Enhanced photoelectrochemical response of 1D TiO2 by atmospheric pressure plasma surface modification

How to cite:


For guidance on citations see FAQs.

© 2021 Hydrogen Energy Publications LLC

https://creativecommons.org/licenses/by-nc-nd/4.0/

Link(s) to article on publisher’s website:
http://dx.doi.org/doi:10.1016/j.ijhydene.2021.01.142

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online's data policy on reuse of materials please consult the policies page.
Enhanced photoelectrochemical response of 1D TiO₂ by atmospheric pressure plasma surface modification

Vinayak Vitthal Satale a,b, Vattikondala Ganesh b, Avishek Dey c, Satheesh Krishnamurthy c,**, S. Venkataprasad Bhat a,b,*

a SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
b Department of Physics & Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
c School of Engineering and Innovation, The Open University, Milton Keynes, MK76 AA, United Kingdom

HIGHLIGHTS
• 1D TNRs treated with atmospheric pressure plasma jet (APPJ) at room temperature.
• A four-fold enhancement in the photocurrent after the He-APPJ functionalization.
• PEC performance improved, on par with the best in the literature.

GRAPHICAL ABSTRACT

ABSTRACT

In this paper we demonstrate the use of atmospheric pressure plasma jet (APPJ) to functionalize the surface of hydrothermally synthesized vertically aligned TiO₂ nanorods (TNRs) for photoelectrochemical (PEC) application. The TNRs functionalized with the atmospheric pressure He-plasma showed relatively higher crystallinity, improved light absorption, and change in the morphology with additional surface area, leading to an enhanced photocurrent density than that of the untreated. Achieving the PEC performance on par with the best in the literature, this APPJ treatment is shown to be a promising technique to obtain better functionality with TNR kind of materials and many other nanomicro systems for various applications such as PEC hydrogen generation.

© 2021 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
Introduction

TiO₂ has been widely explored for thin film solar cells [1], photocatalytic H₂ evolution [2], photoelectrochemical (PEC) water splitting [3], self-cleaning and antifogging applications [4] due to its optical and electronic properties along with the non toxicity, economical, chemical stability, and anticorrosive characteristics [5]. TiO₂ finds valuable applications in LEDs, as photo-anode in new photovoltaic devices, photo-electrochemical cells, water splitting, and in gas sensors & heat reflectors [6–12]. Of particular interest are, one-dimensional TiO₂ nanorod (TNR) arrays fabricated by a simple and economical hydrothermal method [13], found to have a superior chemical stability and high electron mobility [14,15] that are required for all the above applications. Furthermore, for solar energy applications, the vertical alignment of nanorods on a substrate can offer improved absorption of light due to the diffuse reflection happening between the nanorod arrays. Also, such structures offer a direct and efficient transport pathway for the photo-generated electrons. Altogether, these features are expected to enhance the carrier generation, their separation, and transport in solar energy conversion devices [16]. However, the wide band-gap of the TiO₂ (3.2 eV) limits its light-absorption only to the UV range, which is only a small part of the solar spectrum [17]. Hence, bandgap engineering of TiO₂ has been explored through metal, non-metal doping [18], and also metal doping with Ar, N₂, & O₂ plasma treatment [19] to improve the absorption of the solar radiation. Such efforts on improving the optical properties of TiO₂ film with & without doping have been made by employing the plasma treatment technique [20]. In another way, many methods for its surface modification have been practiced including surface hydrogenation, vacuum activation and plasma treatment [21–23]. The plasma treatment cover’s a very broad range of different plasma techniques based on the operating pressure (low and atmospheric), thermodynamics (thermal and non-thermal), temperature (low and high), source of plasma (Microwave discharge, DC discharge, dielectric barrier discharge, corona discharge, AC arc discharge, electron beam, plasma torch, glow discharge, hollow cathode discharge) [24–36].

