Lacunarity transition in a chaotic dynamical system

Cucurull, Bartomeu; Pradas, Marc and Wilkinson, Michael (2022). Lacunarity transition in a chaotic dynamical system. Journal of Physics A: Mathematical and Theoretical, 55, article no. 335001.

DOI: https://doi.org/10.1088/1751-8121/ac7f6a

Abstract

Experiments investigating particles floating on a randomly stirred fluid show regions of very low density, which are not well understood. We introduce a simplified model for understanding sparsely occupied regions of the phase space of non-autonomous, chaotic dynamical systems, based upon an extension of the skinny bakers’ map. We show how the distribution of the sizes of voids in the phase space can be mapped to the statistics of the running maximum of a Wiener process. We find that the model exhibits a lacunarity transition, which is characterised by regions of the phase space remaining empty as the number of trajectories is increased.

Viewing alternatives

Download history

Metrics

Public Attention

Altmetrics from Altmetric

Number of Citations

Citations from Dimensions

Item Actions

Export

About