Quantifying seawater exchange rates in the Eocene Arctic Basin using osmium isotopes

A.J. Dickson1*, M. Davies2,3, M.-L. Bagard2,4, A.S. Cohen2

Abstract

The closure of seaways that connected the Arctic Ocean to the global ocean during the early Paleogene led to severe hydrographic restriction. We present new osmium isotope data from organic-rich sediments deposited in the central Arctic Ocean during the Early–Middle Eocene. The new data show that the long term isotopic composition of osmium in Arctic seawater began to diverge from that of the global ocean at ∼54 Ma, after the Eocene Thermal Maximum 2 hyperthermal event. This divergence was probably caused by the gradual closure of seaways connecting the Arctic Ocean to the global ocean. The Os data are used to calculate water exchange rates between the Arctic and surrounding oceans and to calculate Arctic Ocean salinity during the Early Eocene. The results show that the development of severe, long term Arctic Basin restriction after ∼54 Ma occurred as open ocean seawater input decreased below ∼0.01 Sv, resulting in a mean basin salinity between 8–16 PSU, depending on model assumptions.

Introduction

The Paleogene Arctic Ocean became hydrographically restricted in the Early to Middle Eocene due to both the closure of the Turgay Strait in northern Eurasia, and the progressive shoaling of the North Atlantic ridge, which probably acted as a valve for water exchange with the northern polar latitudes (Moran et al., 2006; Stärz et al., 2017; Fig. 1). By reducing the exchange of high salinity water, these tectonically driven events triggered a change to brackish/freshwater conditions in the basin during the late Early Eocene, as recorded by the well documented presence of the freshwater fern Azolla during the period ∼49–48 Ma (Brinkhuis et al., 2006). Oxygen, neodymium, and strontium isotope data indicate low salinity conditions (Waddell and Moore, 2008; Gleason et al., 2009), which may have facilitated sea ice growth and an enhanced polar albedo effect in the middle Eocene (Stickley et al., 2009). Reduced inflow of open ocean waters also caused the Arctic Ocean to evolve to anoxic-sulfidic depositional conditions, both over the long term duration of the Early–Middle Eocene (März et al., 2010) and over shorter hyperthermal events such as the Paleocene–Eocene Thermal Maximum (Dickson et al., 2012).

Despite being well characterised, the timing of hydrographic restriction in the Arctic Basin is uncertain (Moran et al., 2006) and the water mass exchange rates that contributed to restricted conditions are not well quantified by hydrographic models (e.g., Stärz et al., 2017; Hutchinson et al., 2019). Exchanges of heat and salt between the Arctic, Pacific, Atlantic and Tethys oceans would have been important factors controlling Eocene ocean circulation patterns and meridional heat transport, but model simulations disagree on the magnitude of circulation changes that may have been caused by progressive restriction (Roberts et al., 2009; Cope and Winguth, 2011). In this contribution we present new osmium isotope measurements from IODP Site M0004A (Leg 302, ‘ACEX’ core). These measurements span the period 55.1–44.7 Ma and link the data published by Dickson et al. (2015, 2021) for the PETM and Eocene Thermal Maximum 2 (ETM-2) to the Middle Eocene (and younger) Os data published by Poirier and Hillaire-Marcel (2009, 2011). The new data are used as boundary conditions for a mass balance model that we use to quantify the flux of open ocean seawater into the Arctic Basin, and to quantify the mean Arctic Ocean salinities associated with these exchange rates.

