Part III
Geochemical Proxies for the Environmental Effects of LIPs
10
The Osmium Isotope Signature of Phanerozoic Large Igneous Provinces

Alexander J. Dickson¹, Anthony S. Cohen², and Marc Davies³

ABSTRACT

The emplacement of Large Igneous Provinces (LIPs) throughout the Phanerozoic Eon introduced vast quantities of mafic rocks to the Earth’s surface, which were subsequently weathered into the oceans. Osmium isotope data can be used to track these LIP-related weathering fluxes, providing a global fingerprint of the timing and magnitude of LIP emplacement, and guiding assessments of the impact of these events on ocean biogeochemistry and the regulation of the global climate system. Sedimentary Os isotope records spanning late Phanerozoic LIP events are reviewed herein and new observations from Eocene hyperthermal event ETM-2 are presented. While Os isotope stratigraphy can provide major constraints on LIP activity in the geological record, it cannot always distinguish whether the extrusive activity was subaerial or submarine. The utility of osmium isotopes as a global tracer of past volcanism may be enhanced when used alongside proxies such as mercury concentrations, which may be more diagnostic of the style of individual episodes of LIP emplacement. Hitherto, only a few high-resolution Os-isotope records across Phanerozoic LIPs have effectively exploited the short oceanic residence time of Os. Future high-resolution studies across suitable, well-preserved stratigraphic records will significantly improve our understanding of the nature, progression, and consequences of LIP emplacement.

10.1. INTRODUCTION

The emplacement of Large Igneous Provinces (LIP) is characterized by anomalously high magmatic fluxes, such that the majority of their volume is emplaced within a relatively short time-period of <1–2 million years. They comprise massive volumes of mantle-derived igneous material sometimes in excess of 10⁶ km³, intruded into the crust as dykes, sills, and batholiths, and extruded onto the surface as effusive lava flows or as explosive ejecta together with a cocktail of superheated gases and fluids in either a subaerial or submarine environment (Coffin & Eldholm, 1992, 1994; Ernst, 2014). LIPs have often been linked to mantle plumes, which are persistent upwellings of anomalously hot mantle. The rapid eruption rates and huge volumes of material sourced from melting in the plume head during the early stages of LIP emplacement far exceed present-day eruption rates and volumes, and because of this rapidity they are proposed to have had a deleterious impact on the global environment. LIPs occurred periodically throughout Earth’s history, at approximate intervals of a few tens of millions of years (Prokoph et al., 2013) and have been associated with episodes of extreme global climate change and biotic extinction (Ernst & Youbi, 2017; Bond & Sun, Chapter 3 this volume; Ernst et al., Chapter 1 this volume) (Fig. 10.1).

Several key questions regarding LIP behavior have been postulated: When did individual LIP events occur? Was volcanic activity continuous or intermittent over the period of emplacement? Did LIP emplacement drive...
changes in the global climate system? What climatic feedback processes do LIPs perturb? Do all LIPs alter Earth system processes (weathering, ocean chemistry, warming, etc.) in the same way? Do all LIPs cause biotic extinctions? The approach to answering many of these questions is commonly to undertake rigorous radiometric dating of igneous rocks that can be related to specific episodes of LIP activity. These efforts initially centered on Ar-Ar dating of flood basalts. These Ar-dating approaches have been instrumental in establishing first-order relationships between the timing of LIP events and major extinction and environmental changes across the Phanerozoic and beyond (Wignall et al., 2001), but are sometimes limited by relatively large absolute age uncertainties, which may be on the order of ~ ±10^5–10^6 years. Recent advances in U-Pb dating, with reported age uncertainties of ±10^4 years, have significantly reduced the age uncertainties on some LIP events, thereby allowing a greater understanding of how individual episodes of LIP activity may proceed within a longer period of emplacement (e.g., Schoene et al., 2010; Svensen et al., 2010; Blackburn et al., 2013, Burgess & Bowring, 2015, Davies et al., 2017, and Kingsbury et al. 2018). Dashed lines indicate approximate periods of reduced activity within the overall duration of a LIP.

Despite these limitations, recent advances in radiometric dating have shown that the catastrophic environmental changes potentially driven by LIP volcanism are triggered by intense short-lived volcanic episodes rather than persistent volcanism spanning the entire period of emplacement. Similarly, the associated feedback processes set in motion (including carbon cycle reorganization, climatic warming, weathering, ocean anoxia, and biotic extinction) operate on comparable centennial-millennial timescales. Therefore, in order to constrain the magnitude and duration of these perturbations and establish an order of events, it is necessary to generate proxy data with age constraints precise enough to resolve the environmental changes in the stratigraphic record. Strontium isotopes have been used to constrain the source and duration of weathering during extended warming events, but the long oceanic residence time of Sr (>4 million years; Veizer, 1989) limits its ability to resolve very short-term weathering events. The very much shorter ocean residence time of Os (~10–50 Kyr; Sharma et al., 1997; Levasseur et al., 1999) makes its isotope system a more effective tracer of relatively rapid changes in the temporal evolution of global seawater chemistry as it
continually adjusts to the input of Os weathered from newly emplaced volcanic rocks. This feature gives Os-isotope stratigraphy the almost unique quality of being able to trace the temporal progression of LIP events at fine levels of detail (potentially <10^4 years) at far-field sites that are not affected by the erosion or thermal alteration processes that can disturb sedimentary successions in more proximal settings. It is this utility of Os isotopes that will form the focus of this contribution.

