Copy the page URI to the clipboard
Davis, Joel M.; Aranos, Liliana; Dickeson, Zachary I. and Fawdon, Peter
(2022).
DOI: https://doi.org/10.1029/2021je007021
Abstract
There is conflicting evidence for an ancient ocean which occupied the northern hemispheric basin on Mars. Along different regions of the dichotomy boundary, sediment fans have been interpreted as either forming into a large water body or a series of smaller paleolake basins. Here, we investigate fluvial systems in the Memnonia Sucli region of Mars, set along the dichotomy, which comprise erosional valley networks, paleolake basins, inverted channel systems, and sediment fans. We focus our analysis on the evolution of the upslope catchment and characterizing the ancient environment of a large, downslope basin, bound by the topographic dichotomy and the Medusae Fossae Formation. The catchment fluvial systems comprise highly degraded valley networks and show a complex history of incision and filling, influenced by paleolake basin overflow, impact crater damming, aggradation, and possibly a downstream water body. The morphology of the sediment fans is consistent with either fluvial fans or deltas and they form at discrete elevations, rather than a common elevation plane. Our analysis is consistent with the sediment fans forming into a series of paleolake basins set along the dichotomy, rather than into a large inner sea or ocean-sized water body. The fluvial systems were likely active between the mid Noachian and early Hesperian periods. Our results demonstrate the complex, multi-phase evolution of fluvial systems on ancient Mars and highlight the importance of regional and local studies when characterising ancient regions of the dichotomy.