Structural, optical and photo-electrochemical properties of H:TiO\textsubscript{2} nanoparticle, TiO\textsubscript{2}-MoS\textsubscript{2} nanocomposite and TiO\textsubscript{2}-BiVO\textsubscript{4} core-shell nanoparticle structures

PhD thesis submitted

By

Manan Mehta

To

The Open University
Milton Keynes, U.K.

Under the supervision of

Prof. Satheesh Krishnamurty, Prof. Tony Nixon,
Prof.Suddhasatwa Basu and Dr. Aadesh Pratap Singh.
ACKNOWLEDGEMENTS

I sincerely thank my supervisors for their advice, support and mentorship during my PhD. I sincerely thank Prof. Satheesh Krishnamurthy to carry out PhD at The Open University, Milton Keynes and giving me chance to work in his research group. I really enjoyed the scientific, academic, and friendly environment in his research group. His encouragement and personal care and advice were very important for me. I would also like to thank Prof. Suddhasatwa Basu for his advice and suggestions which helped me to complete the thesis work on time. I thank Prof. Tony Nixon for his encouragement and valuable advice. I also thank Dr. Aadesh Pratap Singh for helping me in planning the research plan and experiments and teaching me important experimental skills.

I would also like to thank all the members of the Research Group at The Open University and Fuel Cell group at IIT Delhi for day to day support and their friendly behaviour. I would like to especially mention Dr. Rishabh Sharma, Dr. Sandeep Dhaka, Mr. Mujeeb Ahmed, Mr. Ravi Tejaswi Bajpai and Ms. Nisha for their help and support, both in and outside the laboratory.

I would like to sincerely thank my parents, sister Shivani, wife Diksha and my grandmother for their unconditional love and support throughout this endeavour.

--- Manan Mehta
CONTENTS

Acknowledgements ... i

Contents ... ii

List of Figures .. v

List of Tables ... x

Abstract ... xi

Chapter 1: Introduction ... 1
 1.1 World Energy Needs .. 1
 1.2 Photo-electrochemical Cell .. 3
 1.3 Semiconductor Physics: Some Important Concepts for PEC conversion 5
 1.3.1 Band Structure .. 5
 1.3.2 Work function ... 8
 1.4 PEC Cell: Important Concepts .. 10
 1.4.1 Optimum value of band gap for light absorption .. 10
 1.4.2 Requirement of Eg for PEC .. 11
 1.4.3 Alignment of the energy band diagram with redox potentials 12
 1.4.4 Semiconductor materials for water splitting applications .. 14
 1.5 Modification of Material Properties ... 16
 1.5.1 Surface engineering ... 16
 1.5.2 Controlling properties by varying nanoparticle size ... 16
 1.5.3 Core-shell nanoparticle formation .. 17
 1.6 Literature Review ... 18
 1.6.1 Titanium dioxide (TiO_2) as a promising photoelectrode material 19
 1.6.2 Modification of TiO_2 properties ... 20
 1.6.3 Modification of the TiO_2 properties by surface treatments 22
 1.6.4 TiO_2: MoS_2 3D: 2D nanocomposites ... 25
 1.6.5 Synthesis and properties of TiO_2-BiVO_4 composites .. 29
 1.7 Objectives of the Present Study .. 31

Chapter 2: Characterization Techniques ... 34
 2.1 Glancing Angle X-ray Diffraction ... 34
 2.2 X-Ray Photoelectron Spectroscopy ... 37
 2.3 Raman Spectroscopy Technique ... 39
 2.4 Photoluminescence Measurements ... 41
 2.5 Scanning Electron Microscopy ... 43
5.2.3 Optical properties...94
5.2.4 Photocatalytic Investigations..95
5.2.5 Photo-electrochemical properties..96
5.2.6 Electrochemical Impedance spectroscopy...............................98
5.2.7 Mott Schottky Measurements..98
5.2.8 Discussion..100
5.3 Conclusions..103

Chapter 6: Summary and Scope of Further Work...........................105
 6.1 Summary..105
 6.2 Scope for further work ..108

List of Publications...110
References..112
List of Figures

Figure 1.1: Schematic view of a typical photo-electro-chemical cell used for splitting of water to hydrogen and oxygen. ... 4

Figure 1.2: Schematic representation of band gap (EG) and band edges (EC and EV) of a semiconductor material .. 6

Figure 1.3: A schematic diagram showing the energy band diagram of large forbidden gap in an insulator, a smaller band gap in a semiconductor and overlapped energy bands in case of a metal 7

Figure 1.4: Energy diagram of a semiconductor showing CB minima (CBM or LUMO level) and VB maxima (VBM or HOMO level), vacuum level EVAC, work function WF, energy gap EG, ionization energy IE and electron affinity EA.. 9

Figure 1.5: A schematic description of transmission and thermal loss during absorption of solar photons having energy lower (blue) and higher (green) than the band gap, respectively. As shown, photon having energy equal to the band gap (red arrow) is efficiently absorbed as its energy is completely converted to the energy of the electron-hole pair ... 11

Figure 1.6: A schematic description of the requirement of straddling of water redox potential w.r.t. conduction and valence band edges of the semiconductor ... 13

Figure 1.7: Partial straddling of water redox potential resulting in the limitation that only hydrogen formation can take place at the semiconductor surface .. 14

Figure 1.8: Partial straddling of water redox potential resulting in limitation that only oxygen formation can take place at the semiconductor surface 14

Figure 1.9: Conduction and valence band edge for a variety of semiconductor materials w.r.t. water redox levels. ... 15

Figure 1.10: Energy band diagram of a bulk semiconductor and modification due to quantum confinement resulting in blue shift in forbidden gap 17

Figure 1.11: Alignment of energy levels of core and shell semiconductors at the nanoparticle heterointerface ... 18

Figure 1.12: Crystal structure of TiO2: a) anatase (tetragonal), b) rutile (tetragonal) and c) brookite (orthorhombic) phases 20

Figure 1.13: The atomic arrangement of monolayer MoS2 showing a 2D layer comprising of molybdenum atoms (blue) sandwiched between two layers of sulfur atoms (yellow) along two different crystallographic directions. .. 26
Figure 2.1: A schematic diagram showing the principle of diffraction from a lattice having \(d \) as the interplanar spacing. The geometric arrangement used in the experimental set-up for realizing the diffraction condition is also shown. S, D and C are X-ray source, detector and sample, respectively.

Figure 2.2: A schematic diagram showing important components and their arrangement in X-ray diffraction set up used in the present study.

Figure 2.3: XPS schematic diagram showing the emission of photoelectron with kinetic energy as photon incident on the material provides the required energy for electron emission.

Figure 2.4: A schematic description of XPS set up showing different components.

Figure 2.5: A schematic description of Raman effect showing the emission of stokes (lower energy than the incident photons) and anti-stokes line (higher energy w.r.t incident energy). Rayleigh scattering in which no change in wavelength takes place is also shown.

Figure 2.6: A schematic diagram of Raman spectroscopy set up showing the path of laser energy and different components.

Figure 2.7: A schematic diagram showing the absorption of high energy incident photon taking the electron from valance band to conduction band. The excited electron relaxes to the bottom of conduction band. The photon emission due to de-excitation of electron from conduction band to valence band results in band edge PL emission. In the presence of defect states PL emission can take place at lower energy due to de-excitation to the defect state followed by relaxation to valence band.

Figure 2.8: A schematic diagram showing the different part of a scanning electron microscope having EDX attachment.

Figure 2.9: A schematic diagram showing the basic part of a transmission electron microscope and the electron path.

Figure 2.10: Different steps used for dispersing nanoparticles onto TEM grids for TEM sample preparation.

Figure 2.11: Different steps used for the preparation of photoelectrodes using different nanoparticle sample investigated in the present study. The steps involve attachment of the copper wire with the sample pallet using conducting paste, insulating the electrodes and sample edges and defining the active area of the sample for PEC measurements.

Figure 2.12: A schematic diagram showing the 3-electrodes configuration for PEC measurements (Adapted from Ref. 155).
Figure 2.13: A schematic description and a photographic view of the autoclave used in the present study for hydrothermal synthesis of nanomaterials.52

Figure 2.14: Different steps describing the preparation step used in the present study for growth of TiO$_2$ nanoparticles..53

Figure 2.15: Schematic description of different steps used in the growth of MoS$_2$ nanoflakes in the present study. ...54

Figure 2.16: Growth sequence used in the present study for the growth of BiVO$_4$-TiO$_2$ core shell nanoparticles ...56

Figure 3.1: HR-TEM images of a) pristine and b) vacuum hydrogen treated TiO$_2$ nanoparticle sample for 30 hrs. Optical image of the two samples are also shown. ...58

Figure 3.2: XRD spectra of the pristine and vacuum hydrogen treated TiO$_2$ nanoparticle sample. ...59

Figure 3.3: Raman spectra of the pristine and vacuum hydrogen treated TiO$_2$ nanoparticle sample. ...60

Figure 3.4: Absorbance spectra of pristine and vacuum hydrogen treated TiO$_2$ nanoparticle sample. Insert shows the Tauc’s plot giving the value of absorption edge of the samples..61

Figure 3.5: FTIR spectra of the pristine and vacuum hydrogen treated TiO$_2$ nanoparticle sample. ...62

Figure 3.6: 1H NMR spectra of pristine and vacuum hydrogen treated TiO$_2$ samples recorded at 300 K ...63

Figure 3.7: EPR spectra of pristine and vacuum hydrogen treated TiO$_2$ samples recorded at 300 K ...64

Figure 3.8: a) Solar-light driven photocatalytic decomposition of methylene blue and b) rate constant calculation for pristine and vacuum hydrogen treated TiO$_2$ samples...65

Figure 3.9: Photocurrent density vs. applied potential (V vs. Ag/AgCl) curves showing photo-electrochemical response ..66

Figure 3.10: Mott–Schottky plots for pristine and vacuum hydrogen treated TiO$_2$ samples collected in 1M NaOH solution ..68

Figure 3.11: EIS Nyquist plots of the pristine and vacuum hydrogen treated TiO$_2$ samples at an open bias condition under dark69

Figure 3.12: Localization energy E_{loc} per defect for the excess charge carriers induced by V$_O$ and H$_O$ defects as a function of defect concentrations...71

Figure 3.13: Density of states of anatase TiO$_2$ for different concentrations of oxygen vacancies V$_O$ in a) and substitutional H$_O$ defects in b). The band gap areas are enlarged and shown as insets. Shown are the densities of
states for 0, 1, 6 and 10 defects in the 3×3×1 supercell. The highest occupied state of pristine TiO$_2$ is taken as zero energy. Occupied energy levels are indicated by the grey colour. ..72

Figure 3.14: Absorption coefficient of TiO$_2$ with different concentrations of oxygen vacancies in a) pristine TiO$_2$ and b) H:TiO$_2$..........................74

Figure 4.1: XRD spectra of a) TiO$_2$ and b) 5.0 % MoS$_2$-TiO$_2$ nanocomposite sample. XRD peaks indexed as A, R and M peaks correspond to Anatase, Rhombohedral TiO$_2$ and Rhombohedral MoS$_2$ phases........78

Figure 4.2: Raman Spectra of Pristine TiO$_2$ nanoparticle sample showing Anatase phase ..79

Figure 4.3: Raman spectra of 5.0 % MoS$_2$-TiO$_2$ nanocomposite samples79

Figure 4.4: SEM microscopic images for structure evolution of (a1) pristine TiO$_2$ (b1) pure MoS$_2$ and (c1) 5.0 % MoS$_2$-TiO$_2$ nanocomposite sample. TEM images of (a2) pristine TiO$_2$, (b2) pure MoS$_2$ and (c2) 5.0 % MoS$_2$-TiO$_2$ nanocomposite sample. 80

Figure 4.5: Absorption spectra of pristine TiO$_2$, 5.0 % MoS$_2$-TiO$_2$, and 10.0 % MoS$_2$-TiO$_2$ nanocomposite sample. ..82

Figure 4.6: XPS spectra of a) Ti 2p in pristine TiO$_2$ b) Ti 2p in 5.0 % MoS$_2$-TiO$_2$, c) O 1s in pristine TiO$_2$ and d) O 1s in 5.0 % MoS$_2$-TiO$_2$ samples.83

Figure 4.7: a) Photocatalytic performance and b) degradation efficiency of TiO$_2$, and MoS$_2$ nanoflakes-TiO$_2$ nanocomposite sample at various concentration of MoS$_2$ nanoflakes (by weight) in TiO$_2$ (2.5, 5.0, 7.5, and 10.0 %) for the degradation of Rh B (rhodamine) dye solution under visible light irradiation..85

Figure 4.8: Plot of ln(C/C_0) as a function of visible irradiation time for photocatalysis of Rh B (Rhodamine) dye solution containing: TiO$_2$, TiO$_2$-MoS$_2$ (5.0 %), TiO$_2$-MoS$_2$ (7.5 %) and TiO$_2$-MoS$_2$ (10.0 %) hetero-structures under visible light irradiation..86

Figure 4.9: Photocurrent density vs. applied potential (V vs. Ag/AgCl) curves for TiO$_2$ and MoS$_2$-TiO$_2$ measured in 1M NaOH solution under visible light illumination..88

Figure 4.10: Energy band diagram of MoS$_2$-TiO$_2$ nanocomposite shows absorption of low energy photons and separation of photogenerated electrons and holes due to favorable band alignment. ..90

Figure 5.1: X–ray diffractogram of a) BiVO$_4$ nanoparticles and b) TiO$_2$ nanoparticles c) BiVO$_4$-TiO$_2$ core-shell nanoparticles. hkl indices of different XRD peaks are shown. B and T represents XRD
peaks corresponding to BiVO$_4$ Monoclinic phase and TiO$_2$ Anatase phase, respectively. .. 92

Figure 5.2: SEM micrographs of a) BiVO$_4$ nanoparticles b) TiO$_2$ nanoparticles and c) BiVO$_4$-TiO$_2$ core-shell nanoparticle samples. .. 92

Figure 5.3: TEM images of a) BiVO$_4$ nanoparticles showing dendritic structure b) TiO$_2$ nanoparticles showing agglomerated structure c) BiVO$_4$-TiO$_2$ core-shell nanoparticles and d) magnified image of BiVO$_4$-TiO$_2$ core-shell nanoparticles clearly showing the formation of core-shell structure. TEM-EDS analysis of e) BiVO$_4$ nanoparticles and f) BiVO$_4$-TiO$_2$ core-shell heterostructures. 93

Figure 5.4: DRS spectra of BiVO$_4$, TiO$_2$ and BiVO$_4$-TiO$_2$ core-shell nanoparticles. Two absorption features for core-shell nanoparticles are observed. .. 94

Figure 5.5: Absorbance spectra of BiVO$_4$, TiO$_2$ and BiVO$_4$-TiO$_2$ core-shell nanoparticles obtained from DRS measurements. 95

Figure 5.6: a) Solar-light driven photocatalytic decomposition of methylene blue and (b) rate constant calculation for BiVO$_4$, TiO$_2$ and BiVO$_4$-TiO$_2$ core-shell nanoparticles. .. 96

Figure 5.7: Photocurrent vs. applied bias curves for a) TiO$_2$ nanoparticle samples, BiVO$_4$ nanoparticle (in inset) and b) BiVO$_4$-TiO$_2$ core-shell nanoparticles. Interestingly, both TiO$_2$ and BiVO$_4$ nanoparticles exhibit the anodic behavior of and relatively low photocurrent density, however, the BiVO$_4$/TiO$_2$ core-shell nanoparticles show cathodic behavior with relatively large value of photocurrent density.. 97

Figure 5.8: EIS spectra of for a) BiVO$_4$, b) TiO$_2$ and c) BiVO$_4$-TiO$_2$ core-shell nanoparticles. .. 98

Figure 5.9: $1/C^2$ vs V curves for a) BiVO$_4$ b) TiO$_2$ and c) BiVO$_4$-TiO$_2$ core-shell nanoparticles (in inset) .. 99
List of Tables

Table 1.1: Fuel Quality of Hydrogen.. 3
Table 1.2: Effect of surface treatment on the PEC properties of TiO$_2$ as reported in the literature. .. 24
Table 1.3: Synthesis and PEC properties of TiO$_2$:MoS$_2$ nanocomposites reported in literature .. 28
Table 1.4: Synthesis and PEC properties of TiO$_2$:BiVO$_4$ nanocomposites as reported in the literature .. 30
Table 1.5: Different materials configuration used in the present study for modifying the properties and make them more suitable for photo-electrochemical applications.. 32
Abstract

Photo-electrochemical decomposition of water into oxygen and hydrogen for fuel applications is one of the most important research areas because of the vital need to meet the ever-increasing global energy demands by sustainable and clean methods. For photoelectrochemical water splitting, semiconductor should possess properties of efficient absorption of photons, suitable energy band alignment, stability in the electrolyte and efficient carrier transport. In this work, surface treatment, core-shell nanoparticle synthesis and formation of 1D-2D nanocomposites have been used as the methodologies to achieve the above-mentioned material requirements using low cost methods. The central objective of the present study is to achieve improved visible light absorption and enhanced carrier separation in TiO$_2$ nanoparticles, which have a major drawback of very poor visible light absorption despite having good stability in the electrolyte and a favorable energy band alignment.