10.2. OS ISOTOPE STRATIGRAPHY

Rhenium and Os readily partition into metal, sulfide, and organic phases, and because of this behavior the Re-Os isotope system provides a complementary record of geological processes compared with silicate-hosted isotopic systems such as Rb-Sr, Sm-Nd, Lu-Hf, and U-Pb. Rhenium and Os show differences in compatibility, which give rise to contrasting low and high Re/Os ratios for the mantle and crust, respectively. This marked parent-daughter fractionation and the subsequent radiogenic ingrowth of 187Os as a result of β-decay of 187Re produces orders of magnitude variations in the 187Os/188Os of geological reservoirs. In crustal rocks, where the Re/Os ratio is relatively high, the in-situ production of 187Os leads to high (radiogenic) 187Os/188Os ratios that average ~1.4 (Peucker-Ehrenbrink & Jahn, 2001). In mantle and ultramafic rocks, where Re/Os ratios are low, 187Os/188Os ratios are lower (unradiogenic) with a value that is more chondritic in nature, ~0.12 (Luck & Allègre, 1983). The oceans record the proportional mixing of the two Os isotope end-members (Peucker-Ehrenbrink & Ravizza, 2000) (Fig. 10.2).

Three important aspects of the Os-isotope system in regard to LIPs need to be considered. First, Os isotopes are an indirect tracer for LIP activity. The rapid emplacement of LIPs can result in the intense and rapid weathering of juvenile mafic and ultramafic rocks, either by atmospheric and biogeochemical processes, low-temperature submarine basalt-seawater interaction, or creation of hydrothermal systems around submarine volcanic centers (Peucker-Ehrenbrink & Ravizza, 2000; Cohen & Coe, 2002; Turgeon & Creaser, 2008). These weathering fluxes release unradiogenic Os into seawater, which lowers the seawater 187Os/188Os ratio. However, if LIP rocks are not easily susceptible to weathering, or if LIP activity remobilizes Os from previously buried sedimentary reservoirs, the 187Os/188Os ratio of seawater might instead record a shift toward radiogenic values. This trend may be amplified if climate feedbacks associated with widespread volcanism are able to increase the congruency of terrestrial rock weathering. In practice, the Os-isotope

Figure 10.2 The modern mass balance of osmium. Osmium isotope ratios for different geological materials are shown along with key literature references. The modern seawater value of ~1.06 represents a contribution of ~10% to 30% from unradiogenic (mantle and extraterrestrial dust) fluxes and ~70% to 90% from radiogenic sources in the continental crust.
“signature” of a LIP might involve swings in seawater 187Os/188Os in either direction at different times, a feature that is clearly apparent during many LIP events, for example, the Ontong Java Plateau and the North Atlantic Igneous Province (Bottini et al., 2012; Dickson et al., 2015). The second important feature of the Os isotope system is the short residence time of Os in the oceans, of ~10–50 kyrs (Sharma et al., 1997; Levasseur et al., 1999). This feature provides Os-isotope stratigraphy with the potential for tracing the pulsed emplacement of LIPs at timescales of 10^{3}–10^{4} years, and the nature of the associated climate/weathering feedbacks. As will be discussed, this utility has rarely been fully exploited for any individual LIP to date. Finally, the Os-isotope composition of the oceans can also be influenced by extraterrestrial fluxes, such as from impactor events (e.g., Sato et al., 2013) or cosmogenic particles (Ravizza, 2007). Extraterrestrial impacts have been suggested for several intervals bracketed by LIPs, and these must be borne in mind when examining the reconstructed temporal evolution of seawater chemistry.

Osmium is present in seawater only in ultra-trace concentrations but is strongly enriched in reducing marine sediments. The enrichment of Os (and Re) in low-oxygen depositional settings means that paleo-seawater 187Os/188Os ratios can be traced by the careful measurement of Re and Os compositions in organic-rich mudrocks, followed by a correction for the postdepositional decay of 187Re (Ravizza & Turekian, 1989, 1992; Cohen et al., 1999). The requirement to correct 187Os/188Os ratios in organic-rich rocks for 187Re decay means that so-called initial Os-isotope stratigraphies (Os) have been produced mainly for those events where suitable deposits exist with independent age control. Where there is no independent age control, “initial” 187Os/188Os ratios can be estimated using the isochron approach of measuring samples with different 187Re/188Os ratios collected from a restricted stratigraphic range (e.g., Cohen et al., 1999). Some Os-isotope records have also been produced from Fe-Mn crusts and oxic metalliferous sediments (e.g., Pegram et al., 1992; Peucker-Ehrenbrink et al., 1995; Burton et al., 1999; Ravizza et al., 2001; Klemm et al., 2005, 2008; Burton, 2006; Robinson et al., 2009). These records do not require a significant correction for Re decay, but may be systematically biased due to the partial liberation of detritally hosted Os phases from the bulk sediment (e.g., Pegram & Turekian, 1999). Furthermore, such records from Fe-Mn crusts have a limited temporal resolution because of their slow accumulation rates. In all types of approach (mudrocks or crusts/sediments), Os records spanning early Phanerozoic LIPS (i.e., pre-Permian) have not yet been widely produced. The LIP record of only the late Phanerozoic will therefore be summarized in the following discussion and illustrated in Figures 10.3 and 10.4.

