Copy the page URI to the clipboard
Fraser-McDonald, Alice; Boardman, Carl; Gladding, Toni; Burnley, Stephen and Gauci, Vincent
(2022).
DOI: https://doi.org/10.1177/0734242X221086955
Abstract
Trees have morphological adaptations that allow methane (CH4) generated below ground to bypass oxidation in aerobic surface soils. This natural phenomenon however has not been measured in a landfill context where planted trees may alter the composition and magnitude of CH4 fluxes from the surface. To address this research gap, we measured tree stem and soil greenhouse gas (GHG) emissions (CH4 and CO2) from a closed UK landfill and comparable natural site, using an off-axis integrated cavity output spectroscopy analyser and flux chambers. Analyses showed average CH4 stem fluxes from the landfill and non-landfill sites were 31.8 ± 24.4 µg m–2 h–1 and –0.3 ± 0.2 µg m–2 h–1, respectively. The landfill site showed seasonal patterns in CH4 and CO2 stem emissions, but no significant patterns were observed in CH4 and CO2 fluxes at different stem heights or between tree species. Tree stem emissions accounted for 39% of the total CH4 surface flux (7% of the CO2); a previously unknown contribution that should be included in future carbon assessments.
Viewing alternatives
Download history
Metrics
Public Attention
Altmetrics from AltmetricNumber of Citations
Citations from DimensionsItem Actions
Export
About
- Item ORO ID
- 82653
- Item Type
- Journal Item
- Project Funding Details
-
Funded Project Name Project ID Funding Body Not Set Not Set The Open University (OU) - Keywords
- Carbon cycle; landfill; tree stem CH4; spatial variability; temporal variability; GHG emissions
- Academic Unit or School
-
Faculty of Science, Technology, Engineering and Mathematics (STEM) > Engineering and Innovation
Faculty of Science, Technology, Engineering and Mathematics (STEM) - Copyright Holders
- © 2022 The Authors
- Depositing User
- Alice Fraser-McDonald