INTRODUCTION

- One billion people become infected with influenza A virus (IAV) every year with 3-5 million cases showing severe disease and approximately 500,000 deaths.
- Seasonal IAV vaccines are designed on mutations in either the haemagglutinin or neuraminidase viral surface proteins.
- IAV vaccines are based on strain prediction that is recommended by the WHO using epidemiology data from the winter season in the opposite hemisphere.
- There is high interest in developing a universal vaccine based on the capability of the conserved IAV proteins to provide immunogenic protection to influenza A infection.
- The ferret is the 'gold standard' small animal model to study IAV infection and is the model of choice to assess seasonal vaccine immunity, which is also a novel area for exploration.
- The macromolecular structure of the 3 influenza A conserved proteins from sub-type A/California/04/09: HA, NA, NP, M1, NS-1, N2, PB1, PB2, and PA.

AIMS

- To identify the commonly immunogenic H1N1/ A/California/04/09 virus proteins and peptides that are capable of stimulating an immune response, assessed by interferon gamma (IFN-γ) ELISpot for uninfected, H1N1 and H3N2 ferret groups.

RESULTS

- The data reported supports and strengthens the use of the ferret as the ‘gold standard’ small animal for study IAV disease.

DISCUSSION

- To study peptide sequences and map epitope in greater depth by studying cell-mediated immunity and characterization of the adaptive immune response to the antigens identified from this research.
- To design, characterize and develop MVA constructs of the most immunogenic proteins NP, M1 and NS-1.
- To deliver MVA constructs expressing immunogenic IAV proteins to study cellular immunity in the lower respiratory tract (the lung) using the ferret model.
- To develop new immunological tests and identify new biomarkers of IAV disease and assess their role in IAV infection.

REFERENCES

ACKNOWLEDGEMENTS

I would like to thank all of my PhD supervisors and the support of Dr Simon Funnel, Dr Yer Pall, Dr Sue Charlton and Dr Bassam Hallis for their advice and support during my PhD project to date. Additionally, I would also like to acknowledge and thank the Biological Investigations Group for conducting the historical studies in compliance with UK Home Office regulatory requirements.