Figure 10.3 Miocene Os-isotope data spanning the emplacement of the Columbia River LIP. Data are from Klemm et al. (2008). The grey-shaded region denotes a shift toward more unradiogenic seawater 187Os/188Os ratios that are taken to record the rapid weathering of basalts associated with LIP emplacement and/or a reduction in the weathering rate of continental rocks.

10.3. THE PHANEROZOIC OS-ISOTOPE RECORD OF LIPS

10.3.1. The Columbia River LIP (~17–15 Ma)

As the youngest LIP of the Phanerozoic, the Columbia River (CR) event has a very well defined chronology and stratigraphic framework (Barry et al., 2013; Riedel et al., 2013). 40Ar/39Ar and K-Ar age determinations of the CR eruptive history suggested that activity occurred across a total interval of ~16.9–6 Ma, with most activity occurring during emplacement of the Grande Ronde basalt, from ~16–15.6 Ma (Barry et al., 2013). Recent zircon U-Pb ages of CR ashes have refined this chronology to constrain ~95% of the eruptive history to the interval 16.7–15.9 Ma (Kasbohn & Schoene, 2018). There are few Os-isotope data that record the impact of the CR LIP on ocean chemistry. The records that exist are from oceanic ferromanganese crusts, which record changes in seawater 187Os/188Os at multimillion-year timescales that are far in excess of the oceanic residence time of Os (Klemm et al., 2005, 2008; Burton, 2006). These records (illustrated in Fig. 10.3) do suggest a small 187Os/188Os shift of ~0.1 toward more unradiogenic ratios in seawater during the Miocene, as would be expected from an enhanced weathering flux of unradiogenic Os from CR basalts (Klemm et al., 2008). However, the timing of this shift depends on the age-model applied to the crust records. Even revised age-models based on Os-isotope stratigraphy imply an unradiogenic shift in 187Os/188Os between ~15 and 12 Ma, a pattern that significantly postdates radiometric ages of most of the CR eruptive episodes. For a LIP to have had a discernable impact on Os ocean chemistry, it must have
been volumetrically large, the constituent lavas and intrusive rocks must have contained high Os concentrations, and the rocks must have been weathered rapidly following emplacement. Although effusion rates in individual pulses of CR volcanism may have been comparable to larger LIPs in the geological record, the CR river event was volumetrically small compared with many earlier Phanerozoic LIPs, and the amount of basalt weathered was orders of magnitude smaller than, for example, the CAMP event at the Triassic-Jurassic boundary (Cohen & Coe, 2002). Thus, it is possible that the putative unradiogenic signal observed by Klemm et al. (2008) is actually unrelated to the CR LIP, and records a different perturbation to Os ocean chemistry in the Miocene.

10.3.2. Ethiopian-Yemeni Flood Basalts (~31–29 Ma)

The Ethiopian-Yemeni LIP has the best-preserved sequence of flood basalts in the Cenozoic geological record. The main phase of flood basalt volcanism began shortly before ~30 Ma and lasted for less than ~1 million years (Hofmann et al., 1997; Ukstins et al., 2002) before continuing in pulses concomitant with the opening of the Red Sea and the Gulf of Aden (Courtillot & Renne, 2003). Magnetostratigraphy of the Ethiopian flood basalts indicates a correlation to magnetochrons C11r to C11n (Hofmann et al., 1997; Touchard et al., 2003), making them younger than the Eocene-Oligocene boundary event, which occurred during chron C13r–C12r (~34 Ma; e.g., Zachos et al., 1996). The effect of the Ethiopian-Yemeni LIP on the osmium chemistry of the oceans is not well understood, with low-resolution data available from only three locations (Peucker-Ehrenbrink & Ravizza, 2012). These records agree in the sense that they all show ~1870s/188Os ratios evolving to less radiogenic values at ~30–31 Ma. However, the magnitude and pattern of this decrease varies, from ~0.08 in Indian Ocean ODP Site 711, to ~0.12 in South Atlantic DSDP Site 522 (Peucker Ehrenbrink & Ravizza, 2012). Os-isotope stratigraphy therefore appears to reveal a signature of basalt weathering on ocean chemistry, though the true size of this weathering flux and its wider temporal context are limited by the available data.