Material and Methods

Sub-samples from Site M0004A between 205.43–345.48 mcd were oven dried and powdered. 1 g samples were digested at 180 °C for 5 days in 12 ml of inverse aqua regia in flame sealed Carius tubes following addition of a mixed 199Re and 188Re spike solution. Os was extracted from the chilled digest with CCl4, then back extracted into HBr and micro-distilled with CCl4, then back extracted into HBr and micro-distilled using Cr(VI)-H2SO4 (Cohen and Waters, 1996; Birck et al., 1997). Solutions were loaded onto Pt filaments and analysed by negative thermal ionisation mass spectrometry. Os blanks were <1 pg (<1 % blank contribution) with an average 187Os/188Os ratio of 0.37. Precision of 187Os/188Os analyses was <0.2 % (2 s.d.), determined from a DTM Os standard.
solution ($^{187}\text{Os}/^{188}\text{Os} = 0.17381 \pm 0.00104, n = 14$) and USGS SDO-1 ($^{187}\text{Os}/^{188}\text{Os} = 7.99404 \pm 0.00444, n = 4$). Re was partitioned from the acid digests into iso-amylol, back extracted into H$_2$O and analysed by MC-ICP-MS. Instrumental mass fractionation was corrected by the addition of 40 ppb Ir and normalising to a $^{193}\text{Ir}/^{191}\text{Ir}$ ratio of 1.68299. Re procedural blanks were <10 pg (blank contributions $<0.02\%$). Repeat digests of USGS SDO-1 gave an average Re concentration of 77.44 ± 1.83 ng/g (2 s.d., n = 6). Initial $^{187}\text{Os}/^{188}\text{Os}$ ratios ($^{187}\text{Os}/^{188}\text{Os}$) were calculated with a Re decay constant of 1.666×10^{-11} and a depositional age interpolated from the age model of Backman et al. (2008). The part of the ACEX core below ~300 mcd is not affected by the alternative age model of Poirier and Hillaire-Marcel (2009) but core levels above ~300 mcd would be progressively shifted to younger ages by up to 7 Myr. The choice of age model therefore has a small effect on the calculation of $^{187}\text{Os}/^{188}\text{Os}$, (Fig. S-1).

Results

$^{187}\text{Os}/^{188}\text{Os}$ range from 0.30–1.19 and become generally higher between $\sim55–45$ Ma (Fig. 2, Table S-1). $^{187}\text{Os}/^{188}\text{Os}$ ratios overlap the values previously published by Poirier and Hillaire-Marcel (2011) for the upper part of the studied section. $^{187}\text{Os}/^{188}\text{Os}$ ratios in the lower part of the section are similar to those published for Eocene Thermal Maximum 2 (ETM-2) by Dickson et al. (2021). ^{186}Os concentrations reported here range from 28–86 pg/g and are notably lower than concentrations in older and younger Eocene sediments in the ACEX core (Fig. 2).

Arctic Ocean Restriction Identified using Os Isotope Data

Changes in the $^{187}\text{Os}/^{188}\text{Os}$ ratio of seawater are caused by the fractional mixing of continental-derived radiogenic and mantle-derived unradiogenic end members. Mixing ratios can be controlled in principle by increases or decreases in the flux of either end member, by processes typically linked to continental weathering and/or changing rates of submarine volcanic activity (Peucker-Ehrenbrink and Ravizza, 2000). In marginal marine basins, mixing ratios may also be controlled by the degree of water mass restriction, due to the variable input of open ocean seawater imprinted with unradiogenic Os from seafloor hydrothermal systems and basalt weathering (Dickson et al., 2015). Such basins may become sensitised to local radiogenic Os fluxes. The behaviour of Os isotopes in marginal marine basins can therefore be used to quantify water mass mixing rates, where an Os isotope record from within a restricted basin can be robustly correlated to a time-equivalent open ocean Os isotope signature.

The Eocene Arctic Ocean satisfies these requirements because the near-continuous $^{187}\text{Os}/^{188}\text{Os}$ record reported in this study can be compared directly with open ocean Os isotope records obtained from ferromanganese crusts and metalliferous sediments (Peucker-Ehrenbrink et al., 1995; Pegram and Turekian, 1999). This comparison, in Figure 2, shows that although there were transient episodes of divergence between the Arctic and global Os records in the early Eocene, such as during the PETM (Dickson et al., 2015), the long term divergence in the records became pronounced after Eocene Thermal Maximum 2 (ETM2), at ~54 Ma. This divergence reached a maximum $\sim49–44$ Ma, a period of time that brackets the Azolla interval and the occurrence of seasonal sea ice, both linked to fresher surface water conditions (Brinkhuis et al., 2006; Stickley et al., 2009). The Poirier and Hillaire-Marcel (2009) age model shifts the timing of maximum divergence ~2 Myr younger. The unique comparison of the Arctic record to records from open ocean ferromanganese crusts allows us to link this long term divergence in Os isotopes to the partial closure of circum-Arctic seaways, rather than to any large scale change in continental
weathering. The divergent Os isotope trends after 54 Ma are accompanied by relatively low Os concentrations (Fig. 2), which, given the associated transition to euxinic depositional conditions (März et al., 2010), are likely related to basin scale trace metal depletion. The data contain deviations in $^{187}\text{Os}/^{188}\text{Osi}$ that overlap with the open ocean trend (Fig. 2) which probably record ventilation events that punctuated the longer term transition to hydrographic restriction.