A detailed literature review has been done to have a comprehensive view of the background of the work done by other researchers to achieve similar objectives. Based on the experiments carried out in this thesis, hydrogen treatment of TiO$_2$ nanoparticle in mild hydrogen conditions have been observed to enhance photo-electrochemical performance which is related to the observed increase in optical absorption in the visible light and improved surface catalytic properties. The role of Ti$^{3+}$ defects for creating the energy states suitable of photon absorption and electronic transport has been established using experimental investigations and DFT based simulations. This is very important, as the nature of defects in terms of its energy position and localized/non-localized energy state is expected to influence the electronic properties of the resulting material.

In another study, MoS$_2$ 2D nanoflakes have been used to form 2D nanocomposites with TiO$_2$ particles. On addition of MoS$_2$ nanoflakes with lower energy gap to TiO$_2$
nanoparticles, 1D-2D nanocomposite samples show increased optical absorption in the visible part of the spectrum along with large area interface between the two components. The present study has resulted in understanding the effect of varying MoS$_2$ concentration and about 7.5% of MoS$_2$ has been found to be an optimal concentration for increasing visible light absorption without screening the surface catalytic properties of TiO$_2$. This is an important result of the present study. BiVO$_4$-TiO$_2$ core shell nanoparticles have also been used for studying photo-electrochemical properties and the increased photo-electrochemical performance has been understood by comparing the structural, optical, photocatalytic properties of core-shell nanoparticles with BiVO$_4$ and TiO$_2$ nanoparticles. Changes in the anodic PEC response of pristine TiO$_2$ nanoparticle to cathodic response observed in BiVO$_4$-TiO$_2$ nanoparticles is an interesting result. This has been explained on the basis of possible changes in semiconductor properties due to small thickness of the shell layer or due to its proximity with the electrolyte. Finally, summary of important results of the present thesis and scope for future research work in this area have been presented.
Chapter 1

Introduction

1.1 World Energy Needs

Per capita energy consumption of a country is a measure of not only its economic but also its social development\(^1\). At present, fossil fuels supply major part of world’s total world energy consumption. However, due to rapid rise in energy consumption in last few decades especially of fossil fuels, fossil fuel reserves are facing a rapid depletion\(^2\). With the current rate of increase in energy consumption, the world energy demand will increase to 70\% higher than its present value in the year 2030 compared to its value in the beginning of year 2000\(^3\). Large-scale utilization of fossil fuels has resulted in environmental pollution and large concentrations of released harmful wastes due to combustion of fossil fuels which have already reached a serious dimension. The growing demand for energy, combined with the need to preserve and sustain clean environment, has created an urgent need for environment-friendly and sustainable energy technologies. Renewable energy technologies including photovoltaic, solar-thermal, wind energy, biomass-derived liquid fuels and biomass-fired electricity are potential alternatives which comprise about 14\% of the total world energy consumption\(^2\).

Solar energy utilization for terrestrial applications is one of the priority topics of the recent research\(^4\).\(^5\). Solar energy is unique as it is inexhaustible, non-polluting and is probably the most uniformly distributed energy source worldwide. However, for an optimum utilization of non-conventional energy sources, particularly an intermittent source like solar energy, an intermediate energy storage system is also needed, which can link the primary source of energy with the end consumers. Many synthetic fuels, which can be produced with the help of nonconventional energy resources like solar
energy viz., hydrogen, methane, methanol, ethanol and ammonia, meet the criteria of abundance, storability, transportability and environment compatibility. However, hydrogen meets these requirements to the maximum extent. Table 1.1 presents some important characteristics of hydrogen which suggest its suitability as future energy carrier.

The search for efficient methods to renewably produce hydrogen has been a long-term research goal of many scientists around the world. Hydrogen is generally produced by steam reforming of non-renewable natural gas. Another common way of its production is via electrolysis of water, which requires high energy demand. To meet tomorrow’s demand of cheap, environment friendly and renewable hydrogen, new and efficient ways of its synthesis need focus and are the need of the hour. A process that is very promising, is extracting hydrogen by direct splitting of water using solar energy. A suitable material is required, which can absorb visible and ultraviolet part (i.e. the major part of solar energy) of solar radiant energy and can transfer this energy to water molecules for splitting. Utilizing this concept, various methodologies of photo-biological, photochemical, photovoltaic-electrolysis, photo-electrolysis have been proposed and a wide-ranging research effort is underway to optimize conditions for hydrogen production.
Table 1.1: Fuel Quality of Hydrogen

<table>
<thead>
<tr>
<th>Properties</th>
<th>Parameters for Hydrogen*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Environmental damage due to burning of fuel</td>
<td>Combustion generates a harmless compound, H₂O, which is not a pollutant</td>
</tr>
<tr>
<td>2. Heat of combustion</td>
<td>34.18 kcal/g</td>
</tr>
<tr>
<td>3. Energy storage capacity</td>
<td>119 kJ/g</td>
</tr>
<tr>
<td>4. Usability with present time internal combustion engines</td>
<td>Can be used with minor alteration in engine</td>
</tr>
<tr>
<td>5. Transportability</td>
<td>Can be easily transported with/without conversion</td>
</tr>
<tr>
<td>6. Utility as fuel for aircrafts</td>
<td>Use for aircrafts is possible (AB-57 aircraft of US Air Force was test run on H₂ as early as in 1957).</td>
</tr>
<tr>
<td>7. Usability as domestic cooking fuel</td>
<td>Hydrogen can also be used as cooking gas</td>
</tr>
<tr>
<td>8. Safety aspects</td>
<td>Hydrogen has explosive limit of 4% in air, which is less than that of butane. Hence, its use as a fuel is also not safe.</td>
</tr>
</tbody>
</table>

*Data taken from Ref. 6.

1.2 Photo-electrochemical Cell

Photo-electro-chemical (PEC) cells are devices that are used for the absorption of solar energy and its conversion to a usable form of chemical energy.
A photo-electro-chemical (PEC) cell consists of a semiconductor or metal electrodes cathode and anode in an electrolyte solution as illustrated in Fig. 1.1. Either of the two electrodes, or both can be photoactive. The electrodes, which is photoactive, are generally made up of some semiconductor, which absorbs radiations with photon energy (hν) greater than their band gap energy (Eg). Thus, the most important portion of a PEC cell is the semiconductor material and its junction between liquid electrolyte.

Fujishima and Honda were the first to use single crystal TiO₂ (as photo-anode) for PEC splitting of water. Since then, there has been considerable progress, in this area. Gerischer provided a thorough overview of this theory, Nozik provided an analytical account of the photo-electro-chemical devices, and Hellergave an excellent analysis of efficiencies of various photo-electro-chemical systems. Further, Getoffand Pleskov gave a detailed analysis of PEC processes. The most efficient photo-electro-chemical cells (efficiency ~13%) is observed in a p-type indium phosphide photocathode, onto which tiny islands of platinum have been deposited. Cells involving
n-CdS, n- TiO$_2$ and n-SrTi$_2$O$_2$ as photoanodes have achieved good efficiencies of ~10\%16.

Upon irradiation of the photoactive electrodes with photons of energy larger than the band gap energy of semiconductor, electron-hole pairs are formed and the chemical equilibrium in the PEC cell is disturbed. This creates a photo-voltage that gives rise to photocurrent through an open circuit, in the direction of the electrode having lower chemical potential17. The flow circuit of electrons is completed by electron transfer processes over the electrode-electrolyte interfaces. Depending upon the nature of chemical reactions that occur during irradiation, photocurrent can represent a portion of light energy that has been converted to either electrical or chemical energy. PEC cells have the advantage of combining the photovoltaic cell and electrolyzer into one system. Further, the advantage of PEC cells over photovoltaic cells is that, in PEC cells junction between two semiconductors is not required. The junction is formed spontaneously at the semiconductor-electrolyte interface. However, a potential disadvantage in a photo-electro-chemical cell is the close proximity of the semiconductor used with the liquid electrolyte, which can lead to photo-corrosion and thus, dissolution and degradation of the photoactive electrodes. Hence, its stability and long duration utility are important areas of concern18.

1.3 **Semiconductor Physics: Some Important Concepts for PEC conversion**

1.3.1 **Band Structure**

In solid state materials, because of overlap of wave function of different levels on tight packing of atoms in a solid, overlap of energy levels of isolated atom get converted to energy bands with continuous value of allowed values of energy19. Valence band (E$_V$) is the highest occupied band and the immediate next band with higher energy, is called the conduction band (E$_C$). The difference between the highest energy in the filled
valence band and the lowest energy in the vacant conduction band is called the forbidden gap or band gap (E_g) as shown in Fig. 1.2. It represents a range of energies in which no allowed values of electron energy states exist.

![Diagram of band gap and band edges in a semiconductor material](image)

Figure 1.2: Schematic representation of band gap (E_G) and band edges (EC and EV) of a semiconductor material (redrawn and adapted from Ref. 19).

In semiconductors and insulators, the highest filled energy level of valence band and the lowest vacant energy level of conduction band are called valence band edges (E_v) and conduction band edges (E_c), respectively (Fig. 1.3). Electrons in valence band cannot carry current. But, at temperatures above zero Kelvin, electrons can be excited by the thermal motion of the atoms, resulting in some electrons filling the orbitals in the conduction band. The electrons in the conduction band are mobile and can carry current. As a result of excitation of electrons, there will be a vacant position in the valence band (named as hole), which also contribute to the flow of current. As shown in Fig 1.3, the difference between an insulator and semiconductor gives the magnitude of the forbidden gap and the value of an energy gap changes the concentration of electrons and holes in the conduction and valence bands, respectively. Hence, the current flow in a semiconductor can be estimated to be the sum of the motion of
electrons in the conduction band and holes in the valence band. Electronic conductivity in the semiconductors requires electrons to be excited to the conduction band. This may be achieved thermally (by increase in temperature), or optically (by application of light)19.

![Energy Band Diagram](image)

Figure 1.3: A schematic diagram showing the energy band diagram of large forbidden gap in an insulator, a smaller band gap in a semiconductor and overlapped energy bands in case of a metal (redrawn and adapted from Ref. 19).

An important concept to describe the semiconductors is that of the Fermi level, \(E_F\), which is defined as the energy level where the probability of existence of an electron is 0.5 (i.e., where the probably that the level is either occupied or vacant). In a metal, the conduction band is energetically either adjacent or overlapping to the valence band, as shown in Fig. 1.3 above. Thus, electrons can be easily excited from the valence band into the conduction band by thermal energy and do not have to overcome any forbidden energy gap. Because of this minimal energy difference between the valence and conduction bands, conduction occurs easily in a metal. In case of semiconductor, in the ground state all of the electrons are in the valence band and there are no electrons in the conduction band, so the probability of finding an electron abruptly changes from 100% at the top of the valence band to 0% at the bottom of the conduction band. At higher
temperatures, some electrons gain energy in excess of the Fermi level and reach the conduction band. The probability of occupation of an allowed energy state corresponding to energy E, can be statistically calculated from the Fermi-Dirac distribution function $f(E)$, described as equation (1.1)20.

$$f(E) = \left[1 + e^{(E - E_F)/kT} \right]$$... (1.1)

where k is Boltzmann’s constant and T is temperature.

1.3.2 Work function

The work function is a very important parameter to understand the mechanism of operation in most of the optoelectronic devices like solar cell and photo-electrochemical cell. Large changes can be induced, and the work function is strongly dependent on the position and coverage of the semiconductor surface by adsorbed atoms. Work function is described with reference to the vacuum level21. In the Schottky limit and in the absence of fixed charges, the work function (Φ_S) can be defined as in equation 1.2,

$$\Phi_S = E_F - E_{\text{vac}}$$ (1.2)

Where E_F and E_{vac} are the Fermi energy and energy of the vacuum level, respectively. For example, work function Φ_S of Si, is 4.05 or 5.15 V, for an n-type or p-type Si, respectively. The work function of a semiconductor w.r.t other important energy levels in a semiconductor material is described in Fig. 1.4.
Energy gap (E_G) is the energy difference between conduction band and valence band. In general, electrons are naturally bound to the solid. At the surface of the material, they are prevented to escape (to the vacuum) by an energy barrier that culminates at the vacuum level (E_{VAC}). The energy difference between E_{VAC} and top of the valance band is therefore, the minimum energy necessary to remove an electron from the system, and is known as the ionization energy (IE). Work function W_F is defined as the energy necessary to remove an electron originally at the Fermi level (E_F) deep inside the material and place it at rest at a point in free space just outside the surface, i.e. at E_{VAC}.

In a semiconductor, work function is very sensitive to the surface conditions as it is a difference in the position of the vacuum level (E_{vac}) and Fermi energy (E_F). Anything which affects Fermi energy can also affect the work function. It is well known that Fermi energy of a semiconductor depends upon the doping concentration and temperature. In a n type semiconductor, Fermi energy is close to the conduction band. In a p type semiconductor,
Fermi energy is close to the valence band. For an intrinsic semiconductor, Fermi energy is close to the middle of the forbidden gap. With an increase in the dopant concentration, Fermi energy shifts towards the conduction band (n type semiconductor) or towards the valence band (p type semiconductor). With increase in temperature, Fermi energy shifts towards the centre of the forbidden gap.

1.4 PEC Cell: Important Concepts

The key components of a PEC cell are, undoubtedly, the semiconductor electrode and the electrolyte. The semiconductor-electrolyte junction is the main functional unit. A clarity in the concepts of chemistry and physics of semiconductor in contact with the electrolyte solution is needed to understand the mechanism of the processes occurring in a photo-electro-chemical cell. In this section, an attempt has been made to present some of these aspects of a PEC cell.

1.4.1 Optimum value of band gap for light absorption

One of the most important consideration for choosing a semiconductor material for solar cell and photo-electro-chemical cell is its band gap. It is required to completely absorb the solar spectrum for converting it to electrical energy in a solar cell or chemical energy in case of PEC.

For a fixed value of band gap, the solar photons having energy higher than the band gap are absorbed and the one having energy smaller than the band gap are transmitted as shown in Fig. 1.5. This can be termed as the transmission loss. For the photons having energy higher than the band gap, the excess energy, which is the difference between photon energy and band gap of the semiconductor (photon energy – band gap) is lost as heat energy. As the photon is absorbed, the photoexcited electron is excited to an energy state as per the value of photon energy. The photoexcited electron quickly looses its energy by collision with the
lattice and occupies the conduction band minimum. Therefore, these photons having energy higher than the band gap are not absorbed efficiently23.