10.3.3. The North Atlantic Igneous Province (NAIP) (~61–54 Ma)

The emplacement of the NAIP near the Paleocene-Eocene boundary has been suggested to have influenced the genesis of rapid global warming during the Paleocene-Eocene Thermal Maximum (PETM; Storey et al., 2007; Frieling et al., 2016), an event that also includes an extinction of benthic foraminifera (Thomas & Shackleton, 1996). The NAIP consists of a series of subaerial lava flows and intrusive units (e.g., Svensen et al., 2004, 2010) that are dated to between ~60 and ~53 Ma (Storey et al., 2007; Svensen et al., 2010; Wilkinson et al., 2017). Only two existing Os-isotope records (from Fe-Mn crusts CD-29 and D11-1) cover the entire period of emplacement (Klemm et al., 2005; Burton, 2006). These records show a shift in seawater ~1870s/188Os to slightly more unradiogenic values, as would be expected as extruded basalts began to weather into the oceans (Fig. 10.4). A number of high-resolution Os-isotope records span the Paleocene-Eocene boundary (Ravizza et al., 2001; Weiczorek et al., 2013; Dickson et al., 2015), when the accumulation rate of NAIP basalts increased significantly at the commencement of seafloor spreading (Storey et al., 2007b). These records actually show a small change (~0.05) to more radiogenic ~1870s/188Os ratios that has been interpreted to reflect enhanced weathering of terrestrial rocks due to elevated atmospheric temperatures and moisture (Ravizza et al., 2001; Dickson et al., 2015). The small magnitude of the increase in ~1870s/188Os compared with other Phanerozoic events (e.g., Cohen et al., 2004) may be due to the competing influences of Os being weathered from both radiogenic and unradiogenic sources at the same time. Several of the NAIP data sets also demonstrate a very brief shift to more unradiogenic values in seawater near the Paleocene-Eocene boundary, which likely records a pulse of unradiogenic Os associated with magmatic activity at the commencement of the PETM (Weiczorek et al., 2013; Dickson et al., 2015), or perhaps an extraterrestrial impact event (c.f. Schaller et al., 2017). The stratigraphic correspondence between unradiogenic Os-isotope ratios and a peak in Hg concentrations in pre-PETM deposits in Svalbard tend to support a volcanic origin for this feature (Jones et al., 2019). This observation highlights the potential for Os isotope stratigraphy to reveal very fine-scale detail of volcanic activity that is pertinent to testing hypotheses relating LIP emplacement to rapid climate change.

The influence of episodic NAIP activity on brief global warming events (hyperthermals) that occurred after the PETM is largely untested. A new Os-isotope record is shown in Figure 10.4 (data in Table 10.1) from IODP Site M0004A (Arctic Ocean) spanning one such event, Eocene Thermal Maximum 2 (~53 Ma). These data were produced using techniques identical to those of Dickson et al. (2015). Initial Os-isotope ratios increase by ~0.1 (0.38–0.48) shortly before the carbon isotope excursion that marks the start of the event, and again in more dramatic fashion at the termination of the carbon cycle perturbation, from ~0.4 to 0.8. The data are similar to ~1870s/188Os ratios of metalliferous sediments from DSDP 549 that contain a shift to more radiogenic values (from ~0.44 to 0.50) across ETM 2 (Peucker-Ehrenbrink & Ravizza, 2012), thus supporting the hypothesis of a rapid increase in continental weathering across the hyperthermal. A single unradiogenic value of 0.18 also stratigraphically precedes ETM 2 at Site
LARGE IGNEOUS PROVINCES

Given the short duration of the ETM 2 (~100 kyrs) the unradiogenic value before the event began is at least consistent with a volcanic trigger. These observations come with the caveat of increasing hydrographic restriction in the Arctic during the Early Eocene (Brinkhuis et al., 2006; Dickson et al., 2015) that may have caused the \(^{187}\)Os/\(^{188}\)Os ratio of Arctic Ocean seawater to deviate from the global value, although the comparison of ETM 2 data from Site M0004A and Site 549 suggest that this effect was small. The NAIP is a clear candidate for future high-resolution Os-isotope studies that seek to unravel the interaction of volcanism and climate change in the early Cenozoic.