Among them, non-thermal and atmospheric pressure plasmas have grown to be of huge scientific and commercial importance for materials processing due to their simple cost effective nature and ability to bring in rich chemical as well as physical properties [37,38]. Plasma treatment technique has been the most versatile surface treatment [39–42] based on a few of its advantages namely; (i) the air plasma treatment removes organic impurities absorbed on the surface of TiO₂, (ii) formation of hydroxyl group on the surface during the plasma treatment to improve wettability [43], and (iii) oxygen vacancies might serve as the trap centers for photo-generated electrons and suppress the recombination. Hence, the electron-hole pairs could be separated and transported more effectively [44]. For example, the plasma treatment of TNRs with reactive gases such as H₂, N₂, and O₂ has been explored and an improved the PCE efficiency from 0.62% (untreated) to 1.11% (N₂ plasma-treated) of DSSCs [45].

Several efforts were made to improve the PEC activity of TiO₂ nanostructures. TiO₂ nanoparticle layer synthesized on Ti foil via the potentiostatic anodization method showed a PEC current density of 2 μAcm⁻² and further improved up to 40 μAcm⁻² after combining it with Cu₂O [46]. The photocurrent density up to 1 mAcm⁻² was achieved with TiO₂ nanoporous photoelectrodes with mixed anatase and rutile phases by a dip-coating and subsequent calcination process [47]. Further, the PEC performance of TiO₂ was also improved by doping such as Fe, N, Mn, Cr, Si, Co [48–51]. Particularly, Fe doped TiO₂ nanoparticles exhibited a photocurrent density of 54 μAcm⁻², which was 3.6 times higher than that of undoped TiO₂ nanowires [52]. Peng et al. reported the N-doped TiO₂ (P25 Degussa) for photoelectrochemical CO₂ reduction and achieved the maximum current density of 0.104 mAcm⁻² at 2 V (vs. SCE) [53]. N doping of anatase and rutile phase TiO₂ nanowires also improved the PEC performance [54,55]. The activity of TNRs was improved up to 1.25, 2.0, 1.53 mAcm⁻² (vs. Ag/AgCl) and 0.81 mAcm⁻² (vs. RHE), by doping of C, Sn, W and Si [56–59]. The hydrogenation of TNR via rapid thermal annealing (RTA) process was also explored for PEC H₂ evolution. The highest photocurrent of 3.7 mAcm⁻² was obtained using TNRs treated with RTA at 400 °C for 1 h [60].

Few of such efforts to improve the PEC performance of TiO₂ were involving the conventional plasma. The TiO₂ nanotubes treated under vacuum with air plasma for 20 min also showed a stable & improved photocurrent density (2.4 mAcm⁻² vs. RHE) [43]. The TiO₂ thin film deposited by the atomic layer deposition method showed enhancement in the PEC current density from 0.12 to 1 mAcm⁻² after hydrogen plasma treatment [61]. TiO₂ nanosheets plasma-treated using a plasma cleaner under Ar atmosphere showed the current density of 43.7 μAcm⁻² (vs. Ag/AgCl) under 300 W Xenon arc lamp with an AM 1.5 filter [62]. In another report, after incorporation of hydrogen by H₂ plasma treatment, the mesoporous TiO₂ films showed the current densities of 22.9 μAcm⁻² & 0.16 μAcm⁻² under UV-LED & Blue-LED respectively [63]. Thus, in general, the conventional plasma treatment was already proved to be an effective technique to improve the PEC performance of TiO₂. The plasma treatment is also known to improve the functional properties in many other materials as well [64–66] and for example, it has also been reported that helium (He) plasma treatment is a promising method to reduce the contact resistance of source/drain region for Indium–Gallium–Zinc oxide (IGZO) thin film transistors [64] due to the formation of oxygen vacancies [65].

One-dimensional TNRs could offer an advantageous conducting network because of their short electron pathway as discussed in the works of literature [16]. Thus, it was expected that the nanorods would show a better PEC performance with higher photocurrent density. However, it can be also observed from the literature that they generally showed relatively inferior PEC activity with lower photocurrent, probably due to the lower crystallinity, higher contact angle with water, as well as due to the absence of surface defect states. Few efforts, as mentioned above, were made to overcome these limitations and to improve the PEC performance of TNRs. However,
most of these efforts used the plasma treatment process under vacuum and high temperature conditions. As reported, the low-power atmospheric pressure plasma jet (APPJ) is an easily scalable, non-thermal technique to improve the electronic properties of many functional materials [67–69]. Presently, there has been an increasing interest for APPJ in materials processing, as there is no requirement for sophisticated vacuum equipment and high temperatures which makes it cost effective [38, 69]. Additionally, plasma jets can be directed towards substrated, hence can be used remotely suitable for industrial applications. APPJ is known to control the defects, crystallinity, and surface wettability [68–70]. APPJs can deliver transient electric fields along with charged particles, neutral metastable species, radicals, and radiation in the UV and visible regions conveniently in a processing plume [68, 71]. To overcome the small area covered by the plasma jet on the substrate, several approaches have been reported so far, e.g. array of plasma jet or by varying the plasma jet operating conditions [72–75].