![Absorption and complete energy utilization diagram](Image)

\textbf{Figure 1.5:} A schematic description of transmission and thermal loss during absorption of solar photons having energy lower (blue) and higher (green) than the band gap, respectively. As shown, photon having energy equal to the band gap (red arrow) is efficiently absorbed as its energy is completely converted to the energy of the electron-hole pair (Adapted from Ref. 23).

The maximum energy which can be efficiently absorbed can be described by the product of band gap energy and number of photons absorbed. Maximum photon energy absorbed is equal to $E_g n_{ph}$.

The optimum value of band gap for one semiconductor to absorb solar light is 1.1 - 1.2 eV. As a result, CdTe, Si and CuIn$_2$Se$_2$ are some of the semiconductors suitable for solar cell applications. For PEC cells, there are additional conditions to be discussed below24.

\subsection*{1.4.2 Requirement of Eg for PEC}

PEC cells can be constructed with p or n type semiconductors. When a PEC cell, with n-type semiconductor, is used for the purpose of direct water splitting, oxygen is formed at anode by hole induced oxidation of water and hydrogen is evolved at cathode by the complimentary reduction process. In a PEC cell, with p-type semiconductor, the flow
of charge carriers will be in a reverse direction and H₂ and O₂ would evolve at semiconductor photocathode and anode (i.e. counter electrode), respectively. The transfer of photoexcited electrons and holes as per equation 1.3 is shown in the Fig 1.6.

$$\text{Semiconductor (n type) } + \text{hv} \rightarrow e^- + h^+ \quad \text{.................................1.3}$$

The two redox reactions that proceed at the cathode and anode with the participation of these electrons and holes are given below in equation 1.4.

At photoanode

$$2\text{H}_2\text{O} + 4h^+ \rightarrow \text{O}_2 + 4\text{H}^+$$

At cathode

$$4\text{H}^+ + 4e^- \rightarrow 2\text{H}_2$$

Overall reaction

$$2\text{H}_2\text{O} \rightarrow 2\text{H}_2 + \text{O}_2 \quad \text{.................................1.4}$$

If there is no resistance in the circuit, the Fermi level of the counter electrode will be at the same level as that of the semiconductor. In order to split water with light irradiation, the flatband potential of the semiconductor has to be at a higher energy than the redox potential for hydrogen evolution, U₀(H₂O → H₂). For this, the band gap of the semiconductor must be more than 1.23 eV, which is the position of U₀(H₂O → O₂) with reference to U₀(H₂O → H₂)²⁵.

1.4.3 Alignment of the energy band diagram with redox potentials

There is a thermodynamic relationship between the band edges of a semiconductor photocatalyst and the redox potentials of species entering into redox reactions. Fig. 1.6 shows the alignment between band edges of semiconductor and the electrochemical potentials of the two redox half reactions of water decomposition with respect to the vacuum level²⁶. It is clear that for driving the oxygen evolution reaction, the photo-generated-hole energy must be lower than the electrochemical potential of the O₂/H₂O redox couple, and for driving the hydrogen evolution reaction, the photo-generated electron energy must be higher than the potential of the H⁺/H₂ redox couple. The
thermodynamic rule states that higher the conduction band minimum energy and lower valence band maximum energy, the stronger tendency for reduction and oxidation reactions, respectively. The ideal energy difference between the valence and conduction band edges for photo electrolysis of water is between 1.6–2.4 eV, while taking the losses at the semiconductor/liquid interface due to the concentration and kinetic overpotential needed to drive reactions. The two band edges must straddle the electrochemical potentials of the O_2/H_2O and H^+/H_2 redox couples^{27}.

![Figure 1.6: A schematic description of the requirement of straddling of water redox potential w.r.t conduction and valence band edges of the semiconductor](Redrawn and adapted from Ref. 28)

Metal oxide semiconductors that are stable and easy to synthesize. Tungsten oxide (WO_3), bismuth vanadium oxide (BiVO_4) and tin dioxide (SnO_2), are the potential candidates for visible light driven photocatalysts. The primary reason being the band gaps of WO_3 and BiVO_4 are 2.8 eV and 2.4 eV, respectively^{29}. However, they cannot be used for hydrogen production due to their deep conduction band (CB) levels at potentials more positive than 0 V vs NHE (pH = 0) as shown in the Fig.1.7.
Figure 1.7: Partial straddling of water redox potential resulting in the limitation that only hydrogen formation can take place at the semiconductor surface (Redrawn and adapted from Ref. 28).

The alignment of the energy band w.r.t the water redox potentials is such that the conduction band edge is below the hydrogen redox potential. Such a semiconductor can only be used for oxygen evolution. In Fig 1.8 show a typical band gap alignment of these systems.

Figure 1.8: Partial straddling of water redox potential resulting in limitation that only oxygen formation can take place at the semiconductor surface (Redrawn and adapted from Ref. 28).

1.4.4 Semiconductor materials for water splitting applications

Fig. 1.9 shows a variety of semiconductor materials that can be used for photo-electro-chemical water splitting. As per the above discussion, band gap and straddling of the water redox potentials by conduction and valence bands are important requirements for
efficient absorption of sun light and separation of electron hole pairs at the semiconductor-electrolyte interface. Materials like WO$_3$ and Fe$_2$O$_3$ have band gap values very close to optimum values but their conduction band is below the hydrogen redox potential. Similarly, materials like Si have the valence band edge above the oxidation redox potential. Materials like TiO$_2$ are ideal in terms of straddling requirement but have very high band gap.

Figure 1.9: Conduction and valence band edge for a variety of semiconductor materials w.r.t water redox levels (Adapted from Ref. 30).

The stability of the electrode is also a deciding factor in addition to the band gap. GaAs and GaP are the semiconductors with low band gaps. However, they are not stable against photo-corrosion or electrochemical corrosion in aqueous medium. In contrast, oxides of transition metals, like TiO$_2$, ZnO, WO$_3$, PbO are stable in aqueous solution either as photoanode or as photocathode. But the importance of their stability in aqueous environment is nullified by their poor absorption in solar spectrum on account of their high band gap. Therefore, there is a large research scope for modifying the
optical, energy band diagram and stability properties for efficient photo-electrochemical water splitting.

1.5 Modification of Material Properties

1.5.1 Surface engineering

Surface engineering involves modifying the properties of materials and nanoparticles by post deposition surface treatments. Surface treatments vary from sintering the nanoparticles in a reducing or oxidizing environment to bombardment by ions. Surface engineering is important for the present study as one can modify the optical properties by introducing defects in the forbidden gap of a material. Vacancies, interstitials, and dangling bonds at the surface result in the appearance of defect states in the forbidden gap. These defect states result in absorption at energy lower than the band gap, which can be useful in photoelectrical application. Defects can also act as sink or recombination centres for photogenerated carriers, which can deteriorate the photocurrent and then harmful for PEC properties. The nature of defects and their position in the energy gap is thus, very important. Introduction of defects will also result in the modification in the surface catalytic properties.

1.5.2 Controlling properties by varying nanoparticle size

Controlling the properties of materials by varying the nanoparticle size is an important methodology of tailoring the material properties for specific application31. Decrease in nanoparticle size results in increase in the band gap of semiconductor materials due to quantum confinement effect.
Figure 1.10: Energy band diagram of a bulk semiconductor and modification due to quantum confinement resulting in blue shift in forbidden gap (Redrawn and adapted from Ref. 32).

As shown in Fig 1.10, quantum confinement of an electron in a potential box of dimension L (size of the nanoparticle) results in continuous allowed values of energy in conduction and valence bands which are discrete and a finite value of energy (in comparison to zero value allowed in a case of bulk materials). This results in the shift in the bottom and top of conduction and valence band by values ΔE_C and ΔE_V, respectively. The band gap of the semiconductor nanoparticle thus, becomes a function of nanoparticle size being proportional to $1/L^2$.

The specific surface area of the nanoparticle (surface area per unit volume) is proportional to $1/L$. With decrease in size of the nanoparticles, the specific surface area increases as the dimension of the nanoparticle becomes smaller. This results in the enhancement of the surface catalytic properties but also affect the stability of the nanoparticle due to increased surface areas resulting in increase in chemical instability.

1.5.3 Core-shell nanoparticle formation

Core-shell nanoparticle formation is a very useful methodology for controlling the optical and carrier transport properties32. By choosing a small band gap material, it is
possible to increase the optical absorption of the incident solar light. This is particularly useful for carrier transport as light absorption in the visible part of the solar spectrum can be increased resulting in enhanced PEC response13. Core-shell material can be chosen so as to increase the stability of semiconductor core in the liquid electrolyte and also to enhance the surface catalytic properties. A correct alignment of the energy bands of core-shell semiconductors can result in the separation of photo-generated electrons and holes at the interface, as shown in Fig 1.11. Lower energy photons can be absorbed in the smaller energy band gap semiconductor. It is clear that an efficient hetero-interface requires a correct selection of the two semiconductor materials for a favourable energy level alignment.

\begin{figure}[h]
\centering
\includegraphics[width=0.8\textwidth]{figure11.png}
\caption{Alignment of energy levels of core and shell semiconductors at the nanoparticle heterointerface (Redrawn and adapted from Ref. 34).}
\end{figure}

\subsection*{1.6 Literature Review}

As discussed above, it is very important for a semiconductor material to fulfill all the requirements for the photoelectrical electrode and the main challenge for high efficiency PEC water splitting is to search for appropriate semiconductor materials acting as highly active photo-electrodes or to modify properties of the semiconductor by different material modification methodologies. TiO\textsubscript{2} is one of the most widely used materials. Therefore, in this thesis a discussion with the properties of TiO\textsubscript{2} and how
these properties have been modified by using surface treatments are presented. As these have attracted greater attention since the realization of solar-driven water splitting by using TiO$_2$. However, due to its wide band gap (≈3 eV), TiO$_2$ is effective only in the ultraviolet light range and thus, only a small portion (5%) of the solar energy is utilized.

1.6.1 Titanium dioxide (TiO$_2$) as a promising photoelectrode material

Titanium dioxide (TiO$_2$) possesses many desirable properties which include good chemical stability, non-toxicity, low cost, and most importantly, suitable band gap energy levels for the desired water splitting and CO$_2$ reduction reactions. There are three polymorphs of TiO$_2$ which are found in nature: tetragonal rutile, tetragonal Anatase, and orthorhombic TiO$_2$ polymorphs comprise of TiO$_6$ octahedra but differ in the distortions of the octahedron units and in the manner the edges and corners are shared, as shown in Fig 1.1. Anatase crystalline is a distorted octahedral coordination, in which every Titanium atom is surrounded by six oxygen atoms in an elongated octahedral geometry adopting axial symmetry. In rutile case, additional in-plane and out-of-plane bond length and bond angle distortions exist. In brookite, stronger distortions lead to a loss of local symmetry and formation of symmetric TiO$_6$ units. Deviations in crystal structure lead to diverse electronic structure of these polymorphs thus, affecting their charge transfer ability and band energy levels. The Rutile and Anatase are the most widely studied phases for PEC applications. Anatase to Rutile solid state phase transition is known to depend on nanoparticle size, dopants and structural defects. Anatase phase is considered to be kinetically stable phase, whereas Rutile is a more stable phase from thermodynamic consideration. Anatase to Rutile phase transformation usually take place between 600°C to 700°C. The growth temperature for Anatase phase is about 200°C and it transforms to Rutile phase at higher
temperature at about 600°C45,46. Thus, 350°C to 400°C seems to be the optimum temperature range for Anatase phase growth42. In bulk state, rutile is the most thermodynamically stable form while the Anatase is generally more active, due to the higher charge mobility and longer exciton diffusion length in the anatase TiO\textsubscript{2}46. Both bulk Anatase and Rutile possess band gaps of energy 3.2 eV and 3.0 eV, respectively47. Therefore, only ultraviolet irradiation in solar spectrum can be absorbed by TiO\textsubscript{2}. However, easily-modified electronic structure with higher charge carrier mobility and excellent surface chemical properties makes it a widely suitable material48,49.

![Crystal structure of TiO\textsubscript{2}](image_url)

Figure 1.12: Crystal structure of TiO\textsubscript{2}: a) anatase (tetragonal), b) rutile (tetragonal) and c) brookite (orthorhombic) phases. (adapted from Ref. 50).

1.6.2 Modification of TiO\textsubscript{2} properties

As discussed earlier, nanoparticle methodology is a useful method of modifying the properties of semiconductor materials. At nanoparticle sizes, the surface area of the material is significantly enhanced due to nanoparticle effect. From this point of view,
synthesizing nanoparticle or sub-micron sized TiO$_2$ nanoparticles is one of the most important methodology for improving the photo-electro-chemical properties.

Photo-electrodes which comprises of mixed TiO$_2$ nanoparticles possesses large specific surface area (hundreds of m2/g) as well as excellent light scattering effect which lead to fast interfacial charge transfer, low series resistance, superior charge collection efficiency, and hence much higher power conversion efficiency$^{51-54}$. However, the efficiency of the nanoparticulated TiO$_2$ film is usually low as compared to that of the TiO$_2$ film with well-designed morphologies, such as nanotubes, nanowires or hierarchical structures. This is mainly due to the large crystal size, grain boundaries between TiO$_2$ crystallites and less exposed active facets resulting in low effective surface area. TiO$_2$ nanoparticles films fabricated from thermally sintered nanoparticles can provide desirable high specific surface area useful for PEC applications. However, the electron diffusion coefficient of these nanoparticulate films is several orders of magnitude smaller than that of single-crystal TiO$_2$ due to large number of interparticle grain boundaries thus, limiting the PEC efficiency. This is due to the increased electron trapping at the grain boundaries of TiO$_2$ nanoparticles. Compared to sintered nanoparticle films, oriented 1-D TiO$_2$ nanostructures such as nanowires, nanorods and nanotubes arrays could offer direct electron transport pathway and higher electron mobility, leading to increased charge transport rate55,56.

Aligned TiO$_2$ nanowire or nanorod films have been fabricated via several methods including template-directed growth, high temperature vapor phase deposition, and low temperature chemical synthesis (hydrothermal and solvothermal). In early works, template-directed growth was commonly used to synthesize oriented TiO$_2$ nanowires or nanorods. The most versatile hard template is an iodized alumina oxide. Based on such a template, aligned TiO$_2$ nanorod arrays on Indium tin oxide (as conductig
substrates) have been prepared using sol-gel and electrochemical deposition methods56-60 and used them as photo-electrodes for PEC water splitting. The electrons exhibited a high collection rate at the back contact as observed from the IPCE of 79\% at 350 nm. This was attributed to the fast vertical charge transport through the long axis of the nanorods, reduced surface defects and the restricted electron-hole recombination. Electrochemical anodization has also been utilized for growing nanostructures for PEC applications61.

Similar to the properties of 1D TiO\textsubscript{2} nanostructures, 2D nanostructures also have direct electron path ways and favorable electrical and optical properties. There have been enormous efforts made to the synthesize nanobelts or nanoribbon shaped TiO\textsubscript{2} powders for photocatalytic applications, with encouraging results for PEC applications62-66. There also have been studies which have been conducted on the surface modification by incorporating Pd on hydrothermally prepared TiO\textsubscript{2} nanobelts for PEC application. Due to the large effective surface areas of TiO\textsubscript{2} nanobelts and Schottky barrier junctions between the noble metal (Ag or Pd) nanoparticles and TiO\textsubscript{2} nanobelts, decorated TiO\textsubscript{2} exhibited excellent PEC sensitivity and selectivity, moderate working temperature, short response/recovery time and good reproducibility. By controlling the treatment given to TiO\textsubscript{2} nanobelt substrate, TiO\textsubscript{2} nanobelt/ZnO nanorod photoelectrodes with flower-like nanostructures were fabricated.