Table 10.1 Osmium data for IODP Site M0004A

<table>
<thead>
<tr>
<th>Sample (core-section-top depth-lower depth)</th>
<th>Depth (mcd)</th>
<th>Os (pg/g)</th>
<th>Re (ng/g)</th>
<th>(^{187})Re/(^{188})Os</th>
<th>(^{187})Os/(^{188})Os</th>
<th>±</th>
<th>(^{187})Os/(^{188})Osi</th>
</tr>
</thead>
<tbody>
<tr>
<td>27-1-76-77</td>
<td>368.16</td>
<td>280.6</td>
<td>65.2</td>
<td>1354.76</td>
<td>1.741</td>
<td>0.002</td>
<td>0.529</td>
</tr>
<tr>
<td>27-1-94-95</td>
<td>368.34</td>
<td>671.4</td>
<td>359.3</td>
<td>4021.20</td>
<td>4.419</td>
<td>0.017</td>
<td>0.820</td>
</tr>
<tr>
<td>27-1-110-111</td>
<td>368.50</td>
<td>641.1</td>
<td>161.2</td>
<td>1468.63</td>
<td>1.759</td>
<td>0.003</td>
<td>0.444</td>
</tr>
<tr>
<td>27-1 (120-121)</td>
<td>368.60</td>
<td>330.4</td>
<td>76.3</td>
<td>1335.92</td>
<td>1.670</td>
<td>0.002</td>
<td>0.475</td>
</tr>
<tr>
<td>27-1-129-130</td>
<td>368.69</td>
<td>523.7</td>
<td>99.7</td>
<td>1076.04</td>
<td>1.463</td>
<td>0.004</td>
<td>0.500</td>
</tr>
<tr>
<td>27-1-137-138</td>
<td>368.77</td>
<td>428.7</td>
<td>147.8</td>
<td>2171.30</td>
<td>2.490</td>
<td>0.005</td>
<td>0.546</td>
</tr>
<tr>
<td>27-1-149-150</td>
<td>368.89</td>
<td>514.7</td>
<td>116.3</td>
<td>1304.16</td>
<td>1.650</td>
<td>0.003</td>
<td>0.483</td>
</tr>
<tr>
<td>27-2-4-5</td>
<td>368.94</td>
<td>213.5</td>
<td>15.7</td>
<td>389.80</td>
<td>0.901</td>
<td>0.002</td>
<td>0.552</td>
</tr>
<tr>
<td>27-2-15-16</td>
<td>369.05</td>
<td>630.8</td>
<td>215.0</td>
<td>2096.88</td>
<td>2.256</td>
<td>0.003</td>
<td>0.379</td>
</tr>
<tr>
<td>27-2-25-26</td>
<td>369.15</td>
<td>180.0</td>
<td>31.8</td>
<td>974.19</td>
<td>1.250</td>
<td>0.001</td>
<td>0.378</td>
</tr>
<tr>
<td>27-2-60-61</td>
<td>369.50</td>
<td>370.1</td>
<td>87.6</td>
<td>1324.71</td>
<td>1.366</td>
<td>0.002</td>
<td>0.180</td>
</tr>
<tr>
<td>27-2-131-132</td>
<td>370.21</td>
<td>261.8</td>
<td>25.3</td>
<td>512.49</td>
<td>0.906</td>
<td>0.002</td>
<td>0.447</td>
</tr>
<tr>
<td>27-3-22-23</td>
<td>370.62</td>
<td>334.4</td>
<td>67.6</td>
<td>1130.95</td>
<td>1.370</td>
<td>0.001</td>
<td>0.358</td>
</tr>
</tbody>
</table>

M0004A (Fig. 10.4). Given the short duration of the ETM 2 (~100 kyrs) the unradiogenic value before the event began is at least consistent with a volcanic trigger. These observations come with the caveat of increasing hydrographic restriction in the Arctic during the Early Eocene (Brinkhuis et al., 2006; Dickson et al., 2015) that may have caused the \(^{187}\)Os/\(^{188}\)Os ratio of Arctic Ocean seawater to deviate from the global value, although the comparison of ETM 2 data from Site M0004A and Site 549 suggest that this effect was small. The NAIP is a clear candidate for future high-resolution Os-isotope studies that seek to unravel the interaction of volcanism and climate change in the early Cenozoic.

10.3.4. The Deccan Traps (~66.3–65.5 Ma)

Ar-Ar age estimates of the timing of LIP emplacement place the Deccan Traps close to the mass-extinction event at the Cretaceous-Paleogene boundary (K-Pg)
Volcanism has long been hypothesized as a trigger for one of the most profound episodes of Phanerzoic ocean deoxygenation, at the Cenomanian-Turonian boundary. This event, Oceanic Anoxic Event 2 (OAE 2), took place at a similar time as the emplacement of several LIPs, most notably the Caribbean LIP (CLIP) and the High Arctic LIP (HALIP). Early studies attributed concentration spikes of mafic-derived trace elements in sedimentary rocks to infer volcanism (e.g., Orth et al., 1993), and this approach has continued recently (Eldrett et al., 2014). The publication of the first Os-isotope records for the Cenomanian-Turonian boundary, by Turgeon and Creaser (2008), revealed mantle-like signatures in global seawater that were sustained for hundreds of thousands of years during the acme of the environmental changes associated with OAE 2. These data firmly supported the significant role of voluminous volcanic activity in driving and sustaining widespread environmental change during this event, presumably through volcanism-climate feedbacks. Such feedbacks may have included the delivery of biolimiting nutrients and sulfate to the oceans, stimulating organic matter production and the consequent consumption of dissolved oxygen in many parts of the oceans (Adams et al., 2010; Jenkyns, 2010). The Os-isotope data sets of Turgeon and Creaser (2008) have since been supplemented by Du Vivier et al. (2014, 2015), who were able to show how abrupt shifts in $^{187}\text{Os}/^{188}\text{Os}$ ratios toward
mantle values (~0.15) occurred several thousands of years in advance of the positive carbon isotope excursion that defines the event (c.f. Tsikos et al., 2004) (Fig. 10.6). The persistence of unradiogenic Os-isotope values over a period of several hundreds of thousands of years, far in excess of the Os residence time in the oceans, demonstrates the prolonged period of time during which Os was weathered from volcanic rocks on land and/or by submarine basalt-seawater interaction (Turgeon & Creaser, 2008). changes in the concentration of Os in sedimentary successions throughout the phase of otherwise unradiogenic Os-isotope ratios within OAE 2 may suggest small changes in the amount of Os being weathering into the oceans (Du Vivier et al., 2014, 2015). However, despite the clear signature of LIP activity afforded by the unradiogenic Os-isotope values that span OAE 2, these data are not able to unambiguously fingerprint the source of the unradiogenic Os flux. Various studies continue to debate the relative importance of volcanism associated with the HALIP (Eldrett et al., 2017) and the CLIP (Kuroda et al., 2007; Holmden et al., 2016; Scaife et al., 2017), while Ar-Ar ages for eruptive events associated with the Madagascan LIP (Cucinelli et al., 2010) also slightly overlap the age of the Cenomanian-Turonian boundary (Meyers et al., 2012). It is possible that these events all contributed in some way to the widespread environmental changes that occurred during OAE 2.

