Copy the page URI to the clipboard
Zambon, F.; Carli, C.; Wright, J.; Rothery, D. A.; Altieri, F.; Massironi, M.; Capaccioni, F. and Cremonese, G.
(2022).
DOI: https://doi.org/10.1029/2021je006918
Abstract
MESSENGER mission data allowed the entire surface of Mercury to be mapped at various spatial scales, from both geological and compositional stand points. Here, we present a spectral analysis of the H05-Hokusai quadrangle, using data acquired by the Mercury Dual Imaging System-Wide-Angle Camera. We defined a suitable set of parameters, such as reflectance and spectral slopes, to study the spectral variation though the definition of spectral units. The determination of spectral units permits to infer the physical and compositional properties of a surface by processing several parameters simultaneously, instead of the more traditional approach of interpreting each single parameter separately. We identified 11 spectral units within H05, 6 large scale and 5 localized units. The large scale units include the northern smooth plains of Borealis Planitia. South-western H05 is characterized by two widespread spectral units, partially overlapping intercrater plains and intermediate plains. Furthermore, we found very localized spectral units corresponding to the low-reflectance blue material of Rachmaninoff basin and the high-reflectance red material of Nathair Facula. We investigated the link between spectral units and compositional maps obtained by GRS and XRS, to associate compositional information to the spectral units. We found some spectral units are correlated with Mg and Al variations displayed in the elemental maps. This implies that spectral variations associated to these units are mainly linked with composition rather than terrain maturity and/or grain size effects.
Viewing alternatives
Download history
Metrics
Public Attention
Altmetrics from AltmetricNumber of Citations
Citations from DimensionsItem Actions
Export
About
- Item ORO ID
- 81727
- Item Type
- Journal Item
- ISSN
- 2169-9100
- Keywords
- Space and Planetary Science; Earth and Planetary Sciences (miscellaneous); Geochemistry and Petrology, Geophysics
- Academic Unit or School
-
Faculty of Science, Technology, Engineering and Mathematics (STEM) > Physical Sciences
Faculty of Science, Technology, Engineering and Mathematics (STEM) - Copyright Holders
- © 2022 American Geophysical Union
- SWORD Depositor
- Jisc Publications-Router
- Depositing User
- Jisc Publications-Router