Copy the page URI to the clipboard
Rochelle-Bates, N.; Roberts, N.M.W.; Sharp, I.; Freitag, U.; Verwer, K.; Halton, A.; Fiordalisi, E.; van Dongen, B.E.; Swart, R.; Ferreira, C.H.; Dixon, R. and Schroder, S.
(2020).
DOI: https://doi.org/10.1130/G48019.1
Abstract
In volcanic rifted margins, the timing of hydrocarbon charge is difficult to predict, but is important in understanding fluid genesis. We investigated whether igneous activity was linked to hydrocarbon charge in the prolific South Atlantic pre-salt petroleum system. To do this, we applied in situ carbonate U-Pb geochronology, a relatively novel tool for dating hydrocarbon migration, to bituminous veins in pre-salt travertines from the rifted onshore Namibe Basin (Angola). To test if fluid flow was synchronous with known volcanic pulses, we also obtained new 40Ar/39/Ar geochronology from a nearby volcanic complex. Bitumen is associated with calcite in a first generation of veins and vugs, and with dolomite in younger veins. The dated calcite veins yielded a pooled U-Pb age of 86.2 ± 2.4 Ma, which overlaps the volcanism 40Ar/39/Ar age of 89.9 ± 1.8 Ma. The overlapping dates and the localized bitumen occurrence around the dated volcanic center show a clear genetic relationship between Late Cretaceous igneous activity and hydrocarbon charge. The dolomite was dated at 56.8 ± 4.8 Ma, revealing a previously unknown Paleocene/Eocene fluid-flow phase in the basin.