OAE 2 provides an interesting case study of hysteresis in Earth-system processes. The lead-lag relationship between Os-isotope and C-isotope changes at the onset of OAE 2 clearly supports the contention of a volcanic trigger with the rapid emplacement of submarine basalts, probably associated with the CLIP, being rapidly weathered into seawater. However, the shift to more radiogenic Os-isotope ratios in marine sediments before the end of OAE 2 does not clearly link to a decrease in global temperatures, as would be expected if volcanic CO₂ emissions slowed and were further reduced by silicate weathering and organic-carbon burial feedbacks (Robinson et al., 2019). As well as driving transient environmental changes, LIP volcanism may also drive Earth’s climate system into new, quasi-stable states.

10.3.6. The Ontong-Java Plateau (~126–117 Ma)

Os-isotope stratigraphy has been instrumental in demonstrating that the emplacement of the Ontong-Java LIP in the ancestral Pacific Ocean occurred at precisely the same time as an episode of major environmental change, during Oceanic Anoxic Event 1a (Tejada et al., 2009; Bottini et al., 2012). These Os-isotope records, from locations in two different ocean basins, have strikingly similar 187Os/188Os ratios when compared with the carbon- and bio-stratigraphic frameworks for each locality (Malinverno et al., 2010) (example in Fig. 10.7). The Os-isotope records clearly support three major findings. First, the major phase of environmental change during OAE 1a (the “Selli” level; c.f. Coccioni et al., 1987) coincided with almost mantle-like 187Os/188Os ratios of ~0.15–0.2 (Bottini et al., 2012). These unradiogenic values must have been maintained for almost 900,000 years by the continual hydrothermal weathering of very large quantities of mafic and ultramafic rocks during a major phase of submarine LIP emplacement. Second, the 187Os/188Os records bear some similarity to events surrounding Late Cretaceous OAE 2 because the influence of LIP weathering on ocean chemistry began prior to the onset of OAE 1a (Bottini et al., 2012). This lead-lag relationship implies a causal relationship between the O-J LIP and major environmental change during OAE 1a. Somewhat enigmatic, less radiogenic 187Os/188Os ratios in Upper Barremian strata of the Cismon core, Italy, hint at an even earlier, less-intense phase of volcanism that may have been linked to a biocalcification crisis in nanofossil flora (Erba et al., 2010; Bottini et al., 2012). The existing data resolution is, however, not sufficient to resolve this hypothesis. Third, 187Os/188Os ratios exhibit significant
shifts throughout OAE 1a, with radiogenic values occurring at the base of the Selli level at Gorgo a Cerbara (Italy; Tejada et al., 2009) and Cismon (Bottini et al., 2012). As with all 187Os/188Os$_0$ records, such shifts cannot be uniquely interpreted as a reflection of continental weathering because of the interplay between the weathering of both mafic and continental rocks. Circumstantial reasoning based on coeval proxy data, however, can assist with qualitative interpretations of such stratigraphic fluctuations in 187Os/188Os$_0$.

10.3.7. The Karoo-Ferrar LIP (189–178 Ma)

Volcanism in the Karoo and Ferrar (K-F) provinces, in present-day South Africa, South America, and Antarctica, has been linked to episodes of rapid environmental change in the Early Toarcian, particularly the Toarcian Oceanic Anoxic Event (T-OAE). Radiometric dating of rocks attributable to the Karoo and Ferrar provinces indicate an overall duration of several millions of years (e.g., Duncan et al., 1997; Sell et al., 2014), with a much shorter period of intense activity around the T-OAE itself, including hydrothermal venting, at ~183 Ma (e.g., Svensen et al., 2007, 2012; Burgess et al., 2015). Three marine Os$_0$ isotope records span part of the duration of the K-F LIP, from Yorkshire, UK (Cohen et al., 2004); North Wales, UK (Percival et al., 2016); and western Canada (Them et al., 2017). A fourth Os-isotope data set was recently measured in lacustrine shales, of the Chinese D’hanzhai member, which contain distinctly more radiogenic values than the marine sections (Xu et al., 2017). The marine records all retain a similar range of values, which point to a well-mixed ocean inventory of Os in the early Jurassic (Fig. 10.8). They also all exhibit large increases in 187Os/188Os$_0$ ratios toward radiogenic values across the T-OAE in the range 0.3 to 0.8 (Fig. 10.8), which is somewhat counterintuitive given the intense volcanic activity that took place at that time. The explanation for this trend may lie partly in the largely subaerial nature of the K-F LIP and the associated lack of continental breakup, which inhibited the weathering rate of mafic rocks into the oceans following emplacement (Percival et al., 2016). Also, volcanic-driven climate warming probably contributed to the intense weathering of continental crust that would have caused a large influx of radiogenic Os to the oceans, thereby overwhelming any unradiogenic flux (Cohen et al., 2004). The Os isotope records spanning part of the K-F LIP clearly demonstrate the unique characteristics of the climatic and weathering feedbacks associated with this LIP, certainly in contrast with large LIP events of the Cretaceous (Ontong-Java and Caribbean LIPs) (Figs. 10.6 and 10.7).

