Copy the page URI to the clipboard
Sobianin, Ihor; Psoma, Sotiria; Johnson, Jeffrey; Jowers, Iestyn and Tourlidakis, Antonios
(2022).
Abstract
Implantable and wearable biomedical devices suffer from a limited lifespan of on-board batteries which results in a requirement to change the battery or the device itself causing additional physical discomfort. In order to overcome this, various energy harvesters have been developed. The human body possesses several types of energy available for scavenging through appropriately designed energy harvesting devices, while cardiovascular system in particular represents a constant reliable source of mechanical energy from vibration. Most conventional energy harvesters exploit only a single phenomenon, such piezo- or triboelectricity, thus producing reduced power density. As an improvement, hybridisation of energy harvesters intends to negate this drawback by simultaneously scavenging energy by multiple harvesters.
In the present work, the reverse electrowetting on dielectric (REWOD) phenomenon is combined with the piezoelectric effect in a proof-of-concept hybrid harvester for scavenging biomechanical energy from arterial or other type pulsations. A mathematical model of the harvester was developed, and a computational investigation using CFD, and fluid-structure interaction simulations were carried out using the COMSOL Multiphysics software. The effect of the materials of piezoelectric film and geometrical features of the harvester on parameters such as the displacement, the frequency of pulsations and the energy produced were studied. An experimental setup that could imitate the displacements caused from arterial pulsations was designed and the produced electrical energy characteristics were analysed. A comparison between experimental and computational data was carried out and demonstrated a good agreement. Dependencies between geometrical parameters and electrical output were obtained, recommendation on piezoelectric materials and design solutions were provided.