Short communication: On the potential use of materials with heterogeneously distributed parent and daughter isotopes as primary standards for non-U–Pb geochronological applications of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS)

Popov, Daniil V. (2022). Short communication: On the potential use of materials with heterogeneously distributed parent and daughter isotopes as primary standards for non-U–Pb geochronological applications of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Geochronology, 4(1) pp. 399–407.

DOI: https://doi.org/10.5194/gchron-4-399-2022

Abstract

Many new geochronological applications of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) have been proposed in recent years. One of the problems associated with this rapid growth is the lack of chemically and isotopically homogeneous matrix-matched primary standards to control elemental fractionation during LA-ICP-MS analysis. In U–Pb geochronological applications of LA-ICP-MS this problem is often addressed by utilising matrix-matched primary standards with variable chemical and isotopic compositions. Here I derive a set of equations to adopt this approach for non-U–Pb geochronological applications of LA-ICP-MS.

Viewing alternatives

Download history

Metrics

Public Attention

Altmetrics from Altmetric

Number of Citations

Citations from Dimensions

Item Actions

Export

About