However, no single Os isotope record has yet been produced that spans the entire estimated K-F duration. Establishing such records in the future will be useful to test hypotheses linking volcanism to early Jurassic climatic change, particularly in light of recent studies that tend to suggest ocean deoxygenation began considerably earlier than the T-OAE, closer to the putative onset of K-F volcanism before ~183 Ma (Them et al., 2018).

10.3.8. The Central Atlantic Magmatic Province (201.6–200.9 Ma)

The Central Atlantic Magmatic Province (CAMP) has been the subject of many detailed studies that have established precise chronologies of volcanic pulses from ~201.6 to 200.9 Ma (e.g., Schoene et al., 2010; Blackburn et al., 2013; Davies et al., 2017). These, and other stratigraphic studies, have shown a close temporal relationship between initial pulses of intrusive volcanism, a first-order mass extinction, and a large negative carbon isotope excursion of only a few tens of kyrs duration (Hesselbo et al., 2002; Ruhl et al., 2010; Whiteside et al., 2010). While there are two Os$_0$ isotope records that span the duration of the CAMP, from the southwest UK (Cohen & Coe, 2002) and from Japan (Kuroda et al., 2010), neither of these is presently able to resolve the impact of the CAMP on seawater chemistry with comparable temporal precision to U-Pb chronologies (e.g., Blackburn et al., 2013) or chemostratigraphic studies (e.g., Hesselbo et al., 2002;
Both Os records contain evidence for a decrease in the \(^{187}\text{Os}/^{188}\text{Os}\) ratio of seawater between the latest Triassic (Rhaetian) and the early Jurassic (Hettangian) broadly from ~0.3–0.6 to 0.1–0.5. However, the UK record has no data from the critical interval encompassing the earliest emplacement of intrusive magmas and the end-Triassic mass extinction, corresponding to the upper Westbury and Lilstock Formations (Cohen & Coe, 2002) (Fig. 10.9). The Japanese record, in contrast, has a higher stratigraphic resolution, but differs from the UK record in two respects: first, minimum \(^{187}\text{Os}/^{188}\text{Os}\) ratios of ~0.2 occur in late Triassic deposits in Japan, but in early Jurassic deposits in the UK; and second, \(^{187}\text{Os}/^{188}\text{Os}\) ratios are slightly more radiogenic throughout the Japanese section than in the UK. The stratigraphic differences between the sections may be due to the difficulty of correlating the Japanese locality with the northern European biostratigraphic scheme (Kuroda et al., 2010), or to heterogeneity in late Triassic–early Jurassic seawater \(^{187}\text{Os}/^{188}\text{Os}\) ratios. As with the K-F LIP, the potential for Os-isotope chemostratigraphy to unravel the impact of the CAMP on global seawater chemistry at a resolution comparable to the U-Pb geochronology has not yet been fully realized.

10.3.9. The Siberian Traps (~252.2–250.2 Ma)

Zircon U-Pb ages of the Siberian Traps have been used to formulate a model of LIP evolution in relation to the largest mass extinction event of the Phanerozoic Eon.

Volcanism began at ~252.4 Ma and ended before ~250.2 ± 0.3 Ma (Kamo et al., 2003; Bowring et al., 1998; Burgess & Bowring, 2015; Burgess et al., 2015, 2017). The mass extinction horizon itself has been tied closely to the first
evidence for intrusive volcanism at ~251.9 Ma (Burgess et al., 2017). Despite the detailed chronological constraints on the Siberian Traps, osmium isotope stratigraphy has not yet been applied to this event in great detail. $^{187}\text{Os}/^{188}\text{Os}_{(i)}$ values have been estimated from Re-Os isochrons with ages of ~252–252.5 Ma, to the range of 0.56 to 0.62 (Georgiev et al., 2011) (Fig. 10.10). These data tend to suggest a limited evolution of seawater $^{187}\text{Os}/^{188}\text{Os}$ across the early interval of volcanism, although younger Re-Os data sets (247–234 Ma) have $^{187}\text{Os}/^{188}\text{Os}_{(i)}$ values of ~0.8–1.4, implying a slight evolution of seawater to more radiogenic values by the early Triassic (Yang et al., 2004; Xu et al., 2009; Pašava et al., 2009). Nonetheless, the data are of low resolution and do not clearly cover the major phase of intrusive volcanism, allowing for the large uncertainties in the Re-Os estimates of depositional ages and $^{187}\text{Os}/^{188}\text{Os}_{(i)}$ (Georgiev et al., 2011). A single stratigraphic record at Opal Creek, Alberta, exhibits a decrease in $^{187}\text{Os}/^{188}\text{Os}_{(i)}$ from 0.54 to 0.35 following the Late Permian extinction level, followed by a return to ~0.60 at the Permian-Triassic boundary (Schoepfer et al., 2012) (Fig. 10.10). These data suggest a transient excursion in seawater Os chemistry toward unradiogenic $^{187}\text{Os}/^{188}\text{Os}$ values during an interval of intrusive volcanism in the Siberian Traps (c.f. Burgess et al., 2017), which is temporally constrained by U-Pb ages to a duration <60 kyrs (c.f. Burgess et al., 2014).

