The effect of radiation-induced traps on the WFIRST coronagraph detectors

Nemati, Bijan; Effinger, Robert; Demers, Richard; Harding, Leon; Morrissey, Patrick; Bush, Nathan; Hall, David and Skottfelt, Jesper (2016). The effect of radiation-induced traps on the WFIRST coronagraph detectors. In: High Energy, Optical, and Infrared Detectors for Astronomy VII, 1 Aug 2016, Edinburgh, UK, SPIE, 229 - 240.

DOI: https://doi.org/10.1117/12.2235278

Abstract

The WFIRST Coronagraph will be the most sensitive instrument ever built for direct imaging and characterization of extra-solar planets. With a design contrast expected to be better than 1e-9 after post processing, this instrument will directly image gas giants as far in as Jupiter's orbit. Direct imaging places high demand on optical detectors, not only in noise performance, but also in the need to be resistant to traps. Since the typical scene flux is measured in millielectrons per second, the signal collected in each practicable frame will be at most a few electrons. At such extremely small signal levels, traps and their effects on the image become extremely important. To investigate their impact on the WFIRST coronagraph mission science yield, we have constructed a detailed model of the coronagraph sensor performance in the presence of traps. Built in Matlab, this model incorporates the expected and measured trap capture and emission times and cross-sections, as well as occurrence densities after exposure to irradiation in the WFIRST space environment. The model also includes the detector architecture and operation as applicable to trapping phenomena. We describe the model, the results, and implications on sensing performance.

Viewing alternatives

Metrics

Public Attention

Altmetrics from Altmetric

Number of Citations

Citations from Dimensions
No digital document available to download for this item

Item Actions

Export

About