Copy the page URI to the clipboard
Dickson, Alexander J.; Bagard, Marie-Laure; Katchinoff, Joachim A.R.; Davies, Marc; Poulton, Simon W. and Cohen, Anthony S.
(2021).
DOI: https://doi.org/10.1016/j.epsl.2021.116814
Abstract
A multi-million-year decrease in global temperatures during the Eocene was accompanied by large reorganisations to ocean circulation, ocean chemistry and biological productivity. These changes culminated in the rapid growth of grounded ice on Antarctica during the Eocene–Oligocene climate transition (EOT), ∼34 million years ago. However, while it is likely that environmental perturbations of this magnitude altered the oceanic oxygen inventory, the sign and magnitude of the response is poorly constrained. We show that euxinic, hydrographically restricted conditions developed in the Austrian Molasse Basin during the EOT. The isotopic compositions of molybdenum and uranium captured by sediments accumulating in the Molasse Basin at this time reveal that the global extent of sulfidic conditions during the EOT was not appreciably different to that of the Early Eocene greenhouse world. Our results suggest that the early Cenozoic oceans were buffered against extreme long-term changes in oxygenation.
Viewing alternatives
Download history
Metrics
Public Attention
Altmetrics from AltmetricNumber of Citations
Citations from DimensionsItem Actions
Export
About
- Item ORO ID
- 75601
- Item Type
- Journal Item
- ISSN
- 0012-821X
- Academic Unit or School
-
Faculty of Science, Technology, Engineering and Mathematics (STEM) > Environment, Earth and Ecosystem Sciences
Faculty of Science, Technology, Engineering and Mathematics (STEM) - Copyright Holders
- © 2021 The Authors
- Depositing User
- ORO Import