It can be expected that the functionalization of TNRs using APPJ could improve the optical, electrical, and interface properties between TNR and electrolyte resulting in better PEC performance. Being a simple technique, which consumes minimum time and can be done at room temperature, this could prove to be a quick and cool tool to use even with flexible substrates. Such functionalized TNRs with atmospheric pressure plasma treatment at room temperature are not reported to the best of our knowledge. Herein, we demonstrate for the first time, the room temperature APPJ surface modification of high performance 1D TNR arrays that are grown by a simple, one-step hydrothermal process on FTO substrate. We chose He, (He + O2), & (He + N2) as carrier gases to modify the surface of the 1D TNR and observed the changes leading to enhanced photoelectrochemical activity.

Experimental

Preparation of TiO2 nanorods

One dimensional TiO2 nanorods (TNRs) were prepared via a simple hydrothermal route by following the procedure reported in the literature [76]. In a typical synthesis, the TiCl4 was added to the mixture of concentrated hydrochloric acid (HCl) and DI water (1:1 solution) followed by stirring for 30 min. The solution was then transferred into a Teflon coated 50 mL autoclave with pre-cleaned Fluorine-doped tin oxide (FTO) substrates placed at an angle against the wall of a container with the conducting side facing down. The reaction was carried out at 180 °C by keeping the above autoclave in an electric oven for 2 h. After the reaction the FTO/TNR substrate was taken out, washed 3 times with DI water, dried, and was annealed at 450 °C for 1 h in the air. The obtained TNR films were used for further studies.

Plasma-functionalization of TNR surface

To functionalize the TNR surface, an atmospheric pressure plasma jet was employed [67]. The radio frequency (RF) plasma jet with Helium carrier gas mixed with either oxygen or nitrogen was used in this process for surface modification. A RF field was applied between two stainless steel electrodes covered on the sides with quartz plates forming a gap of 1 × 1 mm2 in cross section and 30 mm in length [77]. The plasma was ignited using a gas mixture of helium and oxygen, corresponding to flow rates of 3 slm and 30 sccm, respectively, with an input power of 10 W. The distance between the jet and the substrate was maintained at 5 mm during the exposure for 5 min.

Characterization

The X-ray diffraction was carried out using Cu Kα radiation (BRUKER USA D8 Advance, Davinci, wavelength = 1.5405 Å) with the diffraction angle from 10° to 80°. Absorption studies were carried out with the ultraviolet-diffuse reflectance spectroscopy (UV-DRS) by using Agilent-Cary (Cary 5000 UV−Vis−NIR) spectrophotometer. Raman spectra were recorded using Micro Raman spectrometer (HORIBA France, LABRAM HR Evolution) with a 532 nm laser wavelength. The surface morphology of the film was studied by using a high-resolution Scanning Electron Microscope (F E I Quanta FEG 200). Water contact angle measuring instrument (HO-IAD-CAM-01) was used in this study to measure the wettability of TNR substrates before and after AP treatment. 1 mL of deionized water was dispensed for each measurement. The photoelectrochemical measurements of the TNR samples were recorded using CHI660E potentiostat with the scan rate of 50 mV/s and a scanning range of −1.0 V − 1.5 V. Photo-electrochemical cell had the platinum, Ag/AgCl, and TiO2/FTO films used as a counter, reference, and working electrodes respectively. 0.1 M NaOH was used as the electrolyte throughout measurements and the light from a PET (Photo Emission Tech, Inc. USA, 300WSS-EM) solar simulator with power 100 mW/cm2 was used for illumination under 1.5 AM filter.

