rare, and nearly 100 samples have been published in the study area. Energy-constrained assimilation and fractional crystallization (EC-AFC) modeling showed that crustal assimilation would be limited (<7% for mafic magma with temperature as high as 1300 °C) for such magmas during their emplacement (Dai et al., 2021). Thirteen ultrapotassic samples (including two samples in this study) are collected to calculate their melting depth (Table A6). These samples have MgO content of more than 8 wt.% and LOI of less than 1.5 wt.%, which exhibit whole-rock geochemical characteristics dominated by fractionation of olivine with insignificant crustal assimilation. For assumptions of depth calculations, see the caption of Figure 9. The estimated pressures, ranging from 3.28 to 2.22 GPa, show that the melting depth is progressively decreasing from west (100 km in Bongba) to east (70 km in Pagu), and two melting pressure undulations (18-16 Ma for the Sailipu and Zabuye...
samples and 11 Ma for the Pagu sample) are present in the low-velocity zones (Fig. 9).

Temperature variations of the ultrapotassic-potassic rocks

As the studied ultrapotassic-potassic rocks were originally derived from the metasomatized mantle, mantle melting temperature variations could probably be recorded by some minerals which crystallized during magma ascent. Temperatures calculated using Cpx Jd-DiHd exchange thermometer show decreasing variations associated with decreasing Cpx Mg# values (Figs. 10a-b), indicating crystallization during different stages of magma differentiation. For the ultrapotassic rocks along 86°E (Figs. 10a and 10c), Cpx temperatures of the older (14 Ma) sample YLS03 range from 1019 to 1110 °C, and show systematically higher values (ΔT=50°C) than those of the younger (11 Ma) samples (954 to 1039 °C). In contrast, the ultrapotassic-potassic rocks along 90°E show opposite Cpx temperature variations (Fig. 10b) in that the younger samples (YBJ15 and PG09 of 10 Ma) have higher crystallization temperatures than the older samples (PG02 and PG04 of 15 Ma) (Figs. 10a and 10b). Together with the crystal texture features and estimated pressure results (Figs. 10d and A1), the type I Cpx from samples PG04 and YBJ15 have higher Mg# (80-88) and crystallization temperatures (1050-1100°C for PG04 and 1100-1150°C for YBJ15), which could reflect the initial magma temperature in the lower crust and show 50°C increases from 15 to 10 Ma. Both these two magma pulses show 150-200°C decreases recorded by type II Cpx (Fig. 10d), which might indicate retention in the lower crust. Decreasing clinopyroxene crystallization temperatures are consistent with their crystallization depths decreasing from pressures of 12-8 kbar to 4-0 kbar during magma ascent (Figs. 10c-d).

Zircon grains were present as the crystallization phases later than clinopyroxene in these
ultrapotassic-potassic samples. Hence, they could record the late-stage magma temperature of these ultrapotassic-potassic rocks. Ti-in-zircon thermometry results for the ultrapotassic rocks from 86°E (Fig. 11a) also show that the older sample YLS03 has higher $T_{\text{Ti-in-zircon}}$ values (mostly >900 °C) compared to the younger samples ($T_{\text{Ti-in-zircon}}$ values=670-830 °C). In contrast, the older ultrapotassic-potassic samples (PG02 and PG04) from 90°E (Fig. 11b) have relatively lower $T_{\text{Ti-in-zircon}}$ values (less than 700 °C), while the younger samples (PG09 and YBJ15) have higher $T_{\text{Ti-in-zircon}}$ values (more than 770 °C).

In summary, the multiple thermometry, based on clinopyroxene and zircon which represent the progressive crystallization phases during magma ascent, exhibit a temporal decrease in magma temperatures from 14 to 11 Ma along a longitude of 86°E and an increasing temperature trend from 15 to 10 Ma along longitude 90°E in the central part of the Lhasa terrane. Therefore, such temperature/time trends are likely to record regional temperature variations ($\Delta T=50$°C) in the deeper mantle source and are spatially consistent with the high-velocity zone (86°E) and the low-velocity zone (90°E) at depth of 135 km, respectively (Fig. 1).

