Copy the page URI to the clipboard
Reed, Andy; Dooley, Laurence and Kouadri Mostéfaoui, Soraya
Abstract
Museum websites have been designed to provide access for different types of users, such as museum staff, teachers and the general public. Therefore, understanding user needs and demographics is paramount to the provision of user-centred features, services and design. Various approaches exist for studying and grouping users, with a more recent emphasis on data-driven and automated methods. In this paper, we investigate user groups of a large national museum’s website using multivariate analysis and machine learning methods to cluster and categorise users based on an existing user survey. In particular, we apply the methods to the dominant group - general public - and show that subgroups exist, although they share similarities with clusters for all users. We find that clusters provide better results for categorising users than the self-assigned groups from the survey, potentially helping museums develop new and improved services.
Viewing alternatives
Download history
Item Actions
Export
About
- Item ORO ID
- 79542
- Item Type
- Conference or Workshop Item
- Academic Unit or School
-
Faculty of Science, Technology, Engineering and Mathematics (STEM) > Computing and Communications
Faculty of Science, Technology, Engineering and Mathematics (STEM) - Research Group
- Centre for Research in Computing (CRC)
- Copyright Holders
- © 2021 IEEE
- Depositing User
- Andy Reed