Results and discussion

Structural and morphological study

Fig. 1 (a) shows that the XRD patterns of TNR, TNR (He), TNR (He + O2), and TNR (He + N2) films were in accordance with the standard data for TiO2 (space group; P42/mnm) as provided by JCPDS (Joint Committee on Powder Diffraction Standards), reference: 01-078-1510, thereby confirming tetragonal rutile phase of TiO2. All the films exhibited crystalline nature having the most intense peak consistent to (101) plane of TiO2. Six more peaks corresponding to (110), (200), (111), (211), (002), (221), (112) and (301) planes were also observed. No peaks were observed corresponding to anatase or brookite phase indicating the high purity of the rutile TNR samples. The crystallite size (D) was estimated by using Debye–Scherrer formula,

$$D = \frac{0.9\lambda}{\beta\cos\theta}$$

where, λ- 0.15418 nm, β-full width at half maximum (FWHM), and θ- Bragg’s angle in degree. Fig. 1(b) shows the overlay spectra of (101) plane and we estimated 2θ values (36.26°,
35.98°, 36.25° & 36.23°) FWHM (0.3085°, 0.1278° & 0.1299°) for (101) plane of TiO₂ (TNR, TNR (He), TNR (He + O₂), & TNR (He + N₂)). The observed shift in 2θ values with respect to the untreated TNR was about 0.28°, 0.01° & 0.03° after He, (He + O₂), & (He + N₂) APPJ treatments respectively. The shift in the 2θ values can be attributed to the stress on the lattice caused due to the pressure exerted by the reactive gas used for the APPJ treatment. The calculated crystalline sizes for TNR, TNR (He), TNR (He + O₂), and TNR (He + N₂) films were 28.31, 68.29, 67.24, and 29.10 nm respectively. It can be noticed that the APPJ treatment caused observable changes in the crystalline size. He and He + O₂ plasma-treated samples showed bigger size crystals, more than double in size, as compared to the He + N₂ APPJ treated and untreated TNRs. This effect is similar to the observation with N₂ plasma-treated TiO₂ nanoparticles in the literature [78]. The increase in the crystalline size indicates the improvement in the crystallinity of TNRs and also can be related to the formation of intrinsic defects on the surface of TiO₂ itself referring to the similar observations in the literature [79]. The improved crystallinity with the formation of intrinsic defects after He and (He + O₂) APPJ treatment may lead to an improved PEC activity [80–82].

Fig. 1 (c, d, e & f) shows the surface and cross-sectional FE-SEM images of samples TNR, TNR (He), TNR (He + O₂), and TNR (He + N₂) films respectively. In Fig. 1(c and f), we observed that the package of few TNR arrays which was vertically aligned perpendicular to the surface of the substrate. But, after He and (He + O₂) APPJ treatment the TNRs became slightly slanted & separated from each other (Fig. 1(d &f)). For the calculation of diameter and length of TNRs, we have used imageJ software and an average value of 10 readings for each sample was taken. The APPJ treated and untreated TNR films showed the uniform distribution of vertical TiO₂ nanorods with a diameter of about 100 nm and the length of around 3 μm throughout the substrate [54]. As shown in Fig. 2, the TNRs were aligned perpendicular to the surface of the substrate and the alignment was changed slightly after the He atmospheric plasma treatment, where they became slightly slanted & separated from each other. The reason behind this change in morphology could be the longitudinal force exerted on the surface. This can be from the substantial gas velocity which caused by the high input gas pressure or adatoms by the ions in the plasma. Also, the etching which happens when the energetic ions hit the surface of TNRs could affect the morphology. Moreover, the transient electric field (EF) at the tip of plasma plume, typically in the kV/cm could not be neglected as well [83–85]. However, the observed change in morphology/alignment can offer an additional surface for the interaction of He APPJ treated TNRs with the electrolyte and form an effective TNR-electrolyte interface for the photo-electrochemical reaction. As we discussed in the introduction section, there is also a possibility that the changes in the alignment of nanorods might be detrimental for light absorption.

Optical study

The UV–visible absorbance spectra of treated and untreated TNR films over the wavelength range of from 300 to 900 nm is shown in Fig. 3(a). The bandgap of the TNR films has been determined using the relation,

\[ a = A(h\nu - E_g)^{1/2} \]

where, \( a \) is the absorption coefficient, \( A \) is the constant, \( E_g \) is the energy gap and \( h\nu \) is the incident photon energy. The values of bandgap were estimated from the Tauc plots (inset of Fig. 3(a)) as 3.24, 3.22, 3.25, and 3.19 eV for the TNR, TNR
(He), TNR (He + O₂), and TNR (He + N₂) films respectively, which are in accordance with the previous reports [86,87].