Interestingly, the opposing magma temperature variations (Figs. 11c-d) were also recorded by the Oligocene-Miocene zircons in the Xungba-Sailipu ultrapotassic rocks from the western domain of the Lhasa terrane (Liu et al., 2014). Mantle seismic tomography images (depth at 135 km) in this area show that low-velocity and high-velocity zones are present under the Xungba-Yare area and the Sailipu and Zabuye area (Fig. 1a), respectively. Published data exhibit a decreasing $T_{\text{Ti-in-zircon}}$ trend for the Oligocene-Miocene magmatic zircons from the Xungba-Yare ultrapotassic rocks and an increasing $T_{\text{Ti-in-zircon}}$ trend for the Oligocene-Miocene magmatic zircons from the Sailipu and Zabuye ultrapotassic rocks. These features suggest that the zircon
crystallization temperatures of these rocks and the mantle lithospheric morphology are also coupled.

Interplay between continental slab tearing and asthenospheric flow

Late to post-collisional magmatism in orogens has many causes (Kusky and Wang, 2022), including slab break-off (failure) or tear-related plutonism (Davies and Blanckenburg, 1995; Dilek and Sandvol, 2009), crustal thickening, orogenic collapse (Dewey, 1988; Kusky, 1993) and core-complex formation (Whitney et al., 2013), or large-scale lithospheric foundering (Bird, 1978; Zheng et al., 2022). Magmatism from these various sources differ from earlier arc-related magmas, in that they tend to be distributed for up to hundreds of km from associated sutures and can last for tens of millions of years after the main collision (Kusky and Wang, 2022). Slab break-off and tear-related magmatism are typically characterized by higher Th values than those from the normal mantle array due to involvement of earlier subducted sediments (particularly is passive margins are subducted), and tend to develop increasingly alkaline geochemical characteristics with time, due to increasing asthenospheric input with time (Wilson and Bianchini, 1999; Hildebrand et al., 2018; Kusky and Wang, 2022). In addition, plutons of these suites intrude late during the collision-related deformation so cross-cut early structures, but typically experience additional later flattening, deforming the plutons into domal structures (e.g., Hildebrand et al., 2018; Kusky et al., 2021; Kusky and Wang, 2022).

The Neogene magmatism and E-W extensional faulting in the Tibetan Plateau have been attributed to the convective removal of the Tibetan sub-continental lithospheric mantle (Chen et al., 2017; Chung et al., 2003; Coleman and Hodges, 1995; Turner et al., 1993; Williams et al., 2004;
Wu et al., 2022). In contrast, movement of the N-S-trending normal faults and grabens is traced back to the early Miocene (23–14 Ma) and shows eastward propagation in southern Tibet (Bian et al., 2020; Coleman and Hodges, 1995; Mitsuishi et al., 2012; Blisniuk et al., 2001; Williams et al., 2001). Their ages are significantly younger (>10 Myr) than the onset of post-collisional magmatism. Post-collisional mantle-derived mafic rocks are widely distributed in northern Tibet (Guo and Wilson, 2019; Turner et al., 1996), in contrast to the relatively local distribution of mafic rocks in the central and western Lhasa terrane in southern Tibet (Zhao et al., 2009). They are almost entirely absent in the Himalayan terrane where crustal anatexis events are widespread from Eocene to Miocene (Zhang et al., 2004). Furthermore, the age variations of the Oligocene-Miocene magmatic rocks seem unsystematic in southern and northern Tibet (Ding et al., 2007; Guo and Wilson, 2019), which is also unreconciled with the pervasive N-S trending normal faults. Therefore, sinking of the Tibetan sub-continental lithospheric mantle does not appear to fully explain either the post-collisional magmatism or E-W trending extension.

