Microtextures in the Chelyabinsk impact breccia reveal the history of Phosphorus‐Olivine‐Assemblages in chondrites

Walton, Craig R.; Baziotis, Ioannis; Černok, Ana; Ferrière, Ludovic; Asimow, Paul D.; Shorttle, Oliver and Anand, Mahesh (2021). Microtextures in the Chelyabinsk impact breccia reveal the history of Phosphorus‐Olivine‐Assemblages in chondrites. Meteoritics & Planetary Science (Early Access).

DOI: https://doi.org/10.1111/maps.13648

Abstract

The geochemistry and textures of phosphate minerals can provide insights into the geological histories of parental asteroids, but the processes governing their formation and deformation remain poorly constrained. We assessed phosphorus-bearing minerals in the three lithologies (light, dark, and melt) of the Chelyabinsk (LL5) ordinary chondrite using scanning electron microscope, electron microprobe, cathodoluminescence, and electron backscatter diffraction techniques. The majority of studied phosphate grains appear intergrown with olivine. However, microtextures of phosphates (apatite [Ca5(PO4)3(OH,Cl,F)] and merrillite [Ca9NaMg(PO4)7]) are extremely variable within and between the differently shocked lithologies investigated. We observe continuously strained as well as recrystallized strain-free merrillite populations. Grains with strain-free subdomains are present only in the more intensely shocked dark lithology, indicating that phosphate growth predates the development of primary shock-metamorphic features. Complete melting of portions of the meteorite is recorded by the shock-melt lithology, which contains a population of phosphorus-rich olivine grains. The response of phosphorus-bearing minerals to shock is therefore hugely variable throughout this monomict impact breccia. We propose a paragenetic history for P-bearing phases in Chelyabinsk involving initial phosphate growth via P-rich olivine replacement, followed by phosphate deformation during an early impact event. This event was also responsible for the local development of shock melt that lacks phosphate grains and instead contains P-enriched olivine. We generalize our findings to propose a new classification scheme for Phosphorus-Olivine-Assemblages (Type I–III POAs). We highlight how POAs can be used to trace radiogenic metamorphism and shock metamorphic events that together span the entire geological history of chondritic asteroids.

Viewing alternatives

Download history

Metrics

Public Attention

Altmetrics from Altmetric

Number of Citations

Citations from Dimensions

Item Actions

Export

About

Recommendations