It can be observed that the absorption edge was shifted to higher wavelength (red shift) and the bandgap was reduced for TNR (He) as well as TNR (He + N₂) samples. In contrast, there was an increase in the bandgap (blue shift) for TNR (He + O₂). The possibility for such variation in the band edge after plasma treatment of TiO₂ is indicated in the literature [20]. The plasma treatment was used as an effective technique to decrease the bandgap of TiO₂ and to promote the formation of defect states by introducing the oxygen vacancies [62], both of which could improve the UV–visible light absorption [88,89]. Similar changes observed in our UV–visible absorption spectra of TNRs after the He and (He + N₂) APP treatment, where there was an improved absorption and red shift of band edge [65,66] indicating the formation of oxygen vacancy defect states unlike in the case of (He + O₂) APP treatment. These changes observed in the UV–visible light absorption after the He and (He + N₂) APP treatment also indicate improved PEC activity, analogous to the earlier observation in the literature [62].

Fig. 3 (a) UV–visible spectra with (inset) Tauc plot and (b) Raman spectra with an overlay of Raman spectra for A₁g & E_g modes of the TNR, TNR (He), TNR (He + O₂), and TNR (He + N₂) films.

Fig. 2 – Schematic of the He-APP treatment of the TNR films.

Surface wettability, as one of the fundamental surface properties of an electrode, could show significant influence on its functionalities such as electrolyte-wetting, redox electron
transfer and gas release in electrochemical reactions [92–97]. It is known that a hydrophilic surface leads to better electron transfer rate between electrolyte and electrode [94]. The surface plasma treatment also improves the wettability of the TiO₂ photoanode by forming hydroxyl groups and could contribute to the enhancement of PEC performance [43].

Expecting the similar effect, we have performed the wettability test of untreated and APPJ treated TiO₂ NRs with water, and the results are shown in Fig. S1 (Supporting information). The contact angles of the water droplet for the APPJ treated TiO₂ NRs were smaller than that for the untreated TiO₂ NRs. He APPJ treatment showed a small change in wettability, and further optimization of plasma treatment conditions may be needed to achieve the hydrophilic nature of the TNR films. Lee et al. had observed a significant improvement in wettability of Ti substrate after plasma treatment by using He and O₂/He mixture carrier gases [98]. Similarly, in our case wettability has improved after (He + O₂) & (He + N₂) APPJ treatment with a switch from hydrophobic to hydrophilic nature.

PEC measurements of TiO₂ films

Fig. 4(a) shows the linear sweep voltammogram (LSV) curves of the treated and untreated TNR samples in dark and under illumination. The maximum current density at 0 V (Ag/AgCl) observed for the TNR, TNR (He), TNR (He + O₂), and TNR (He + N₂) were 0.1964, 0.8715, 0.0079, and 0.7450 mA cm⁻² respectively. Further, chronoamperometry measurement was performed to check the stability and reproducibility of the photoanode. The measurement was carried out with 5 on-off cycles of 10 s time interval, in a similar manner as reported earlier on PEC devices [62,99]. Fig. 4(b) revealed the good reproducibility & stability of the current density with time. All treated and untreated TNR films were observed to be stable after 5 on-off cycles with a time duration of 10 s at 0.4 V (Ag/AgCl). We observed almost 4 times enhancement in the maximum current density for TNR (He) film as compared to untreated TNR under the light. At fixed potentials the electrodes usually adopt a steady dark current. In our case, we could observe that the current reached a sharp maximum (the current spike) immediately after switching on the light. This might be attributed to the rapid initial separation of electron/hole pairs or to the presence of the high initial concentration of negative charge carriers accumulated in the film during the deposition [100]. Such spikes are known to arise due to the electron recombination with surface-trapped holes or photooxidation intermediates [101].