The Indian lithosphere is generally accepted to have been subducted northwards beneath southern Tibet as indicated by mantle tomographic images (Kosarev et al., 1999; Tilmann et al., 2003). The lower Indian crust is likely to have undergone ~30% eclogitization before descending to the Tibetan upper mantle (Schulte-Pelkum et al., 2005). This partially eclogitized lower crust of the Indian slab would result in the break-off of the Indian lithosphere due to its increasing density (Mahéo et al., 2002; Shi et al., 2020). The break-off model of the SIL is consistent with the scenario of a sudden decreasing convergence velocity (from ~85 mm/yr to 45 mm/yr) between Indian and Asian blocks (van Hinsbergen et al., 2011), due to loss of the pull force associated with detachment of the partially eclogitized subducted slab.
Tearing of the SIL has been interpreted from mantle seismic tomography images (Chen et al., 2015; Li and Song, 2018; Liang et al., 2016; Liu et al., 2020), although the tearing positions and slab angles are debated. Li and Song (2018) reported high-resolution P and S tomography that shows four pieces of the torn SIL with different angles in southern Tibet. Slab windows along the sectors 82°E-85°E and 88°E-92°E in their tomography images show a strong relationship with the regional N-S trending rifting (Fig. 1a), implying close links between the crustal deformation and the mantle lithosphere. Our collated age variations of the post-collisional magmatism in southern Tibet show some spatial consistency with the four sections of the torn SIL (Fig. 1). Diachronous break-off of the SIL is proposed to have resulted in the spatially decreasing variations of ages of the two-mica granites in the eastern portion of the Lhasa terrane (Pan et al., 2012; Zhang et al., 2014). Similarly, slab detachment was proposed to propagate eastward with the younging trend of the magmatic rocks in the western portion of the Lhasa terrane (Guo et al., 2015). Webb et al. (2017) summarized that slab tearing led to slab detachment initiating at both ends of the Himalaya ca. 25 Ma, then migrated toward the central Himalaya. The compiled age results in this study further show that the post-collisional magmatism was initiated earlier in the EHS and WHS and had two age undulations in central southern Tibet (Fig. 1). Hence, we propose that four diachronous break-off events of the SIL occurred in southern Tibet during the Oligocene to Miocene.

Three-dimensional numerical models show that subducting continental lithosphere would be initially steep and then flex upwards and flattened below the overriding plate, after the break-off of the eclogitized slab at great depths (Magni et al., 2017). Diachronous break-off would lead to variable angles of the subducting continental lithosphere, which would be torn when the angle
difference exceeds its limiting value in their models. It could lead to a contrasting evolution of the slab windows in southern Tibet: the 81°E (26-18 Ma) and 86°E (14-11 Ma) slab windows might be closed by the subsequent opening of the adjacent 85°E (25-15 Ma) and 90°E (15-10 Ma) slab windows, probably due to rebounding and lateral motion of the torn SIL impacted by the asynchronous asthenosphere upwellings (Fig. 12). These geodynamic processes could be the original causes for the opposite variations of mantle-derived magma temperature observed in this study. The melting pressure variation probably indicates the progressive rising of the lithosphere-asthenosphere boundary (Figs. 1a and 9). The resultant asthenospheric upwelling distribution is consistent with the tearing of the SIL along 82°E-85°E and 88°E-92°E (Fig. 1a).

Furthermore, lateral motion of the torn SIL caused local decoupling between the age spectrum of the post-collisional rocks and the recent mantle tomography (Fig. 1). For example, the mismatch along the 85-87°E sector, which might be one former slab window but is not clear from the tomography image, is probably a result of lateral motion of the torn SIL impacted by the asthenosphere upwelling along the 90°E after 15 Ma.

Ongoing diachronous break-off of the SIL has been reported in the Hindu Kush in Afghanistan based on seismic tomographic images (Kufner et al., 2021), which implies that it may be a common geodynamic process in a continental collision setting. In southern Tibet, magmatism associated with break-off of the SIL shows geochronological variations along the north-south trending. For example, magmatic records in the EHS show a south-to-north younging trend ranging from 29 to 21 Ma, while magmatism in the TangraYumco-Xuruco rift (86°E) shows a north-to-south younging trend ranging from 24 to 8 Ma. Thus, the diachronous break-off events of the SIL and the resultant rupturing of the continental lithosphere have important implications for
the driving force of these post-collisional geological processes across the Tibetan Plateau. Based on the compiled age spectra (Fig. 1b), the latter break-off event (26 Ma for 80°E-85°E and 23 Ma for 85°E-90°E) started earlier (7-8 Ma) than the cessation of the former event (19 Ma for 74°-79°E and 15 Ma for 80°E-85°E). We propose that this feature is most likely due to the northward depression of the asthenosphere underlying the SIL. This mobile asthenosphere first advected through the weakened portions of the overriding Indian lithosphere at the WHS and EHS at approximately 33 and 30 Ma, and then through the other two tears (26 Ma for 80°E and 23 Ma for 86°E) in the central part of the Lhasa terrane (Fig. 12). It induced diachronous foundering associated with upward bending of the Indian slab, further accelerating the tearing of the SIL during continental subduction. The northward flow and the rebounding of the SIL may have significantly facilitated the lithosphere deformation and uplift of the Tibetan Plateau.