Additional data for this section show a small excursion to an unradiogenic value of ~0.20 shortly following the main extinction level (Georgiev et al., 2015). The reasons for this brief excursion are not clear but may be linked to variations in subaerial basalt weathering and/or the transport of radiogenic or unradiogenic weathering signals from the Siberian LIP to the global ocean. The relatively small magnitude of documented $^{187}\text{Os}/^{188}\text{Os}_{(i)}$ variation for the Siberian Traps, compared with, for example, the CAMP or OJP LIPs, may be related to the high latitude of their emplacement, which would have resulted in a low weathering rate. Thus, the impact of the Siberian Traps on ocean Os chemistry may have been disproportionate to their considerable environmental impact.

10.4. SUMMARY: OS-ISOTOPE STRATIGRAPHY AND LIPS

Os isotope data from a number of marine sedimentary successions have been instrumental in establishing the link between LIP volcanism and major environmental changes in the Early Cretaceous (OAE 1a) and Late Cretaceous (OAE 2), with significant shifts in seawater chemistry to mantle-like values over timescales of 10^4–10^5 years (Turgeon & Creaser, 2008; Tejada et al., 2009; Bottini et al., 2012; Du Vivier et al., 2014, 2015). The data have been useful in distinguishing the effect of extraterrestrial impacts and LIP volcanism on major extinction events (Ravizza & Peucker-Ehrenbrink, 2003; Robinson et al., 2009) and in testing hypotheses of Earth-system feedbacks during LIP-inspired intervals of profound global warming (Cohen et al., 2004; Dickson et al., 2015; Percival et al., 2016; Them et al., 2017).

Nonetheless, the usefulness of Os-isotope stratigraphy to understand the timing and effects of LIP volcanism is capable of further refinement. Os isotopes have most commonly been used to investigate the effects of volcanism on stratigraphically well-defined episodes of environmental change, thus testing putative links between volcanism and climate. While these groundbreaking studies established the fundamental basis for this approach, the resulting data do not often span the full interval of LIP activity. Additionally, the fundamental drivers of the Os-isotope budget of the oceans (the weathering of continental and oceanic rocks) make it difficult to uniquely disentangle the effects of basalt and continental rock weathering on seawater $^{187}\text{Os}/^{188}\text{Os}$ ratios. Many different factors may cause the balance of the weathering products of these sources to vary over time, in addition to the simple presence of a LIP. Such factors include the prevalence of intrusive or extrusive volcanism; the amount and composition of Os liberated from igneous and sedimentary rocks during intrusive events; the latitude of LIP
emplacement (and thus proximity to regions of intense physical or chemical weathering); the association of LIP emplacement with continental breakup (i.e., the CAMP); and the effects of volcanism-climate feedbacks on the intensity and/or congruency of global weathering regimes. The heterogeneous Os isotope signatures of Phanerozoic LIPs reflect the many ways in which these factors can combine in both time and space.

The recent emergence of mercury (Hg) concentrations as a proxy for volcanism (e.g., Sanei et al., 2012; Percival et al., 2015; Charbonnier et al., 2017; Scaife et al., 2017; Percival et al., Chapter 11 this volume) opens the possibility of pairing Os-isotopes with Hg analyses to help interpret stratigraphic variations in 187Os/188Os$_{0}$ (e.g., Percival et al., 2016) (Fig. 10.8). Additionally, the role of continental rock weathering as a driver of Os-isotope change in the oceans might also be constrained by pairing these measurements with other emerging proxies for silicate weathering, such as Li isotopes. One such application of Os and Li isotopes, to OAE 2, has been used to calculate the mass of basalts weathered into the oceans during that event (Pogge van Strandmann et al., 2013). Paired applications of Os and Li may yield fruitful insights into global weathering patterns related to other LIP events.

Os-isotope stratigraphy holds a crucial place in the compendium of approaches used to investigate the effect of LIPs on the Earth's environment. Future applications of this technique at even finer temporal scales will offer further insights into the timing and environmental consequences of LIPs.

ACKNOWLEDGMENTS

This work was supported by Natural Environmental Research Council standard grant NE/F021313/1.

REFERENCES