1.6.3 Modification of the TiO\textsubscript{2} properties by surface treatments

Doping, alloying, composite formation methods have been used to modify the properties of TiO\textsubscript{2} mainly from the point of enhancing the optical properties in the visible spectral range. Doping is used to narrow the band gap of TiO\textsubscript{2} for extended visible light absorption. However, doped TiO\textsubscript{2} nano-particles, showed limited solar water splitting due to dopant induced charge recombination centres. Chen et. al.67
proposed a novel concept of “surface disordering” for extended visible light absorption of TiO$_2$. With the sample color changed from white to black by post hydrogenation, the disorder-engineered nanophase “black TiO$_2$” consisted of a crystallized core and highly disordered surface layer shell was realised. A laboratory scale experiment carried out in a full-spectrum solar light exposure showed that the H$_2$ production rate was close to 10 mmol/h/g and it was two orders higher than normally observed response68. DFT calculations reveal surface disordering defects on the surface, because of mid-gap electronic states created in hydrogenated anatase TiO$_2$ nanocrystals. Changes in structural properties due to surface disordering on photocatalytic performance of TiO$_2$ has been reported in a number of studies$^{69-78}$. It has also been shown that there is an efficient separation of electron–hole pairs which effectively contributes to the improved PEC performance of the surface disordered TiO$_2$79. Kang et al.80 performed NaBH$_4$ treatment of TiO$_2$ nanotubes to introduce oxygen vacancies. An electrochemical reductive process was carried out by Xu et al.81 to hydrogenate TiO$_2$ nanotube arrays. Similar to the NaBH$_4$ treated TiO$_2$ nanotube arrays, the electrochemically reduced TiO$_2$ nanotube arrays showed increased photo-activity. Wang et al.82 synthesized hydrogenated TiO$_2$ nanowires by annealing it in hydrogen atmosphere at various temperatures. Higher density of oxygen vacancies and impurity levels were induced within the bandgap of TiO$_2$, resulting in increased donor density, extended optical absorption and improved photocurrent density. By anodization of titanium substrate and subsequent hydrogenation approach, Li et al.83 synthesized hydrogenated TiO$_2$ nanotube photoelectrodes. It was shown that oxygen vacancies introduced into the TiO$_2$ nanocrystals as shallow donors significantly improve the electronic conductivity and optical absorption ability of the TiO$_2$ nanotube photoelectrodes. The surface disordering method was also applied to other semiconductor materials such as WO$_3$.84,
ZnO85, SrTiO\textsubscript{3}86, VO\textsubscript{2}87 and Li\textsubscript{i}Ti\textsubscript{5}O\textsubscript{12}88 and the resulting structures been used in wide ranging applications.

In addition to increased absorption, defects states also enhances the carrier recombination process which is not desirable for optoelectronic applications such as PEC energy conversion. To reduce this effect, surface passivation treatments proved to be an effective way to reduce recombination of electron and hole pairs89,90. Hoang et al.91 demonstrated that by coating a cobalt thin film on the surfaces of TiO\textsubscript{2} nanorods effectively improves the PEC performance for water splitting. It is assumed that the cobalt treatment saturates the dangling bonds on the TiO\textsubscript{2} surface. By tuning the ALD deposition time, the thickness of the rutile shell TiO\textsubscript{2} coating can be controlled and passivated TiO\textsubscript{2} nanowires achieved a higher photocurrent density92.

Doping of impurity atoms has also been used for passivating surface states93 Gd doping has been observed to enhance light absorption efficiency of TiO\textsubscript{2} and passivation of the surface reactive states resulting in enhanced charge separation efficiency93. It has been shown that doping of H and Li can passivate the defect states in TiO\textsubscript{2} nanotube arrays94. H and Li doped TiO\textsubscript{2} has been shown to increase the photocurrent as compared to the pristine TiO\textsubscript{2}. A summary of different surface treatments used in the literature to modify the properties of TiO\textsubscript{2} for PEC applications has been shown in Table 1.2.

Table 1.2: Effect of surface treatment on the PEC properties of TiO\textsubscript{2} as reported in the literature.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Synthesis method</th>
<th>Surface treatment</th>
<th>Morphology</th>
<th>PEC properties</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrogen treated Rutile TiO\textsubscript{2} nanorod</td>
<td>Anodization of a titanium foil.</td>
<td>Hydrogen atmosphere treatment</td>
<td>d = 100-200 nm l = 2-3 µm</td>
<td>2 times increase w.r.t pristine TiO\textsubscript{2} nanowires</td>
<td>95</td>
</tr>
<tr>
<td>Shell passivated Rutile TiO\textsubscript{2}</td>
<td>Hydrothermal method</td>
<td>Atomic layer deposition</td>
<td>l = 0.28 – 1.8 µm</td>
<td>The epitaxial shell formation enhanced photocatalytic activity by 1.5 times.</td>
<td>96</td>
</tr>
<tr>
<td>Sample</td>
<td>Synthesis method</td>
<td>Surface treatment</td>
<td>Morphology</td>
<td>PEC properties</td>
<td>Reference</td>
</tr>
<tr>
<td>--</td>
<td>-------------------------</td>
<td>------------------------------------</td>
<td>-----------------------</td>
<td>--</td>
<td>-----------</td>
</tr>
<tr>
<td>Surface disordered Rutile TiO₂</td>
<td>Hydrothermal method</td>
<td>Hydrogen atmosphere treatment</td>
<td>d = 100 – 200 nm, l = 2-3 μm</td>
<td>The photocurrent of H₂ TiO₂ is twice w.r.t pristine TiO₂ nanowires</td>
<td>97</td>
</tr>
<tr>
<td>Surface disordered anatase TiO₂ nanotube</td>
<td>Anodic oxidation process</td>
<td>NaBH₄ treatment</td>
<td>d = 100 nm, l = 7μm</td>
<td>4 times increase in photocurrent</td>
<td>98</td>
</tr>
<tr>
<td>Surface disordered anatase TiO₂</td>
<td>Anodization</td>
<td>Anodization</td>
<td>d = 300 nm, t = 75 nm</td>
<td>--</td>
<td>99</td>
</tr>
<tr>
<td>Surface disordered TiO₂ (mixed phase with more rutile)</td>
<td>Anodization process</td>
<td>--</td>
<td>d = 100 nm, l = 900 nm</td>
<td>--</td>
<td>100</td>
</tr>
<tr>
<td>Surface passivated N doped rutile TiO₂</td>
<td>Hydrothermal method</td>
<td>--</td>
<td>d = −5nm, l = 4.4μm</td>
<td>2.5 times improvement in the photocurrent</td>
<td>101</td>
</tr>
<tr>
<td>Surface passivated Anatase TiO₂</td>
<td>Hydrolysis process</td>
<td>--</td>
<td>d = 75-100 nm, l = 1μm</td>
<td>The evolved H₂ from Gd³⁺ : TiO₂ is 180% higher than pristine TiO₂ electrode</td>
<td>93</td>
</tr>
<tr>
<td>Trap states passivated Anatase TiO₂</td>
<td></td>
<td>Passivation</td>
<td>--</td>
<td>--</td>
<td>94</td>
</tr>
<tr>
<td>Surface passivated Anatase TiO₂</td>
<td>Electrochemical Anodization</td>
<td>Anodization</td>
<td>d = 80nm, l = 4.5 μm</td>
<td>Photocurrent density increase 3.6 times higher</td>
<td>102</td>
</tr>
<tr>
<td>Surface disordered anatase TiO₂</td>
<td>Template free chemical route</td>
<td>Hydrogen treatment</td>
<td>Average size is around 15 nm</td>
<td>Photocurrents increase 2-fold</td>
<td>103</td>
</tr>
<tr>
<td>Hydrogen treated rutile TiO₂ nanorod</td>
<td>Hydrothermal method</td>
<td>Treatment in H₂/ Ar atmosphere</td>
<td>d = 150 nm, l = 1.8 μm</td>
<td>--</td>
<td>104</td>
</tr>
</tbody>
</table>

1.6.4 TiO₂: MoS₂ 3D: 2D nanocomposites

MoS₂ is found in earth as a mineral named 'molybdenite'. In its bulk form, it is a dark and shiny solid and has a layered structure as described in Fig. 1.13 with crystal structure in different planes. The weaker interlayer interactions in comparison to
bonding within a layer allows sheets to easily slide over one another and thus, it is often used as a lubricant. It can also be used as an alternative to graphite in high-vacuum applications, but it does have a lower maximum operating temperature than graphite. Similar to graphite, this also results in the possibility of formation of 2D layers by different methods. Bulk MoS$_2$ is a semiconductor with an indirect bandgap of \sim1.2eV and is therefore of limited interest to the optoelectronics industry. Individual layers of MoS$_2$ have radically different properties compared to the bulk. Absence of interlayer interactions and confinement of electrons into a single plane or few planes results in the formation of a direct bandgap with an increased energy of \sim1.89eV in 2D layers. The properties of MoS$_2$ layers can be modified by controlling the number of layers which makes it a very useful material for application as a 2D semiconductor. A single monolayer of MoS$_2$ can absorb 10% of incident light with energy above the bandgap106.

![Diagram of MoS$_2$ structure](image)

Figure 1.13: The atomic arrangement of monolayer MoS$_2$ showing a 2D layer comprising of molybdenum atoms (blue) sandwiched between two layers of sulfur atoms (yellow) along two different crystallographic directions. (adapted from Ref. 105)

Due to the useful properties of TiO$_2$ as described earlier in terms of band edge alignment and stability and the attractive semiconductor properties of MoS$_2$ nanosheets, especially
in terms of 100% surface area and its narrow band gap, TiO$_2$:MoS$_2$ nanocomposite seems to have potentially useful properties for photocatalysis. TiO$_2$:MoS$_2$ composites have been prepared via a facile hydrothermal process107. The improved photocatalytic activities are perhaps derived from the high conductivity and increased active sites for the introduction of co-catalytic MoS$_2$ nanosheets as well as the positive synergetic effect between the TiO$_2$ and MoS$_2$. In another important study, 2D nanojunctions been used to enhance solar hydrogen generation of MoS$_2$/TiO$_2$ system108. Incorporation of 2D MoS$_2$ nanosheets on the surface of 2D anatase TiO$_2$ nanosheets greatly increased the interfacial contact and high H$_2$ evolution rate were observed. In another study a facile approach for the preparation of MoS$_2$ nanosheet decorated by porous titanium dioxide for effective photocatalytic activity has been used. Mesoporous titanium dioxide nanostructures is synthesized by a hydrothermal process using titanium (III) chloride and then the MoS$_2$/TiO$_2$ were prepared through mixing of MoS$_2$ nanosheets with mesoporous titanium dioxide under ultrasonic irradiation.

Loading of 2D MoS$_2$ nanosheets on the surface of 2D anatase TiO$_2$ nanosheets having (001) facets was observed to increase the interfacial area. In this reported study, it is shown that at an optimal ratio of 0.50 wt % MoS$_2$, the 2D-2D MoS$_2$/TiO$_2$ photocatalyst shows the higher H$_2$ evolution rate than that of pure TiO$_2$ nanosheets. The intimate contact and large area interface between the light-harvesting semiconductor and co-catalyst is assumed to be an important factor.

In another important study, 2D TiO$_2$/MoS$_2$ hybrid nanosheets have been prepared via a facile hydrothermal process109. The improved photocatalytic activities seem to be derived from the high conductivity and the increased active sites for the introduction of co-catalytic MoS$_2$ nanosheets as well as the positive synergetic effect between the TiO$_2$
and MoS₂. A summary of the synthesis and properties of TiO₂:MoS₂ nanocomposites is shown in Table 1.3.

Table 1.3: Synthesis and PEC properties of TiO₂:MoS₂ nanocomposites reported in literature

<table>
<thead>
<tr>
<th>Sample</th>
<th>TiO₂</th>
<th>Method</th>
<th>MoS₂</th>
<th>Method</th>
<th>PEC Properties</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>TiO₂: MoS₂</td>
<td>Porous TiO₂</td>
<td>Hydrothermal</td>
<td>MoS₂ nanosheet</td>
<td>Liquid Exfoliation Method</td>
<td>Photocatalytic performance is 2.2 times higher than mesoporous TiO₂</td>
<td>107</td>
</tr>
<tr>
<td>TiO₂:MoS₂ composite</td>
<td>TiO₂ nanoparticles</td>
<td>Solvo thermal</td>
<td>MoS₂</td>
<td>Solvo thermal</td>
<td>Visible light photodegradation TiO₂ = 48% TiO₂ /MoS₂ = 74%</td>
<td>108</td>
</tr>
<tr>
<td>TiO₂: MoS₂</td>
<td>TiO₂ nanosheets</td>
<td>Hydrothermal reaction</td>
<td>MoS₂ 2D layer</td>
<td>Hydrothermal reaction with TiO₂</td>
<td>HER = 2145 µmol h⁻¹ g⁻¹, which is about 36.4 times higher than that of pure TiO₂ nanosheets.</td>
<td>109</td>
</tr>
<tr>
<td>TiO₂:MoS₂</td>
<td>TiO₂</td>
<td>MoS₂ 2D layer</td>
<td>Hydrothermal process</td>
<td>Mechanical exfoliation</td>
<td>The saturation current density = 33 µA cm⁻² which is nearly twice that of pure TiO₂</td>
<td>110</td>
</tr>
<tr>
<td>MoS₂ @ TiO₂ heterojunction</td>
<td>TiO₂ nanosheet</td>
<td>Proton exchange reaction.</td>
<td>MoS₂ nanoparticles</td>
<td>Hydrothermal method</td>
<td>Photocurrent density 31.3 mA cm⁻² which is about 26 times that of pure MoS₂.</td>
<td>111</td>
</tr>
<tr>
<td>TiO₂-MoS₂ nanocomposite</td>
<td>TiO₂ nano broccoli</td>
<td>Commericially obtained</td>
<td>MoS₂ nano sheets</td>
<td>Chemical method</td>
<td>Enhanced photochromic reactions</td>
<td>112</td>
</tr>
<tr>
<td>MoS₂/TiO₂ Composite Catalyst</td>
<td>TiO₂ nanoparticles</td>
<td>Hydrothermal method</td>
<td>MoS₂ nanosheets</td>
<td>Hydrothermal method</td>
<td>HPR= 1004 µmol⁻¹. h⁻¹. g⁻¹</td>
<td>113</td>
</tr>
<tr>
<td>TiO₂: MoS₂ hybrid pallets</td>
<td>TiO₂ nanoparticles</td>
<td>Wet impregration method</td>
<td>MoS₂ flakes</td>
<td>MoO₂₂H₃S reaction at 673 K.</td>
<td>Enhancement w.r.t TiO₂</td>
<td>114</td>
</tr>
<tr>
<td>TiO₂/MoS₂ composite photocatalyst one-step hydrothermal process</td>
<td>TiO₂ vitreosol</td>
<td>Ultrasound processing</td>
<td>Micro-MoS₂ powder</td>
<td>Ultrasound treatment</td>
<td>Degradation rates of TiO₂, MoS₂-TiO₂ mixture, and TiO₂/MoS₂ composite = 28%, 27% and 97%</td>
<td>115</td>
</tr>
</tbody>
</table>
1.6.5 Synthesis and properties of TiO$_2$-BiVO$_4$ composites

