Copy the page URI to the clipboard
Baqué, Mickael; Backhaus, Theresa; Meeßen, Joachim; Hanke, Franziska; Böttger, Ute; Ramkissoon, Nisha; Olsson-Francis, Karen; Baumgärtner, Michael; Billi, Daniela; Cassaro, Alessia; de la Torre Noetzel, Rosa; Demets, René; Edwards, Howell; Ehrenfreund, Pascale; Elsaesser, Andreas; Foing, Bernard; Foucher, Frédéric; Huwe, Björn; Joshi, Jasmin; Kozyrovska, Natalia; Lasch, Peter; Lee, Natuschka; Leuko, Stefan; Onofri, Silvano; Ott, Sieglinde; Pacelli, Claudia; Rabbow, Elke; Rothschild, Lynn; Schulze-Makuch, Dirk; Selbmann, Laura; Serrano, Paloma; Szewzyk, Ulrich; Verseux, Cyprien; Wagner, Dirk; Westall, Frances; Zucconi, Laura and de Vera, Jean-Pierre P.
(2022).
DOI: https://doi.org/10.1126/sciadv.abn7412
Abstract
Two rover missions to Mars aim to detect biomolecules as a sign of extinct or extant life with, among other instruments, Raman spectrometers. However, there are many unknowns about the stability of Raman-detectable biomolecules in the martian environment, clouding the interpretation of the results. To quantify Raman-detectable biomolecule stability, we exposed seven biomolecules for 469 days to a simulated martian environment outside the International Space Station. Ultraviolet radiation (UVR) strongly changed the Raman spectra signals, but only minor change was observed when samples were shielded from UVR. These findings provide support for Mars mission operations searching for biosignatures in the subsurface. This experiment demonstrates the detectability of biomolecules by Raman spectroscopy in Mars regolith analogs after space exposure and lays the groundwork for a consolidated space-proven database of spectroscopy biosignatures in targeted environments.