Quantifying Seawater Exchanges into the Arctic Basin

We have used the divergence of the Arctic Ocean and global Os isotope records (Fig. 2) to quantify the exchange rate of open ocean seawater into the Arctic Basin. In this approach, the mass accumulation rate of Os buried in the Arctic Basin is first estimated from typical early Eocene concentrations in Site M0004A of \sim250 pg g$^{-1}$ (this study and Poirier and Hillaire-Marcel, 2011), a dry bulk density of 1.4 g cm$^{-3}$ (O’Regan, 2008) and an Eocene sediment accumulation rate of 0.002 cm yr$^{-1}$ (Backman et al., 2008). The mass accumulation rates of Os are scaled to an Eocene Arctic ocean area of 1.05×10^{17} cm2 in order to calculate a total removal flux in pg yr$^{-1}$. This removal flux anchors subsequent quantification of the input fluxes to the Arctic Basin, by assuming mass balance.

The inputs of Os to the Arctic Basin come from two major sources: riverine discharge from pan-Arctic river systems and open ocean exchange through shallow seaways (North Atlantic/Fram Strait, Bering Strait, Turgay Strait). Riverine input fluxes are assigned a fixed $^{187}\text{Os}/^{188}\text{Osriv}$ of 1.4 (Peucker-Ehrenbrink and Jahn, 2001) and open ocean seawater $^{187}\text{Os}/^{188}\text{Osw}$ is calculated as 2 million year averages of Fe/Mn-crust and metalliferous sediment data between 56–44 Ma (Table S-2).

The magnitudes of each flux (f_{riv}, f_{sw}) are iteratively adjusted to obtain a match with the observed ACEX $^{187}\text{Os}/^{188}\text{Osi}$, which is assumed to record Arctic seawater:

$$^{187}\text{Os} = (f_{riv} \times ^{187}\text{Os}_{riv}) + (f_{sw} \times ^{187}\text{Os}_{sw}) \quad \text{Eq.1}$$

These fractions (f_{riv}, f_{sw}) are scaled to the total Os removal mass for each 2 million year interval to obtain the mass of Os inputs (O_{riv}, O_{sw}), assuming approximate basin scale mass balance over the 2 million year calculation intervals. A key requirement is to simulate declining Arctic Ocean seawater concentrations with increasing basin restriction. O_{riv} is thus held constant from the 56–54 Ma (most ‘open’) calculation, allowing declining values of O_{sw} to cause a decline in Arctic seawater Os.

![Figure 2](https://example.com/figure2.png)

Figure 2 Initial osmium isotope ($^{187}\text{Os}/^{188}\text{Osi}$) ratios and unradiogenic concentrations (^{192}Os, pg g$^{-1}$) of sediments deposited at IODP Site M0004A. The open ocean $^{187}\text{Os}/^{188}\text{Os}$ trend, taken from the ferromanganese crust data of Peucker-Ehrenbrink et al. (1995) and Pegram and Turkian (1999) is shown with grey shading. Published Os datasets are from Poirier and Hillaire-Marcel(2009, 2011) and Dickson et al. (2015, 2021). ETM 2: Eocene Thermal Maximum 2. PETM: Paleocene–Eocene Thermal Maximum. Pal: Paleocene.
concentrations. A final step is to convert Os_{riv} and Os_{sw} to seawater volumes using ocean and river concentrations, initially assumed to be comparable to modern values of $\sim 11 \text{ pg l}^{-1}$ (Levasseur et al., 1998) and $\sim 8 \text{ pg l}^{-1}$ (Levasseur et al., 1999), respectively. f_{sw} and f_{riv} are used to calculate Arctic salinity by assigning end member values of 0 PSU and $\sim 35 \text{ PSU}$.