Bismuth vanadate (BiVO$_4$) as a ternary oxide semiconductor has a narrow band gap of 2.4-2.5 eV and is a useful and a promising candidate as a photocatalyst owing to its high stability, non-toxicity, good tunability, and visible-light response$^{117-119}$. It has been reported in a number of studies that BiVO$_4$ exhibit high photoelectric conversion efficiency over 40%120. Among four crystallographic forms (tetragonal zirconium silicate, tetragonal scheelite, orthorhombic pucherite and monoclinic β-fergusonite) of BiVO$_4$, Monoclinic BiVO$_4$ is probably the most stable form and has shown high photocatalytic activity121. In spite of its useful and attractive properties of visible light absorption due to its lower band gap, BiVO$_4$ exhibits an inefficient separation of photo-excited electron-hole pairs and thus, low photocatalytic efficiency122. As both efficient visible light absorption and efficient carrier separation are essential requirement for PEC applications. Therefore, it is essential to promote the separation of electron-hole pairs to improve the photocatalytic performances by combining it with other materials using different methodologies. It has been demonstrated that Cu doped BiVO$_4$ microsheets exhibit better photocatalytic activity123. In another study, it has been shown that introduction of oxygen vacancy could assist in capturing of photo-generated electrons and thus, inhibit the electron-hole recombination124. The important methodology of forming composite structures of BiVO$_4$/TiO$_2$125 and BiVO$_4$/graphene have been also been applied126. Main results on the synthesis and properties of TiO$_2$-BiVO$_4$ nanocomposite is given in Table 1.4.
Table 1.4: Synthesis and PEC properties of TiO2:BiVO4 nanocomposites as reported in the literature

<table>
<thead>
<tr>
<th>Material</th>
<th>Synthesis TiO2</th>
<th>BiVO4 Synthesis two step chemical process</th>
<th>PEC</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>TiO2- BiVO4 nanocomposite</td>
<td>-</td>
<td>Hydrothermal process</td>
<td>TiO2:BiVO4 nanocomposites exhibit much high photocatalytic activities for water oxidation and H2 evolution even by about three times compared to TiO2- BiVO4 one, along with the greatly-improved visible activity for pollutant degradation.</td>
<td>127</td>
</tr>
<tr>
<td>TiO2- BiVO4 nanoarray</td>
<td>TiO2 nanorod hydrothermal method</td>
<td>BiVO4 layer electrode deposition</td>
<td>The photocurrent of the TiO2:BiVO4 nanorods reached ~1.86 mA cm-2 at 1.0 V_RHE with an onset potential of 0.3V_RHE. Optimum photocurrent of ~1.86 mA cm2 at 1.0 VRHE with an onset potential as small as 0.3 VRHE and IPCE of 26% at 450 nm was obtained for the TiO2/BiVO4/Co-Pi anodes</td>
<td>128</td>
</tr>
<tr>
<td>BiVO4 – TiO2 heterojunction</td>
<td>TiO2 layer hydrothermal + chemical</td>
<td>BiVO4 layer Metal organic decomposition</td>
<td>The BiVO4/ TiO2/FTO are superior to those of the BiVO4/FTO photoanodes at only potentials >1.2 V vs RHE</td>
<td>129</td>
</tr>
<tr>
<td>TiO2 – BiVO4 films</td>
<td>TiO2 NRs photoanode was hydrothermally synthesized directly onto a FTO substrate.</td>
<td>BiVO4 was prepared by chemical method.</td>
<td>The TiO2:BiVO4 heterojunction photoanode can reach a high photocurrent density of 1.3mA cm-2 at 1.23 V vs. RHE, coupling with a low onset potential (0.18 V vs. RHE) under standard testing conditions.</td>
<td>130</td>
</tr>
<tr>
<td>Si/ TiO2/ BiVO4 Heterojunction</td>
<td>A thin film of TiO2 by atomic layer deposition</td>
<td>BiVO4 was deposited on various substrates (bare Si, TiO2 deposited Si, bare FTO, and TiO2 deposited FTO) following the same</td>
<td>With the assistance of the charge separation in the heterojunction films, Si/TiO2/ BiVO4 photoanodes showed 3.3 fold enhanced photocurrent density at</td>
<td>131</td>
</tr>
<tr>
<td>Material</td>
<td>Synthesis TiO₂</td>
<td>BiVO₄ Synthesis two step chemical process</td>
<td>PEC</td>
<td>Reference</td>
</tr>
<tr>
<td>----------</td>
<td>----------------</td>
<td>--</td>
<td>-----</td>
<td>-----------</td>
</tr>
<tr>
<td>TiO₂/BiVO₄ composite</td>
<td>BiVO₄ samples were prepared by chemical method.</td>
<td>Different amounts of (NH₄)₂TiF₆ were added to the suspension individually and continually stirred for 30 min to get the precursors. The obtained samples were marked with pure BiVO₄, 20% TiO₂/BiVO₄, 50% TiO₂/BiVO₄ and 80% TiO₂/ BiVO₄</td>
<td>1.23 V versus RHE. In addition, its onset potential for the photocurrent shifted negatively by 300 mV compared to that of the FTO/ BiVO₄ photoanode.</td>
<td>132</td>
</tr>
<tr>
<td>TiO₂- BiVO₄ Heterostructure</td>
<td>Monoclinic. BiVO₄ was obtained by chemical method</td>
<td>TiO₂ sphere were synthesized by sol-gel method and mixed with BiVO₄</td>
<td>It is also found that the 20% TiO₂:BiVO₄ shows the best photocatalytic activity because of its high crystallinity, narrow band gap, and most importantly, the hierarchical heterostructure.</td>
<td>133</td>
</tr>
<tr>
<td>TiO₂/ BiVO₄ Nanowire</td>
<td>TiO₂ nanowire array.</td>
<td>BiVO₄ was deposited on the nanowire array by thermal evaporation of Bi metal, followed by heating in the presence of vanadyl acetylacetonate (VO(C₅H₇O₂)₂)</td>
<td>Electrochemical and spectroscopic measurements give evidence for the type 11 and alignment necessary for favourable electron transfer from BiVO₄ to TiO₂.</td>
<td>134</td>
</tr>
</tbody>
</table>

1.7 Objectives of the Present Study

The central objective of the present thesis work is to modify the properties of TiO₂ for photo-electrochemical applications by using different methodology of surface treatment, core shell nanoparticles and 2D-nanoparticle composites. Based on the discussion presented in the above section, the potential change in the properties of TiO₂ by using different methodologies is schematically described in the following Table.1.5.
Table 1.5: Different materials configuration used in the present study for modifying the properties and make them more suitable for photo-electrochemical applications.

<table>
<thead>
<tr>
<th>Material System</th>
<th>Modification in Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nanoparticle</td>
<td>• Blue shift in the band gap</td>
</tr>
<tr>
<td></td>
<td>• Enhanced surface area</td>
</tr>
<tr>
<td></td>
<td>• Effecting catalytic properties and stability</td>
</tr>
<tr>
<td>Surface modification of nanoparticles</td>
<td>• Modification in catalytic properties</td>
</tr>
<tr>
<td></td>
<td>• Defect states in the forbidden gap</td>
</tr>
<tr>
<td>Core-shell nanoparticle formation</td>
<td>• Use of low band gap semiconductor</td>
</tr>
<tr>
<td></td>
<td>• Band alignment for carrier separation</td>
</tr>
<tr>
<td>2D-nanoparticle composite</td>
<td>• Use of layer dependent properties</td>
</tr>
<tr>
<td></td>
<td>• Large interface area</td>
</tr>
</tbody>
</table>

The main objective of this study is to understand how one can modify the properties of TiO$_2$ using different methodologies and to investigate how these modifications result in change in the optical, electrical and thus, the PEC properties. As discussed in the earlier sections, TiO$_2$ is one of the most well studied material systems for photo-electrochemical applications and thus, is a model material representing other oxide materials. Therefore, the methodologies used in the present study can be applied to other material systems as well. Following materials combination have been used to realize the methodologies given in Table 1.5.

1. TiO$_2$ nanoparticles and the optical and structural properties have been modified by hydrogen treatment.

2. MoS$_2$-TiO$_2$ 2D:3D nanocomposite. It is expected that the large interface between 2D materials and nanoparticle will result in large change in the optical absorption and efficient charge separation at the interface.
3. TiO$_2$-BiVO$_4$ core-shell nanoparticles. PEC properties of the core-shell nanoparticles have been compared w.r.t BiVO$_4$ and TiO$_2$ nanoparticles.
Chapter 2

Characterization Techniques

In this chapter, details of techniques used to characterize structural, optical and electronic properties of nanoparticle samples are presented. Methods used to investigate the interface and junction properties are summarized. Methods of synthesizing nanoparticles and its composite are also presented.

2.1 Glancing Angle X-ray Diffraction

X-ray diffraction technique is used as crystal structural characterization of nano and bulk materials. Standard values corresponding to the chosen material by matching the experimentally obtained atomic spacing with the material were compared135. X-ray diffraction provide valuable information such as, the crystal structure, lattice parameters, preferred orientation of a crystalline sample, phase purity, crystallite size and strain135. In the present study, crystal structure and crystallite size have been determined and are explained below. In a typical X-ray diffractometer, the intensity of the diffracted X-ray is measured as a function of angle 2Θ, according to the Bragg’s law (equation 2.1)136.

\[2d \sin(\Theta) = n \lambda \]

Where, n is an integer, λ is the wavelength of incident wave, d is the spacing between the planes in the atomic lattice, and Θ is the angle between the incident ray and the scattering planes. The Bragg’s equation is the central condition for the constructive interference of X-ray scattered from different atomic planes in a polycrystalline or single crystalline material. Fig.2.1 shows the schematic diagram illustrating the mathematical concept leading to the Bragg’s condition for X-ray scattered from parallel
atomic planes with spacing d. As shown in Fig 2.1, $2d \sin \Theta$ is the path difference between the two waves reflected from two consecutive planes.

![Diagram](image)

Figure 2.1: A schematic diagram showing the principle of diffraction from a lattice having d as the interplanar spacing. The geometric arrangement used in the experimental set-up for realizing the diffraction condition is also shown. S, D and C are X-ray source, detector and sample, respectively. (Adapted from Ref. 136).

Philips X’pert PRO MPD was used in θ–2θ geometry to study the crystal structure of different samples. An operating current of maximum 40 mA at a voltage of about 40 kV is used to produce the X rays. The diffraction pattern was recorded in 2θ range of 20 degree to 80 degree by keeping a step size of 0.04 degree and integration time of 0.01 seconds. A typical set up in the X-ray diffractometer is shown in Fig. 2.2. The soller slits with an angular width of 0.04 radians was used to control the axial divergence of incident X rays and divergence slit of 0.5 degree is used to control the irradiation of the sample surface. The structural properties of TiO$_2$ nanoparticles, TiO$_2$-MoS$_2$ nanocomposites and TiO$_2$-BiVO$_4$ core-shell nanoparticles were studied by comparing the experimentally observed 2θ values of different diffraction peaks and inter planar spacings with the corresponding JCPDS data. (Joint Committee on Powder Diffraction Standards).
Figure 2.2: A schematic diagram showing important components and their arrangement in X-ray diffraction set up used in the present study. (Adapted from Ref 137 and 138)

In this study, crystal structure is determined using XRD studies by matching the experimentally determined 2θ values of the XRD peaks and corresponding d values with the the JCPDS data. For example, in case of TiO$_2$, the experimental data (2θ and intensity) is compared with that from the JCPDS data of probable phases of TiO$_2$ namely, Anatase, Brookite and Rutile. An amorphous material yields a broad hallow, whereas sharp peaks were observed in case of polycrystalline materials. The crystalline materials were identified by their unique diffraction patterns comprising of peaks for each hkl values upon exposure to monochromatic X-ray (Cu Kα = 1.54 Å).

The recorded X-ray diffractograms were used for the estimation of crystallite sizes using Scherrer equation139,140, which is given as equation 2.2

$$\delta r = \frac{K\lambda}{\beta \cos \Theta} \quad \cdots \cdotti
2.2 X-Ray Photoelectron Spectroscopy

X-ray photoelectron spectroscopy is the surface analytical technique used to analyse the surface of thin film and nanostructured materials141. The changes in the stoichiometry of samples as a function of growth techniques have been studied by using X-ray photoelectron spectroscopy (XPS). The XPS technique is based on the principle of photoelectric effect, involving illumination of the sample surface with monochromatic X-rays resulting in photoemission of electrons from the atoms of the host material (Fig 2.3) The photoemitted electrons are characterized in terms of energy and intensity and the resulting data is displayed in terms of intensity as a function of energy. Zero energy refers to the Fermi energy of the sample and each peak corresponds to the binding energy of different electrons.

![XPS schematic diagram](image)

\[KE = h\nu - BE - \Phi_s \quad \text{solid} \]

Figure 2.3: XPS schematic diagram showing the emission of photoelectron with kinetic energy as photon incident on the material provides the required energy for electron emission. (Adapted from Ref 142).

XPS is a highly surface sensitive technique as the useful signal comes only from top 10-25 Å and electrons photoemitted in the depth of the sample are not able to reach the detector and are scattered or absorbed in the bulk of the sample under investigation. As
the binding energy of an electron changes due to the change in chemical bond formation, alloying or oxidation. XPS with excellent energy resolution can be used to measure these energy changes and thus, obtain more information about the sample in addition to composition of the material. The changes or shift in binding energy is of the order of 0.1 to 10 eV. The specimen is irradiated with X-rays of known energy, hv and electrons of binding energy E_B are ejected. The kinetic energy (E_k) of the ejected electrons as measured by spectrometer is given by the following equation 2.3, where \(\phi_s \) and \(\phi_{sp} \) are the work functions of the specimen and spectrometer, detector material, respectively:\(^{143}\). As shown in Fig. 2.3, the measured kinetic energy of electrons can be converted into the corresponding binding energy by the equation:

\[
E_k = hv - E_B - \phi_s - \phi_{sp}
\]

(2.3)

Zero of the XPS scale corresponds to the Fermi energy of the samples and each peak corresponds to the binding energy of the electron in different energy levels of the consistent atoms of the sample. As shown in Fig. 2.4, essential components of XPS technique include a X-ray source, a sample under investigation, an electron energy analyser and an electron detector and a signal multiplier, all maintained under ultra-high vacuum, and suitable electronics to convert the detected current into a spectrum. In the present study, X-ray photoelectron spectrometer (Perkin Elmer-1257), which includes a hemispherical section analyser with 25 meV resolution has been used. The set up consist of a dual anode X-ray source, capable of producing Mg K\(_a\) or Al K\(_a\) X-rays.
As already mentioned, XPS is a surface sensitive analytical technique and any surface contamination or surface oxide can interfere with the sample analysis. Therefore, during XPS measurements, sputter ion cleaning of the samples is carried out using 4 KeV Ar\(^+\) ions generated from an ion gun. Ion bombardment during surface cleaning can also damage the sample and alter the chemical composition or chemical state of different elements and therefore, precaution should be taken in terms of the ion energy and irradiation time used during the surface cleaning.

2.3 Raman Spectroscopy Technique

Raman spectroscopy technique is based upon the interaction of light with the materials under investigation\(^{145}\). The principle of the technique is based on Raman effect and is used to determine vibrational modes of different atoms. If a radiation of given frequency is incident on a material and gets scattered elastically without undergoing any change in frequency, this is termed as Rayleigh scattering. In case of inelastic scattering, the frequency of radiation gets modified on its interaction with the material.
Scattered radiation has a different frequency and this scattering is classified as Raman scattering. If frequency of scattered photon is lower than the incident photon, it is known as Stokes frequency and if scattered photon possesses frequency higher than the incident photon, it is termed as anti-Stokes scattering (Fig. 2.5). The difference between the output and input light provides the information of vibrational modes, which are signature of materials properties.