CONCLUSION

The distribution of Oligo-Miocene magmatic rocks from southern Tibet in space and time yields critical information on the geometry and deformation of the SIL which impacts on plateau growth following the collision between India and Eurasia. Here we report variations in the crystallization ages and temperature of these post-collisional magmatic rocks, demonstrating that (1) timing of these rocks exhibits four patterns of decreasing ages approximately corresponding to the torn SIL and (2) contrasting trends in mineral crystallization temperatures and decreasing melting source depth recorded in the ultrapotassic-potassic magmas corresponding spatially to regions of slab window and flattened subducted lithosphere as recorded by seismic tomography. These datasets together imply that the focused mantle flow may advance diachronously through
pre-existing weakened sectors within the overlying SIL. It could induce diachronous foundering associated with the upward bending of the Indian slab, which consequently led to the tearing of the SIL during continental subduction.

Acknowledgements

This research is supported by the National Natural Science Foundation of China (Grant No. 41730211), the Second Tibetan Plateau Scientific Expedition and Research Program (STEP) (2019QZKK0702). We thank Prof. X. Song and Mr. J. Li for sharing their regional shear-wave tomographic model. We thank Prof. Yuan-Bao Wu, Prof. Oliver Jagoutz, and Prof. Yaoling Niu for their helpful discussion and improving the paper.

References

southern Tibet. Geology, 31(11), 1021-1024. DOI: 10.1130/G19796.1.

Li, J., and X. Song (2018). Tearing of Indian mantle lithosphere from high-resolution seismic images

Figure 1 (a) Geological map and S-wave seismic velocity variations of the Tibetan Plateau and the adjacent regions at 135 km depth with emphasis on high and low zones along the Indus/Yarlung Tsangpo Suture zone (IYS) in southern Tibet (S-wave seismic image modified after Li & Song 2018). The N-S trending normal fault systems are according to Bian et al. 2021. SKS: South Kunlun suture; JHS: Jinsha-Honghe suture; BNS: Bangong-Nujiang suture; IYS: Indus-Yarlung-Tsangpo suture; NLT: the northern Lhasa subterrane; CLT: the central Lhasa terrane; SLT: the southern Lhasa terrane; KFS: Karakoram fault system. (b) Diachronous distribution of the post-collisional magmatism in southern Tibet. Age distribution model of Oligocene-Miocene magmatism shows four decreasing age trends. UPV: ultrapotassic-potassic volcanic rocks. Detailed data sources are present in Table A5.

Figure 2 (a) Tectonic map of the Western Himalayas Syntaxes shows sample locations of two-mica granite. MMT: Main Mantle Thrust; KB: Kohistan Batholith; NP: Nanga Parbat, modified after 1:650,000 regional geological map. (b) Tectonic map of Eastern Himalayan Syntaxes shows IYS and Namche Barwa (NB), modified after Pan et al. (2012). (c) Simplified tectonic map shows distribution of post-collisional ultrapotassic-potassic volcanic rocks in north-south-trending TangraYumco-Xurucuo rift, modified from Guo et al. (2013). (d) Simplified tectonic map of the Yangying post-collisional potassic volcanic rocks, modified from Zhang et al., 2017.