The effect of basin scale redox conditions on Os burial, basin size, sediment accumulation rates and sedimentary Os concentrations on the model are tested by varying Os burial rates. Other sensitivity tests include varying Arctic river $^{187}\text{Os}/^{188}\text{Os}$ ratios, a change that would affect f_{sw} and f_{riv} and varying the concentrations of Os in open seawater and Arctic river waters, parameters that affect the volumes of water (and hence seawater exchange rates) calculated from Os_{sw} and Os_{riv}. The calculations are illustrated in Figure 3 and documented in Tables S-3 to S-5.

Oceanic exchange rates are $\sim 0.2 \text{ Sv}$ for the Early Eocene ($\sim 56 \text{ Ma}$) and decline to a minimum of ~ 0.0001–0.0002 Sv by 48–46 Ma before increasing slightly by 46–44 Ma. The multi-million year divergent trend in $^{187}\text{Os}/^{188}\text{Os}$, which starts after $\sim 54 \text{ Ma}$ and parallels a switch to a persistently euxinic, silled Arctic Basin (März et al., 2010), is accompanied by a decline in seawater exchange in all sensitivity tests to below $\sim 0.01 \text{ Sv}$. This value is close to the modern exchange rate of Mediterranean seawater through the Bosphorus into the Black Sea ($\sim 0.0097 \text{ Sv}$; Özsoy and Ünlüata, 1997), where modern sediment $^{187}\text{Os}/^{188}\text{Os}$ ratios have also been characterised by mixing between seawater and local detrital end members (Ravizza et al., 1991), and is ~ 1000 times lower than modern exchanges across the Fram Strait (Jakobsson et al., 2007). Calculated Arctic salinities decrease to 7–25 PSU by 46–48 Ma, depending on the model conditions. This range is consistent with oxygen and strontium isotope salinity reconstructions of ~ 2–24 PSU for the same time interval (Waddell and Moore, 2008; Gleason et al., 2009), but is higher than the ~ 1–6 PSU salinities required for the proliferation of Azolla ferns (Brinkhuis et al., 2006). The discrepancy with the latter study is probably because the Os based estimates here are basin scale averages, whereas Azolla would typically colonise the upper, salinity stratified part of the water column. We note that the open ocean salinity end member used in the calculations is higher than modelled North Atlantic salinities under conditions of limited Arctic exchange (Roberts et al., 2009; Stätz et al., 2017). Lowering the marine end member to $\sim 20 \text{ PSU}$ further reduces the minimum Arctic Basin salinity during the period of maximum restriction (48–46 Ma) by 7–9 PSU across the various sensitivity tests. Use of the Poirier and Hillaire-Marcel (2009) ACEX age model does not significantly affect the magnitude of the hydrographic calculations, but shifts the timing of minimum salinity to younger ages by $\sim 2 \text{ Myr}$.

Closure of the Arctic Ocean has been suggested as a cause of transient and/or persistent deep water overturning in the North Atlantic and North Pacific Oceans, due to a reduction in freshwater export to regions of overturning (Roberts et al., 2009; Cope and Winguth, 2011; Hutchinson et al., 2019). Our Os-based reconstruction of Arctic exchanges supports these ideas and provides quantitative constraints on water exchange rates. The use of Os isotope data to quantify hydrographic parameters can complement existing approaches to inferring basin hydrography using elemental proxies (Algeo and Lyons, 2006; Sweere et al., 2016) but requires overcoming the hurdle of obtaining an open ocean Os isotope record that is time equivalent to one produced from a marginal basin. This goal may be difficult for some ancient time intervals for which deep ocean sedimentary deposits are not accessible. If the Eocene Arctic Ocean Os record were transposed, for example, into some distant part of Earth’s history where an open ocean counterpart was lacking, the data might be incorrectly interpreted to represent a period of exaggerated continental weathering.

Acknowledgements

This study was funded by the Natural Environmental Research Council (NE/K006223/1).

Editor: Gavin Foster

Additional Information

Supplementary Information accompanies this letter at https://www.geochemicalperspectivesletters.org/article2239. © 2022 The Authors. This work is distributed under the Creative Commons Attribution 4.0 License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Additional information is available at http://www.geochemicalperspectivesletters.org/copyright-and-permissions.