![Diagram of Raman effect]

Figure 2.5: A schematic description of Raman effect showing the emission of stokes (lower energy than the incident photons) and anti-stokes line (higher energy w.r.t incident energy). Rayleigh scattering in which no change in wavelength takes place is also shown. (Adapted from Ref. 146)

Horiba Scientific Lab RAM HR Evolution Raman spectrometer is employed for Raman measurements in the present thesis. In the present study, Raman spectra have been recorded with Ar ion laser of wavelength 514 nm. A standard schematic diagram of a Raman spectroscopy setup used in the present investigation is given in the Fig 2.6.
The excitation laser light from the laser source travels within an optical fibre and passes through expanding lens and band pass filter (L3 and F2), respectively as shown in Fig. 2.6. The dichroic mirror (BS) reflects the laser light which is made incident on the sample after passing through lens L2. After the laser light and sample interaction, back scattered light passes through lens L2 for collimation, dichroic mirror BS and holographic rejection filter F1. In the last step, the laser light passes through the spectrograph and charge coupled CCD detector. Finally, the results are shown on the computer monitor.

2.4 Photoluminescence Measurements

In this study, Photoluminescence (PL) measurements have been performed using Horiba Scientific Raman microscope fitted with He-Cd laser of wavelength 325nm. PL spectroscopy is a non-contact, non-destructive method of probing the electronic structure of materials148. Similar to Raman spectroscopy, higher energy photons (than
the band gap of the material under investigation) are directed onto a sample. Light is absorbed and photo-excitation occur with the excitation from valence band to conduction band of the material. For electron promotion to occur the laser photon energy must be the same or higher than the material band-gap. The photo-excitation causes the electron transfer to a higher electronic state. As electron relaxes and returns back to a lower energy levels with the emission of light. Photoluminescence technique is used to characterise electronic structure of the materials and states in the forbidden band gap of the semiconductor. It is important to note that due to bulk defects, impurities and surface defects, electrons jump from conduction band to defect states and then from defect states to valence band. Therefore, PL spectra also contain PL peak corresponding to electron emission from conduction band (CB) to valence band (VB) defect states to valence band (VB). As shown in Fig. 2.7. photoluminescence peak due to electron emission from conduction band (CB)-valence band (VB) is called band gap emission and the electron emission from defect state to valence band (VB) is termed as defect emission. In this work, Horiba scientific LabRam HR Evolution photoluminescence setup having He-Cd 325 nm laser has been used to perform photoluminescence measurements in the samples. The schematic diagram of the experimental setup of the photoluminescence spectrophotometer was shown in figure. Laser beam is made incident on the sample under investigation after passing through a filter. As discussed earlier, absorption of incident light and its re-emission in the form of band to band or defect related light emission passes through a condenser lens system, monochromator, and a PMT detector. Monochromator and PMT detector assembly results in measurement of photoluminescence intensity as a function of wavelength.
2.5 Scanning Electron Microscopy

In the present study, FEI Quanta’s 3D scanning electron microscope is used. The basic principle is that a beam of electrons is generated by a field emission gun. The electron beam is accelerated through a high voltage region and pass through a system of electromagnetic lenses to produce a focused beam of electrons. The narrow and focussed beam scans the surface of the specimen by means of scan coils. Electrons emitted from the specimen by the action of the scanning beam and collected by a suitably positioned detector150. A schematic diagram showing important parts and operation of scanning electron microscopy is shown in Fig 2.8. The output signal of the electron detector is used to make an image of the surface of the sample under

Figure 2.7: A schematic diagram showing the absorption of high energy incident photon taking the electron from valance band to conduction band. The excited electron relaxes to the bottom of conduction band. The photon emission due to de-excitation of electron from conduction band to valence band results in band edge PL emission. In the present of defect states PL emission can take place at lower energy due to de-excitation to the defect state followed by relaxation to valence band. (Adapted from Ref. 149).
investigation. The brightness of the spot on the screen corresponds to more electrons being emitted from a particular feature. Similarly, the darker spot represents lower concentration of electrons being received from a particular region of the sample surface. Different types of process takes place during the interaction of incident electrons with target atoms of the surface. Depending upon which electrons are detected and used for constructing the image, there are different modes of operation of scanning electron microscope. The two most common are the secondary electron image (SEI) and the back scattered electron (BSE) image. The SEI is commonly used to study the surface topography features and is a high-resolution mode. The contrast in the BSI is dependent on the atomic number of the atoms constituting the specimen and this mode is useful to have information about the chemical composition of the sample151. It needs to be mentioned that the contrast and resolution of different modes are sensitive to operating conditions, which need to be take into account.

In addition to the secondary and back scattered electrons, X-rays are also emitted during the incident electron- solid surface interaction. Measurement of the intensity of X-rays having different energy emitted from different atoms constituting the sample is known as energy dispersive. X-ray microanalysis gives the composition of the micro and nano features in the SEM image. The spatial resolution of the EDX analysis depends upon the area surrounding the spot where incident electron interacts with the sample, from where the X-rays are emitted. The spatial resolution of EDX mode is poorer than that of SEI or BSE image, where the resolution depends upon the spot size of the electron beam. The intensity of a particular X-rays having a characteristic energy represent the relative concentration of that element152.
Figure 2.8: A schematic diagram showing the different part of a scanning electron microscope having EDX attachment. (Adapted from Ref. 153).

2.6 Transmission Electron Microscopy

Similar to scanning electron microscope, described above, transmission electron microscopy is also based on utilizing a focussed ion beam\(^{150}\). In contrast to SEM, focussed ion beam interacts with the sample, and the transmitted beam of electrons is used to construct the image. A modern TEM typically comprises of a vacuum system, and control panels as shown in Fig. 2.9.

Figure 2.9: A schematic diagram showing the basic part of a transmission electron microscope and the electron path (Adapted from Ref. 154).
The electron column includes elements analogous to those of a light microscope. The light source of the light microscope is replaced by an electron gun, which is built into the column. The glass lenses are replaced by electromagnetic lenses. Unlike glass lenses, the power (focal length) of magnetic lenses can be changed by changing the current through the lens coil. The eyepiece is replaced by a fluorescent screen and/or a digital camera. The electron beam emerges from the electron gun, and passes through a thin specimen. Electrons transmitted from the sample are collected, focused, and projected onto the viewing device at the bottom of the column. The entire electron path from gun to camera must be under vacuum. In the present study, FEI Technai G20 having a Lab 6 filament operating at 200 KeV is used in the present study.

The advantage of the technique is that it is capable of very high magnification and resolution (about an order of magnitude better than SEM). The key disadvantage is that it can only be used for very thin samples (less than 20 nm thickness). Sample preparation which involves transferring the sample onto a copper grid or transforming a bulk sample to a thin slice and subsequently transferring it to the TEM grid is an important part of the TEM investigation. In the present study, nanoparticle powder was dispersed onto Cu grid by drop casting method.

As shown in the schematic diagram in Fig. 2.10, a small quantity of nanoparticles to be analysed are dispersed into ethanol solution by ultrasonication. With the help of a dropper, ethanol-nanoparticles dispersion is drop-casted onto the Cu grid placed on the parafilm paper. This helps in easy transfer of the TEM grid after sample preparation is completed. The ethanol solution evaporates and the nanoparticle sample onto the Copper grid are dried in the presence of hot air from an electrical drier. TEM grids having nanoparticles is viewed under an optical microscope for general inspection and kept in a high vacuum system for degassing before inserting into HR-TEM for analysis.
2.7 Photo-electrochemical Measurements

In the present study, photo-electrochemical measurements were performed on different samples to study the improvement in PEC response. For measurements, a photo-electrode is formed using a standard procedure of attaching an electrode and sealing the electrode by epoxy resin. A well-defined area of the sample is left exposed and the remaining part is covered with the epoxy. A small length of copper wire in the form of the loop is attached to the back side of sample pellets which is then covered with silver paste. The sample is left to dry and the formation of Ohmic contacts is checked. The electrode, silver paste and the back side of the sample and its edges are thoroughly sealed using commercially available non-conducting epoxy resin. The exposed area of about 0.5 cm radius forms the photo-electrode which is now ready for photo-electrochemical measurements. Different steps of electrode preparation are schematically described in Fig. 2.11.

Figure 2.10: Different steps used for dispersing nanoparticles onto TEM grids for TEM sample preparation.
Figure 2.11: Different steps used for the preparation of photoelectrodes using different nanoparticle sample investigated in the present study. The steps involve attachment of the copper wire with the sample pallet using conducting paste, insulating the electrodes and sample edges and defining the active area of the sample for PEC measurements

Photo-electro-chemical measurements of the electrodes made from different samples were carried out using linear sweep voltammetry and a PEC cell in a three-electrode configuration as shown in Fig. 2.12. Working electrode was prepared from these samples under investigation, a platinum wire as a counter electrode and Ag/AgCl were used as a standard reference electrode. One molar solution of NaOH, 0.5 molar solution of Na₂SO₄ aqueous solutions were used as an electrolyte for photo-electro-chemical measurements. Autolab PEC workstation with Nova software systems (X/POT Potentiostat) was used for photo-electro-chemical measurements. Linear sweep voltammetry measurements were performed in potential range -1.0 volt to + 1.0 volt versus Ag/AgCl with a scan rate of 10 millivolts per second. Measurements under dark conditions were carried out by covering a photo-electro-chemical cell with a black screen and light measurements were carried out by exposing Photo-electro-chemical cell to 280 W Xenon lamp filtered with AM 1.5 optical filter resulting in output light intensity of 100 milliwatt per cm². The photocurrent was calculated from the difference between light current and the dark current and the photocurrent density was obtained.
by dividing the photocurrent by the exposed active area of the photo-electrode (radius= 0.5 centimetres).

Figure 2.12: A schematic diagram showing the 3-electrodes configuration for PEC measurements (Adapted from Ref. 155)

2.8 Electrochemical Impedance Spectroscopy

Electrochemical Impedance spectroscopy (EIS) is an important method to study the dielectric and transport properties of the materials and electrochemical reaction mechanism which is directly relevant for this study. The electrochemical impedance is a complex resistance which comes into picture when the electric current flows through a material connected to a device with equivalent circuit having resistance and capacitor or inductor. It is complex due to phase difference between applied voltage and the current flowing in the equivalent circuit with real and imaginary parts (-Z'' and Z'). Electrochemical impedance spectroscopy is widely used to probe interface charge transfer processes within the photo-anodes. The EIS plot (-Z'' vs Z') is known as the Nyquist plot. The EIS Nyquist plots normally consist of a semicircle portion representing the charge transfer limiting process and a linear part observed from the
diffusion limiting step of the electrochemical process. The semicircle diameter gives the value of R_{ct} at the electrode/electrolyte interface. The smaller value of R_{ct} (charge transfer resistance) indicates long lifetime of photogenerated carriers and improved charge transfer ability, indicating an enhanced PEC response. In opposite case of semicircle with larger diameter, indicates poor charge transfer at the interface and material will not be suitable for photo-electro-chemical applications. In the present work, the electrochemical impedance measurements were carried out in a three electrode PEC cell comprising oxide samples as a working electrode, platinum mesh as a counter electrode, and standard Ag/AgCl (3M KCl) as a reference electrode in the potentiostat (AutoLab PEC workstation with nova software). The 0.1 M Na$_2$SO$_4$ (Ph-7) was used as an electrolyte. All the impedance measurements are performed in the frequency range of 10 mHz to 100 kHz. These conditions are similar to those prescribed for photo-electro-chemical measurements.

2.9 Mott-Schottky Analysis

To determine the flat band potential (V_{fb}), capacitance (C) is determined in the dark condition from impedance measurements in the three-electrode configuration based on equation 2.4

$$\frac{1}{C^2} = \frac{2}{q\varepsilon_0}\varepsilon_s N (V_{fb} - kT/q)$$

The above equation represents the bias voltage dependent capacitance of the junction assuming a one sided, abrupt and sharp junction at semiconductor/ electrolyte interface. Any deviation from this will result in changes in the slope or X-axis intercept of the line represented by the above equation. Surface roughness, presence of surface or interfacial layer can thus, influence the results obtained from the above equation.
Linear variations of I/C^2 with applied potential (V_{app}) plot is called Mott-Schottky (MS) curves. Here, q is the elementary charge, ε_0 and ε_s are permittivity of the vacuum and dielectric constant of semiconductor electrode, respectively, V_{app} is the applied potential and K is the Boltzmann’s constant, T is the absolute temperature and (kT/q) is a temperature dependent term. In the present study, capacitance at junction was measured with varying potential at 1 kHz signal frequency. The intercept of the linear portion of the MS plot on the potential axis yieldes the value of V_{fb}.

2.10 Synthesis of Nanoparticles

The growth process used in the present study is the hydrothermal process. Hydrothermal synthesis is a commonly used method for preparation of different types of nanomaterials based on solution reaction-based approach159. The hydrothermal method involves crystallizing a substance at a high temperature and high vapor pressure using an aqueous solution. The process is carried out in autoclaves under controlled temperature and pressure. It allows the use of temperatures above the boiling point of water/organic solution. Autoclaves are hermitically sealed steel vessels that can withstand high temperatures and pressure for long durations. The vessel must be chemically inert and must not take part in the hydrothermal process. In the present study a stainless-steel vessel having a Teflon cylinder is used, as shown in Fig. 2.13. There are significant advantages of hydrothermal synthesis method over others such as the compositions of nanomaterials to be synthesized can be well controlled in hydrothermal synthesis through liquid or multiphase chemical reactions. The advantages of the hydrothermal method are its simplicity and easy variation of process parameters to obtain desired morphology.
2.10.1 Synthesis of TiO$_2$ nanoparticles

In the present study, pristine TiO$_2$ nanocrystals were prepared using titanium tetra-isopropoxide solution, ethanol, hydrochloric acid and de-ionized water. 160 25 ml of deionized water mixed with 1 ml of hydrochloric acid and added slowly to 10 ml of titanium tetra-isopropoxide with continuous stirring in an ice bath. A white precipitate obtained was filtered and heated in air at 80°C to evaporate extra water. After water evaporation, the product was sintered at 400°C for 4 hours. For the hydrogen treatment under partial pressure, the annealing chamber was evacuated to 2.0x10$^{-6}$ torr and subsequently at a gas flow rate of 20 sccm 5% H$_2$ balanced Ar was introduced into the chamber while maintaining the chamber pressure at 2.0x10$^{-2}$ torr. The annealing temperature was maintained at 300°C for 10, 20 and 30 hours followed by cooling period of 1 hour. The schematics of growth process is described in Fig. 2.14.
2.10.2 Preparation of MoS$_2$ nanoflakes

In the present study, MoS$_2$ nanoflakes were prepared by a wet chemical method. In a typical synthesis process, 2.42 grams of sodium molybdate (Na$_2$MoO$_4$.2H$_2$O), 2.12 grams of thiourea (NH$_2$CSNH$_2$) were dissolved in 80 ml of deionized water under vigorous stirring for 20 minutes. A small amount of PEG-1000 (polyethylene glycol) 0.28 grams was added to the solution. A clean Teflon container was rinsed with ethanol solution and deionized water. Before putting the above mixture of salts into the Teflon container, it was magnetically stirred in a beaker. Then autoclave instrument was rinsed with ethanol or propanol solution to avoid any contamination. Salt mixtures was kept in a 120 ml Teflon vessel container and was put in an autoclave at 180$^\circ$C for 24 hours. After the cooling down phase, the autoclave containing black precipitates of MoS$_2$ nanoflakes were obtained. The resulting black precipitate was washed several times with ethanol and deionized water to further remove contaminants and impurities. The synthesis process is schematically described in Fig. 2.14.

Figure 2.14: Different steps describing the preparation step used in the present study for growth of TiO$_2$ nanoparticles.
Figure 2.15: Schematic description of different steps used in the growth of MoS₂ nanoflakes in the present study.