Figure 3 (a)-(k): microphotographs of the Miocene ultrapotassic-potassic volcanics from the central Lhasa terrane. (l)-(n): microphotographs of the Oligocene two-mica granite from the Kohistan Island arc. Bi: biotite; Hb: hornblende; Cpx: clinopyroxene; Opx: orthopyroxene; Pl: plagioclase; Qtz: quartz; Kfs: K-feldspar; San: sanidine; Ms: muscovite; Tit: titanite; Ep: epidote; Grt: garnet.
Figure 4 (a) Na$_2$O + K$_2$O versus SiO$_2$ and (b) K$_2$O versus Na$_2$O diagrams for the two-mica granites from the west Himalayan syntaxis and the east Himalayan syntaxis and the ultrapotassic-potassic volcanics from the central Lhasa terrane.

Figure 5 (a) Primitive mantle-normalized element spider diagrams and (b) Chondrite-normalized REE patterns for the ultrapotassic-potassic volcanics from the central Lhasa terrane. Normalizing values are from Sun & McDonough (1989).

Figure 6 Representative CL images for zircons from the granitoid samples (a) HH29, (b) HH30, (c) HH31, (d) HH33, (e) HH35, (f) HH36, (g) HH37, and (h) T974 from the WHS and EHS, and the ultrapotassic-potassic samples (j) YLS03, (k) 19CZ08, (l) 19CZ37, (m) 19CZ53, (n) YBJ15, (o) PG02, (p) PG04, and (q) PG09.

Figure 7 U-Pb Tera-Wasserburg plots for U-Pb zircon analyses from the granitoid samples (a) HH29, (b) HH30, (c) HH31, (d) HH33, (e) HH35, (f) HH36, (g) HH37, and (h) T974 from the WHS and EHS, and the ultrapotassic-potassic samples (j) YLS03, (k) 19CZ08, (l) 19CZ37, (m) 19CZ53, (n) YBJ15, (o) PG02, (p) PG04, and (q) PG09.

Figure 8 (a), (b), (d), and (e) Jd-DiHd exchange thermometer, (c) and (f) revised clinopyroxene-only thermometer for the Miocene ultrapotassic-potassic volcanics from 86°E and 90°E in the central Lhasa terrane.

Figure 9 Melting pressure of the ultrapotassic rocks from Bongba (81°E) to Pagu (90°E) in southern Tibet. The primary melts are calculated by adding or subtracting olivine to lavas that experienced only olivine fractionation, and involves lavas with MgO>8% for the ultrapotassic rocks in southern Tibet. The iteration is stopped when the melt composition is coincident with the cotectic [L+Opx+Cpx+Gt] or [L+Ol+Cpx+Gt] as constrained by the pressure P(GPa)=exp[1.6748 -0.0838(A-0.5389CS)], CS = CaO + 2(Na$_2$O + K$_2$O) - 3·333P$_2$O$_5$, A = TiO$_2$ + Al$_2$O$_3$ + Cr$_2$O$_3$ + Na$_2$O + K$_2$O (Herzberg, 2011). We described ‘the hypothetical LAB morphology’ here to discuss the variable morphology of the lithosphere-asthenosphere boundary rather than its true depth.
Figure 10 (a) and (b) Liquidus temperatures of clinopyroxene; (c) and (d) P versus T plots for the Miocene ultrapotassic-potassic volcanics from 86°E and 90°E in the central Lhasa terrane. P and T are calculated according to the geothermometer in Neave and Putirka, (2017).

Figure 11 Ti-in-zircon temperature variations for zircons from the Miocene ultrapotassic-potassic volcanic rocks in the central Lhasa terrane. (a) for samples from 86°E and 90°E, (b) for samples from Xunba and Yare, (c) for samples from Sailipu, and (d) for samples from Zabuye. Zircon trace elements data for the samples from Xunba, Yare, Sailipu, and Zabuye are from Liu et al. (2014).
Figure 12 Schematic tectonic model for the evolution of the Oligocene-Miocene magmatism in southern Tibet corresponding to suture-perpendicular tearing and suture-parallel foundering of the subducted Indian plate. The pentagrams represent sample locations as in figure 1. The grey regions depict the speculated pattern of the subducted Indian Plate from surface to depth of 135 km.