Based on our observations, this enhancement in the current density of the He-treated TNRs can be ascribed to the higher crystallinity, reduced band gap, availability of additional surface area, and the possible formation of oxygen vacancy defect states in the TNRs. However, the TNR sample treated

| Table-1 – Comparison of our photoelectrochemical results with literature. |
|------------------|------------------|------------------|------------------|
| TiO₂             | Plasma modification | Max. Photocurrent density \( \text{mAcm}^{-2} \) | Reference |
| ALD grown planar TiO₂ | As prepared | 0.12 (0.8 V vs NHE) | [61] |
| TiO₂ nanosheet    | Hydrogen plasma for 1 h at 200 °C | 1.0 (0.8 V vs NHE) | [62] |
| Mesoporous TiO₂   | As prepared | 0.113 (0.6 V vs Ag/AgCl) | [62] |
| TiO₂ nanorods     | Argon plasma for 2 h at 40 Pa | 0.0437 (0.6 V vs Ag/AgCl) | [63] |
|                   | Hydrogen plasma for 5 min at 60 mTorr | 0.00081 (0.4 V vs Ag/AgCl) | [63] |
|                   | Helium atmospheric pressure plasma for 5 min | 0.0229 (0.4 V vs Ag/AgCl) | This work |
|                   | (Helium + Oxygen) atmospheric pressure plasma for 5 min | 0.1964 (0 V vs Ag/AgCl) | [61] |
|                   | (Helium + Nitrogen) atmospheric pressure plasma for 5 min | 0.8715 (0 V vs Ag/AgCl) | [62] |
|                   | Hydrogen plasma for 5 min at 60 mTorr | 0.0079 (0 V vs Ag/AgCl) | [63] |
|                   | Helium atmospheric pressure plasma for 5 min | 0.7450 (0 V vs Ag/AgCl) | [This work] |
with (He + O₂) showed very less current density compared to all others, which may be due to the absence of oxygen vacancy defect states as indicated by the UV–visible absorption studies. Also, due to the lower crystallinity, as shown by the XRD & Raman results, TNR (He + N₂) samples exhibited lower current density compared to the TNR (He).

The results obtained are comparable with the previous reports in the literature (Table 1). It is noteworthy that the PEC activity of He plasma surface-modified TNRs was comparable to the best in the literature using ALD grown Hydrogen plasma-treated planar TiO₂. The photocurrent density shown by the He APPJ treated TNRs is the second-highest reported so far for TiO₂ and there is room for further improvement by optimization or employing the plasma of other carrier gases such as H₂, Ar, N₂, and O₂. The approach presented here for the first time by combining the simpler, greener, and a single step hydrothermal route for making the TNRs with the room temperature atmospheric pressure plasma functionalization technique can be explored for many other applications as well.

Conclusion

In summary, surface functionalization of TNRs was achieved using the simple, room temperature atmospheric pressure plasma treatment technique. The effect of APP treatment on the structural, optical, and PEC properties of TNRs was established. A four-fold enhancement in the photocurrent was observed after the He-APPJ treatment of TNRs, and this performance is on par with the best in the literature using the conventional hydrogen plasma-treated ALD grown planar TiO₂. The improvement in the PEC performance could be correlated with our observations on (i) the availability of surplus surface area of TNRs to interact with the electrolyte, (ii) the increase in the crystalline size, accompanied by the possible formation of more intrinsic defects in TNRs and (iii) reduction in the bandgap which improved the UV–visible light absorption.

Data availability statement

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgment

SVB and VVS would like to acknowledge the research grant from the DST-SERB (File No. ECR/2015/000513), Government of India. SVB and SK acknowledge the support from the International Exchange grant of the Royal Society, UK (Ref.: IES\R2 \170272). Authors also thank SRMIST for providing the necessary infrastructure and the characterization facilities such the micro-Raman spectrometer, the XRD facility set up with support from MNRE (Project No. 31/03/2014-15/PVSE-R&D) and the FE-SEM facility at the Nanotechnology Research Centre (NRC). Also, thanks to Dr. Sheela Singh, SRMIST for providing the contact angle measurement facility funded by DST-SERB (EMR/2016/001066). Authors also thank the INUP program and the facilities such as FE-SEM at CeNSE, funded by Ministry of Electronics and Information Technology (MeitY), Govt. of India, and located at the Indian Institute of Science, Bengaluru. VG would like to acknowledge the DST-SERB (YSS/2015/000651) project, Government of India.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.ijhydene.2021.01.142.

References