2.10.3 Preparation of MoS₂-TiO₂ nanocomposite

For the preparation of MoS₂-TiO₂ nanocomposites, as prepared TiO₂ nanoparticles was loaded with 2.5, 5.0, 7.5 and 10.0 wt% of MoS₂ nanoflakes and sintered at 400°C for 4 hours. For example, for preparation of MoS₂-TiO₂ samples containing 7.5 % by weight of MoS₂ and 10 % by weight of MoS₂, 262 milligrams of TiO₂ was mixed with 18.59 milligrams of MoS₂ nanoflakes. For preparation of TiO₂-MoS₂ (10 % by weight) sample, 524 milligrams of TiO₂ nanoparticles was mixed with 53.14 milligrams of MoS₂ nanoflakes. For loading, required quantities of MoS₂ nanoflakes and TiO₂ nanoparticles were mixed in ethanol and ultrasonicated. The obtained nanocomposites were pelletized with dye of one cm diameter. The pellets were then sintered at 400°C celsius for 4 hours in the furnace.
2.10.4 Preparation of BiVO$_4$-TiO$_2$ nanoparticles

The sol-gel process is a method used for preparing solid materials from molecules. This method is used for the fabrication of metal oxides. This process involves conversion of monomers into a colloidal solution (sol) that acts as the precursors for an integrated network of either polymers or discrete particles. Metal alkoxides are the typical precursors used for this process.

BiVO$_4$ nanoparticles were prepared by hydrothermal method at high temperatures in excess of 400$^\circ$C. For the preparation of BiVO$_4$ nanoparticles, the required quantities of bismuth nitrate penta-hydrate were dissolved in required volume of deionized water in acidic medium, whereas required quantities of ammonium meta-vanadate were dissolved in 50 ml of de-ionized water with known quantities of sodium hydroxide flakes in deionized water. After adding some quantities of sodium dodecyl benzene sulphonate to each of the solutions and then magnetically stirred, the two solutions were mixed and stirred again for 30 minutes. The obtained mixed solution was kept in a Teflon lined vessel for hydrothermal treatment. Then the prepared nanoparticles were filtered from the solution using a centrifuge and then dried to obtain BiVO$_4$ nanoparticles. Titanium tetra iso-propoxide solution was taken in an ice bath. BiVO$_4$ nanoparticles are added to the above solution and then magnetically stirred for 3-4 hours and filtered and dried to obtain core-shell BiVO$_4$-TiO$_2$ nanoparticles. Different steps and the growth sequence is shown in Fig. 2.15.
Figure 2.15: Growth sequence used in the present study for the growth of BiVO$_4$-TiO$_2$ core shell nanoparticles
Chapter 3

Structural, optical, electronic and PEC properties of hydrogenated TiO$_2$ nanoparticles

3.1 Introduction

In this chapter, the results on the effect of vacuum hydrogen annealing of TiO$_2$ nanocrystals (H:TiO$_2$) on the structural, optical and electrical properties and the resulting changes on the improved photocatalytic and photo-electrochemical performance are reported. In addition to the experimental characterization, DFT simulations also showed a considerable enhancement of the visible light absorption along with increasing defect concentration, which is consistent with the experimental results. As shown schematically in Fig. 3.1, the objective of the present study is to investigate the change in optical properties and surface modification in terms the change in the properties of the nanoparticle core and surface capping layer. This study presents a new experimental approach to tailor the optical, electrical and photocatalytic properties of TiO$_2$ nanoparticle in a controlled manner.

3.2 Results and Discussion

3.2.1 Morphological and structural properties

HRTEM investigations have been carried out in order to investigate the changes in microstructure upon hydrogen treatment and the results are shown in Fig 3.1. The pristine TiO$_2$ nanocrystals are crystalline as indicated by the well-defined lattice fringes. HRTEM images for black H:TiO$_2$ nanoparticles hydrogen treated for 30 hours exhibit a disordered amorphous shell around the crystalline TiO$_2$ core resulting in the formation of core-shell type of a nanostructure. This is shown in Fig. 3.1. The average size of individual nanoparticles is approximately 15 nm in diameter. The disordered layer is about 1-2 nm in thickness around the crystalline core after the hydrogen treatment for
30 hrs. From these values, we can estimate that the fraction of disordered material is between 15-25% of the total volume. The presence of amorphous TiO₂ shell around the nanoparticles is expected to have a large effect on the surface catalytic properties and change in the crystalline TiO₂ core on the optical and band structure. Blue shifts and broadening of the Raman peaks in argon treated TiO₂ are related to non-stoichiometry and structural defects\(^{151}\). Hydrogen implantation of Anatase TiO₂, single crystal surfaces and TiO₂ nanotubes have shown enhanced photocatalytic properties\(^{162}\). The presence of Ti \(^{3+}\) defects, surface hydroxyl groups, oxygen vacancies, and Ti-H bonds show large change in optical properties resulting in increased optical absorption and in electronic and catalytic properties\(^{163}\). Physical, chemical properties and surface adsorption been related to disordered crystalline structure and large changes in the photo-catalytic properties been observed in amorphous TiO₂ nanostructures\(^{164}\). These will be discussed later in detail. The optical image of pristine and hydrogen treated samples show the change in the color on hydrogen treatment and the formation of black-like TiO₂ nanoparticles indicating a large change in the optical properties indicating higher visible light absorption.

![HR-TEM images](image)

Figure 3.1: HR-TEM images of a) pristine and b) vacuum hydrogen treated TiO₂ nanoparticle sample for 30 hrs. Optical image of the two samples are also shown.

X-ray diffraction (XRD) spectra for the pristine and TiO₂ nanocrystals samples hydrogen annealed for 30 hours at 300°C were taken and the results are shown in
The XRD peaks have been indexed for both of pristine and H:TiO$_2$ samples and the results show that the peaks correspond to the tetragonal anatase TiO$_2$ crystallographic phase. Major peaks are observed at 2θ angles of 25.3, 37.84, 48.07, 53.95, and 55.10° which correspond to d-values of 3.51, 2.37, 1.89, 1.69, and 1.66Å and (hkl) values of (101), (044), (200), (105) and (211), respectively. These results indicate that tetragonal structure and anatase phase of TiO$_2$ is retained even after hydrogen annealing at 300°C for 30 hours in vacuum conditions. It is thus clear that any change in the properties of white TiO$_2$ to black TiO$_2$ is not due to any major structural changes or phase transformation. The annealing of TiO$_2$ in hydrogen ambient seems to affect TiO$_2$ in other possible ways and not major phase transformation. From the results reported in the literature, it is expected that hydrogenation process can lead to the formation of TiH$_2$ or formation of lattice defects160. Slight decrease in the intensity of the XRD diffraction peak especially for (101) peak in H:TiO$_2$ indicates that the crystallinity of H:TiO$_2$ upon hydrogen treatment is decreased due to defect generation or some degree of surface disorder.

Figure 3.2: XRD spectra of the pristine and vacuum hydrogen treated TiO$_2$ nanoparticle sample.
In comparison to XRD technique, Raman spectroscopy is relatively more sensitive to small changes in stoichiometry. Raman spectroscopy was carried out on pristine and H:TiO$_2$ and results are shown in Fig. 3.3. Well-resolved TiO$_2$ Raman peaks were observed at 144 cm$^{-1}$ (B_{1g}), 398 cm$^{-1}$ (B_{1g}), 515 cm$^{-1}$ (E_g), and 640 cm$^{-1}$ (E_g) in the spectra of all samples, indicating that anatase is the predominant phase in both the nanoparticle samples. The decrease in the intensity of the Raman peaks may be due to the formation of defects in the TiO$_2$ core and the formation of amorphous TiO$_2$ shell as indicated by HRTEM results. Low intensity of the Raman peak corresponding to Brookite phase in Lanthanum doped TiO$_2$ nanopowder has been related to highly disordered phase 165. Only the peak expected at 147 cm$^{-1}$ (E_g) was not visible, which may be suppressed by a much stronger TiO$_2$ peak at 144 cm$^{-1}$ (B_{1g}) line 166. No major effects of vacuum hydrogen treatment with time is therefore observed in terms of position of peaks. This indicates that the anatase structure is present even after hydrogen treatment and this result is consistent with the XRD results.

![Raman Spectra](image)

Figure 3.3: Raman spectra of the pristine and vacuum hydrogen treated TiO$_2$ nanoparticle sample.
3.2.2 Optical Properties

Fig. 3.4 shows the absorbance spectra of pristine and vacuum hydrogen treated TiO$_2$ nanocrystals. The observed decrease in absorbance at wavelengths longer than 375 nm is due to the intrinsic band gap of crystalline anatase TiO$_2$. At wavelength lower than this, a strong absorption is observed due to bandgap excitations. H:TiO$_2$ samples with different durations of treatment show a significant shift of absorption edge towards higher wavelength indicating visible light absorption. For TiO$_2$ sample treated in hydrogen for 30 hrs, higher absorbance is observed in the wavelength range 375-675 nm. The calculated values of band gap energy of the pristine TiO$_2$ nanocrystals is approximately 3.30 eV, slightly higher than that of bulk anatase TiO$_2$. The onset of light absorption for the vacuum hydrogen treated black TiO$_2$ nanocrystals is lowered to about 2.59 eV. This is consistent with the change in the color of the nanoparticle samples as shown in the optical images in Fig 3.1.

![Absorbance spectra](image)

Figure 3.4: Absorbance spectra of pristine and vacuum hydrogen treated TiO$_2$ nanoparticle sample. Insert shows the Tauc’s plot giving the value of absorption edge of the samples.
Fourier transform infrared (FTIR) spectroscopic measurements were carried out to characterize both the samples and the results are shown in Fig. 3.5. FTIR spectra for both pristine and vacuum hydrogen treated samples show similar absorption features from 500 cm\(^{-1}\) to 4000 cm\(^{-1}\) along with the absorption bands near the 1635 cm\(^{-1}\) and 3400 cm\(^{-1}\) regions. The characteristic feature of the spectrum symmetric stretching vibrations of the Ti–O bonds is observed in the spectral region 400-800 cm\(^{-1}\) which is probably due to the TiO\(_6\) octahedra. On vacuum hydrogen treatment, the intensity of OH absorption bands at 3400 cm\(^{-1}\) decreases slightly and a wider OH absorption band is observed in comparison to pristine TiO\(_2\) due to defect formation\[^{167}\].

![FTIR spectra of the pristine and vacuum hydrogen treated TiO\(_2\) nanoparticle sample.](image)

Figure 3.5: FTIR spectra of the pristine and vacuum hydrogen treated TiO\(_2\) nanoparticle sample.

3.2.3 NMR and EPR investigations

EPR and NMR studies were carried out on pristine and hydrogenation TiO\(_2\) nanoparticles samples. Proton Nuclear magnetic resonance (\(^1\)H-NMR) measurements have been carried out by using Nuclear Magnetic Resonance Spectrometer (JEOL-JNM-ECA Series (Delta V4.3)-400 MHz-FT-NMR). The EPR studies were carried out using a Bruker EPR 100d X-band spectrometer for pristine and H:TiO\(_2\) samples through the EPR cavity. \(G\) values were calibrated using a di(phenyl)-(2,4,6-trinitrophenyl
iminoazanium (DPPH) sample. The center field value of 3512 G, frequency 9.74 GHz and microwave power of 20 mW was utilized in EPR measurements.

1H NMR measurements have been carried out to study the role of hydrogen incorporation on TiO$_2$ nanoparticles in vacuum conditions. Fig. 3.6 shows the 1H NMR data of pristine and H:TiO$_2$ samples with peaks corresponding to the chemical shift at 3.74 and 3.87 ppm, respectively. Pristine TiO$_2$ shows two narrow peaks at chemical shifts of +0.22 ppm and -0.77 ppm. However, the hydrogen treated H:TiO$_2$ sample shows a pronounced additional peak at a chemical shift of -1.07 ppm. This new peak at $\delta = -1.07$ ppm in H:TiO$_2$ is due to the presence of weakly bound hydrogen atoms at bridging sites at the surface formed during the vacuum hydrogen treatment process on the surface168,169. It can be concluded that the weakly bounded hydrogen atoms are absorbed by oxygen vacancies on hydrogen treatment$^{170-173}$. These results may explain the formation of black TiO$_2$. As already explained the presence of defects and surface functional groups have been related with the formation of defect states in the forbidden gap of TiO$_2$. Absorption of photons of lower energy due to the defect states is considered to be responsible for conversion of white TiO$_2$ to black TiO$_2$162.

Figure 3.6: 1H NMR spectra of pristine and vacuum hydrogen treated TiO$_2$ samples recorded at 300 K.
Electron paramagnetic resonance (EPR) spectroscopy is a technique to study the presence of unpaired electrons and therefore, is a useful technique to study the change in the properties on defect formation or changes in the defect configurations. As shown in Fig.3.7, the pristine TiO₂ samples contain only Ti⁴⁺ (3d⁰) ions and show signal due to weak unpaired electrons. For the sample treated with hydrogen for 30 hrs, a strong EPR signal was observed with the g value of 2.0822, which is characteristic parameter corresponding to paramagnetic Ti³⁺ centers. The formation of Ti³⁺ centers can be explained due to the generation of oxygen vacancies during the reduction of TiO₂ during hydrogen treatment. It has been proposed in a number of experimental and theoretical works that atomic hydrogen gets preferably absorbed at the oxygen vacancies in TiO₂. The strong EPR signal in H:TiO₂ is indicative of a large concentration of Ti³⁺ and oxygen vacancies in hydrogen treated sample.

![EPR spectra](image_url)

Figure 3.7: EPR spectra of pristine and vacuum hydrogen treated TiO₂ samples recorded at 300 K.

3.2.4 Photocatalytic and photo-electrochemical activity

In addition to the optical properties, the modification in the surface catalytic properties on hydrogenation is also important for photo-electrochemical applications. The
photocatalytic activity of pristine and hydrogen treated samples was studied by measuring the degradation of methylene blue (MB) under visible-light exposure as a function of time and the results are shown in Fig 3.8. It is shown that the pristine TiO$_2$ sample shows a lower photocatalytic activity in the visible-light and the degradation rate constant k of pristine TiO$_2$ was found to be 5.1×10^{-6} min$^{-1}$. This small value can be due to the lower light absorption, especially in the visible part of the spectrum. For the H:TiO$_2$ samples, the photodegradation activity increases with increasing the hydrogen treatment which may be due to both, the enhanced visible light absorption and increase in surface catalytic properties on hydrogen treatment. The photodegradation rate constant k reaches the maximum value of $\sim 9.9 \times 10^{-3}$ min$^{-1}$ for the 30 hrs hydrogen treated sample. This value is approximately three orders higher than that of pristine TiO$_2$ under visible-light irradiation and confirms, a large modification in the optical absorption properties on hydrogenation as indicated by optical absorption studies. It also shows modification in the surface catalytic properties due to defect formation as was indicated in EPR and NMR studies.

Figure 3.8: a) Solar-light driven photocatalytic decomposition of methylene blue and b) rate constant calculation for pristine and vacuum hydrogen treated TiO$_2$ samples.
It is important to discuss the effect of change in the various properties of TiO$_2$ nanoparticle due to hydrogenation process discussed above on the photo-electrochemical activity. TiO$_2$ and H:TiO$_2$ powders were prepared and deposited in the form of thin layers on ITO substrates using the spin coating technique. This was essential to form photoelectrodes based on pristine and hydrogenation nanoparticle samples for performing photo-electrochemical measurements. As discussed in experimental section, the measurements were performed under visible light illumination with output intensity 100 mW/cm2 using a tungsten lamp source. The PEC properties of H:TiO$_2$ were investigated by measuring the current under dark and illumination conditions in the potential range +0.5 to +1.0 V vs. Ag/AgCl with a scan rate of 20 mV/s. Fig.3.9 shows the photocurrent density vs. applied potential (V vs. Ag/AgCl) for pristine and vacuum hydrogen treated TiO$_2$ samples collected in 1M NaOH solution. In case of pristine TiO$_2$, a very small value of the photocurrent of~35µA/cm2 (at 1.0 V vs. Ag/AgCl) was observed. In comparison to this, H:TiO$_2$ layer sample shows a relatively large value of photocurrent density ~0.56 mA/cm2(at 1.0 V vs. Ag/AgCl).

