The HDO cycle on Mars: Comparison of ACS observations with GCM simulations

Rossi, Loïc; Vals, Margaux; Alday, Juan; Montmessin, Franck; Fedorova, Anna; Trokhimovskiy, Alexander; Korablev, Oleg; Lefèvre, Franck; Gonzalez‐Galindo, Francisco; Luginin, Mikhail; Bierjon, Antoine; Forget, François and Millour, Ehouarn (2022). The HDO cycle on Mars: Comparison of ACS observations with GCM simulations. Journal of Geophysical Research: Planets, 127(8), article no. e2022JE007201.

DOI: https://doi.org/10.1029/2022je007201

Abstract

The D/H ratio and its implications on the atmospheric escape, make it an essential observable to study the current and past inventory of water on Mars. With the arrival of the Trace Gas Orbiter around Mars, new measurements of the D/H ratio are now available and require tools to interpret the observations and understand the HDO cycle. We here present simulations of an updated version of the LMD Mars GCM which includes HDO and in particular the fractionation processes it undergoes. We compare our model simulations with the HDO observations in solar occultation from ACS-MIR on-board TGO (Alday et al., 2021). The model successfully reproduces the general trends of the D/H ratio, indicating that the main physical processes are captured by theory. A consistent simulation of condensation processes is found to be key in the representation of the D/H ratio. Improvements in the representation of clouds and on the water cycle will help improving the representation of the HDO cycle and better help extrapolate back in times the conditions of water escape on Mars.

Viewing alternatives

Download history

Metrics

Public Attention

Altmetrics from Altmetric

Number of Citations

Citations from Dimensions

Item Actions

Export

About