![Figure 3.9: Photocurrent density vs. applied potential (V vs. Ag/AgCl) curves showing photo-electrochemical response](image)

Figure 3.9: Photocurrent density vs. applied potential (V vs. Ag/AgCl) curves showing photo-electrochemical response
3.2.5 Junction and interface properties

To study the electron transport and interface properties of TiO$_2$ samples corresponding to sample-electrolyte interface, TiO$_2$ layers were used as working electrodes and C-V measurements were carried out at 1kHz ac signal frequency in 1M NaOH solution under dark conditions. Mott-Schottky ($1/C^2$ versus V) plots obtained from these results are shown in Fig 3.10. The donor density (N_D) and flat band potential (V_{FB}) corresponding to the semiconductor-electrolyte interface was obtained using the Mott-Schottky relation. Fig.3.10 shows the Mott-Schottky plots for pristine and vacuum hydrogen treated TiO$_2$ samples. The positive slope of Mott-Schottky curves in both the samples indicate n-type conduction in TiO$_2$ films. The donor density was estimated from the slopes of the Mott-Schottky curve using the equation. The calculated value of N_D from the slopes of the curve, was found to increase in hydrogenated sample. The vacuum hydrogen treated H:TiO$_2$ films exhibited significantly higher donor density, 5.5×1017 cm$^{-3}$ compared to the pristine TiO$_2$ (7.2×1016 cm$^{-3}$) sample. This change in the electronic properties at the surface of TiO$_2$ on hydrogenation is important as no change in crystal structure or any major change in the stoichiometry was observed. The enhanced donor density can be attributed to excess electrons provided by lattice defects such as oxygen vacancies (V$_O$) or oxygen vacancies that are occupied by atomic hydrogen (H$_O$). The observed negative shift of flat band potential could be due to the substantially increased electron density, which is expected to shift the Fermi level of TiO$_2$ towards the conduction band. As was mentioned in chapter 2, the values of donor density and flat band potential obtained from these plots is sensitive to the nature of the interface and the presence of surface or oxide layers can alter these values. But the large change in the properties in pristine and hydrogenated samples does indicate the effect of hydrogenation process on electronic properties and electron transfer process at the interface.
Figure 3.10: Mott-Schottky plots for pristine and vacuum hydrogen treated TiO$_2$ samples collected in 1M NaOH solution.

It is important to understand the effect of hydrogen treatment on the charge separation and recombination processes at the interface, as these processes are important in determining the PEC response, in addition to optical absorption and surface catalytic properties. For this purpose, electrochemical impedance spectroscopic (EIS) measurements were carried out. EIS Nyquist plots of the pristine and H:TiO$_2$ samples are shown in Fig.3.11. The semicircle plot can be fitted as per the Randles equivalent circuit model174 (inset of Fig. 3.11). In this model, the R_S is the resistance related to the resistance of the semiconductor catalyst, ITO substrate, the electrolyte and wire connections in the whole circuit. The elements of $R_{ct, bulk}$ and C_{bulk} are related to the charge transfer at the interface of the photoelectrode/electrolyte. A smaller radius of semicircle represents a better charge transfer ability (i.e., faster surface reaction kinetics)174. Radius of semicircle in case of H:TiO$_2$ sample is quite lower than for pristine and other TiO$_2$ samples, which indicates that the hydrogen treatment of TiO$_2$ reduces the semiconductor-electrolyte resistance and enhances the charge transport. The improved charge transport in case of H:TiO$_2$ samples is expected to directly improve PEC activity at the oxide-electrolyte interface. The smaller radius in case of
H:TiO$_2$ sample is presumably due to an increased electron density as obtained in the Mott-Schottky measurement which improves the electrical conductivity of the electrodes resulting in fast charge transfer occurs on the photoelectrode after hydrogenation.

![EIS Nyquist plots](image)

Figure 3.11: EIS Nyquist plots of the pristine and vacuum hydrogen treated TiO$_2$ samples at an open bias condition under dark.

3.2.6 Density Function Theory Simulations

Density function theory simulation was carried out to study the formation of defects in TiO$_2$ on hydrogenation and its effect on the band structure and optical and electronic properties. For the ab initio calculations the Vienna ab initio simulations package (VASP) was used125. In VASP the valence electrons are described by using a plane wave basis set and the core electrons are taken into account using the projector-augmented wave formalism. All simulations were carried out within the PBE + U framework. A value of 4 eV was used for the Hubbard parameter U very close to the choice used in previous studies on n-type defects in TiO$_2$176. For modelling hydrogen treated anatase TiO$_2$ with different levels of disorder, a $3 \times 3 \times 1$ super cell was used. Structural relaxations were performed until all forces were smaller than 0.02 eV Å$^{-1}$. The unit cell vectors were optimized simultaneously with the ion positions until
pressure lower than 1.0 kbar (0.1 GPa) was reached. In those cases where external pressure was applied, the unit cell vectors were varied until the target pressure was reached with an accuracy of 1.0 kbar. The details related to the calculation of absorption coefficient and imaginary part of the dielectric function are described in detail elsewhere177.

As a first step, it is important to understand which defects are energetically favorable under different conditions. The energetics of both, localized and delocalized states induced by the various defects, V_O or H_O, as a function of defect concentration and external pressure were evaluated. In the present study, simulations were carried out using PBE+U approach. An anatase supercells of the composition Ti$_{36}$O$_{72}$ was generated by a 3×3×1 repetition of the tetragonal anatase unit cell. The dimensions of the optimized defect free supercell are 1.17×1.17×0.97 nm3. Different supercell configurations Ti$_{36}$O$_{72-x}$ (V_O defects) and Ti$_{36}$O$_{72-x}H_x$ (H_O defects) at different values of $x = 0, 1, 6, 10$ was considered corresponding to defect concentrations of 0, 1.4, 8.3 and 13.9% with respect to the number of oxygen atoms. Disorder in the material was modelled by placing the lattice defects on random sites in the super cell. However, the positions of the impurities were chosen such that defects on adjacent sites were avoided since such configurations are energetically disfavored.

The results obtained from the ab-initio calculations indicate the conditions which favor the generation of localized Ti$^{3+}$ centers or delocalized shallow donor states due to V_O and H_O defects. The stability of the localized Ti$^{3+}$ states is studied by calculating the localization energy (given by the following equation) as a function of the concentrations of V_O and H_O defects and external pressure. In the equation 3.1, E_{deloc} and E_{loc} are the ground state energies of the defective TiO$_2$ unit cells with delocalized and localized Ti$^{3+}$ states, respectively.
\[E_{\text{loc}} = \frac{E_{\text{deloc}} - E_{\text{loc}}}{d} \]

(3.1).

Where, \(d \) is the number of defects per unit cell. Positive values of \(E_{\text{loc}} \) mean that localization is favorable than delocalization. It is observed from the simulations that for both the defect types, localized states tend to be more stable at higher defect concentrations. As shown in Fig 3.12, at higher concentrations of H\text{O} and V\text{O} defects, similar values of localization energies in the range from about 0.2 to 0.45 eV are obtained in both cases. At lowest value of defect concentration (i.e one defect in 3\times3\times1 supercell), the behavior of the two defect types deviate as the H\text{O} defect is found to favoured with the location energy of 0.03 eV, while for the V\text{O} defect the value of localization energy is 0.22 eV. The latter value is in reasonable agreement with hybrid functional calculations, where \(E_{\text{loc}} = 0.17 \) eV was reported. The formation of a delocalized solution in the case of a low concentration of H\text{O} defects is in good agreement with the experimental work178, in which it is assumed that the substitution of oxygen by hydrogen lead to the observed high densities of delocalized mobile charge carriers.

![Graph showing localization energy per defect as a function of defect concentration for V\text{O} and H\text{O} defects](image)

Figure 3.12: Localization energy \(E_{\text{loc}} \) per defect for the excess charge carriers induced by V\text{O} and H\text{O} defects as a function of defect concentrations.
In the next step, modification in the electronic structure of TiO$_2$ as a function of the concentration of V$_0$ and H$_0$ defects is investigated. The presence of localized Ti$^{3+}$ centers can be associated with the formation of occupied mid-gap states in the density of states (DOS). As shown in Fig. 3.12, at low concentrations of oxygen vacancies (1%), two types of mid-gap states at 0.74 eV and 1.11 eV, below the conduction band minimum (CBM) are observed. These are formed by two localized Ti$^{3+}$ centers in the vicinity of the respective oxygen vacancies. At the lowest considered concentration of H$_0$ defects, as the delocalized solution is favored such that no mid gap state is present in the DOS. At higher defect concentrations occupied mid gap states are present for both defect types and the respective mid gap state spectra broaden and shift down towards the valence band maximum, although the broadening of the spectrum is considerably more pronounced for the V$_0$ defects. It may be mentioned that in the present calculations, the electronic band gap of pristine TiO$_2$ is 2.55 eV, which is due to known underestimation in DFT calculations.

![Figure 3.13: Density of states of anatase TiO$_2$ for different concentrations of oxygen vacancies V$_0$ in a) and substitutional H$_0$ defects in b). The band gap areas are enlarged and shown as insets. Shown are the densities of states for 0, 1, 6 and 10 defects in the 3×3×1 supercell. The highest occupied state of pristine TiO$_2$ is taken as zero energy. Occupied energy levels are indicated by the grey colour.](image-url)
The most important results in the context of the present study is: how do the concentration of V_O and H_O defects influence the optical absorption below the absorption edge of pristine TiO$_2$. Therefore, it is important to determine the optical absorption properties in the presence of defect. In Fig.3.13, optical absorption coefficient for the V_O defects is shown. At the low defect concentration of 1.4%, the absorption of photons with energies below the band gap energy of pristine TiO$_2$ is observed. With increasing defect concentration, the absorption increases further and up to the investigated defect concentration of 13.9%, an increase in absorption with increase in concentration is observed. This indicates that the magnitude of disorder is important in determining the optical properties. It can therefore be conjectured that the increase in optical absorbance with increase in hydrogenation time is consistent with the above results of increasing absorption with increase in defect concentration. It may be noted that the simulated values are red-shifted with respect to the experimental data due to the underestimation of the electronic band gap. The absorption coefficient spectrum for different H_O defect concentrations are also shown in Fig. 3.14. Not much absorption in the band gap region of pristine TiO$_2$ is observed at the low defect concentration of 1.4 %, which is in accordance with the absence of a localized midgap state. At higher defect concentrations absorption in the visible part of the spectrum sets in and also an increasing defect concentration leading to higher absorption coefficient is observed. In contrast to this, the experimental data for the absorption coefficient decays much slower with increasing wavelength. This suggests that the vacuum hydrogen treated samples considered in this work mainly contain oxygen vacancies which do not exclude their partial occupancy by substitutional hydrogen.
Figure 3.14: Absorption coefficient of TiO$_2$ with different concentrations of oxygen vacancies in a) pristine TiO$_2$ and b) H:TiO$_2$.

It is concluded that oxygen vacancies are occupied by atomic hydrogen leading to the conversion of stoichiometric TiO$_2$ to the composition TiO$_{2-x}$H$_x$. This finding was rationalized by the absence of any localized Ti$^{3+}$ centers in the EPR results, which are typically formed near oxygen vacancies. This reasoning is supported by simulations and the observation of a strong EPR signal of localized Ti$^{3+}$ states. As the samples were synthesized under rather mild hydrogen conditions, it can be concluded that the majority of oxygen vacancies are not occupied by atomic hydrogen. Previous experimental studies$^{172-174}$ and our simulation results show that a high concentration of oxygen vacancies and Ti$^{3+}$ centers introduces occupied mid-gap states, which substantially narrow the electronic band gap of TiO$_2$. Photoexcitation of these states correspondingly leads to a narrow optical band gap in agreement with optical measurements.

It is important to understand the crucial role of vacuum hydrogen treatment to form localized electronic mid gap states in the form of Ti$^{3+}$ centers as experimentally observed in this work. In different studies oxygen vacancies (pristine V$_O$ or occupied by atomic hydrogen H$_O$) have been considered as the main defects associated with the reduction of TiO$_2$ by hydrogen and the resulting modification of the electronic structure.
and optical absorption properties. In many cases178,179, the blackening of hydrogen treated TiO\textsubscript{2} is related to the formation of localized Ti3+ states in the TiO\textsubscript{2} band gap enabling the absorption of photons from the visible light spectrum. However, hydrogen treatment of TiO\textsubscript{2} can also lead to the generation of a high density of occupied delocalized electronic states which act as shallow electron donors and hence lead to a high concentration of mobile charge carriers173.

The significant improvement in the photocatalytic activity and photocurrent density after vacuum hydrogen annealing of TiO\textsubscript{2} nanocrystals shows that it can generate more electron-hole pairs in visible light and exhibits a stronger ability for electron-hole pair separation than pristine TiO\textsubscript{2}. The observation of a small photocurrent in pristine TiO\textsubscript{2} using visible light illumination (\(\lambda>380\) nm) is due to the high band gap energy as the photons with energies less than the band gap energy (\(E_{\text{g}} = 3.31\) eV) did not contribute to the excitation of valence band electrons to the conduction band to generate the electron-hole pairs. The DRS, EPR and Mott-Schottky measurements and DFT calculation clearly show that the reduction in band gap of H:TiO\textsubscript{2} is likely due to the formation of midgap states induced by localized Ti3+ states. Therefore, the significant improvement in photocatalytic activity and photocurrent density can be explained by the surface disordered and defects formation after vacuum hydrogen annealing.

3.3 Conclusions

In summary, it has been shown that vacuum hydrogen treatment of TiO\textsubscript{2} under mild hydrogen condition at lower pressures than atmospheric pressure, at 2.0* 10 -3 Torr. leads to an enhanced photocatalytic and photo-electrochemical response, which significantly depends on the duration of hydrogen treatment. DRS and EPR analysis of pristine and vacuum hydrogen treated TiO\textsubscript{2} nanocrystals show that the tailoring in properties of H:TiO\textsubscript{2} is due to surface oxygen-vacancies and Ti3+ states. Additionally,
these modifications in properties induced a higher charge carrier concentration and a more negative flat band potential as compared to pristine TiO$_2$. The experimental studies were substantiated by *ab-initio* calculations in order to gain a deeper understanding of the origin of enhanced visible light absorption due to Ti$^{3+}$ centers and the conditions that favor the formation of localized or delocalized excess electrons due to oxygen vacancies. Carriers captured by localized states do not participate in conduction process. Therefore, conditions which create delocalized states are important for improved electronic behaviour in addition to increased optical absorption19,20. It was shown that with higher concentrations of V$_O$ and H$_O$ defects the spectrum of the induced mid gap states broaden considerably and moves energetically downward towards the VBM. At the same time the visible light absorption increases and localization of the Ti$^{3+}$ states becomes more favorable. Substitutional H$_O$ defects at low concentrations were identified as candidates to provide delocalized charge carriers in TiO$_2$. This study provides a detailed overall picture covering experimental and theoretical aspects of the effect of hydrogen treatment on the structural, optical and electronic properties of the TiO$_2$ matrix and resulting improvements in the photo-electrochemical properties. One of the important finding of the present study is the identification of Ti 3+ defects responsible for change in optical and structural properties on hydrogen treatment under vacuum conditions. The enhancement in surface catalytic and photo-electro-chemical properties on hydrogen treatment under clean vacuum conditions can be utilized for large scale application.
Chapter 4

TiO$_2$ nanoparticles: MoS$_2$ nanoflake composite

4.1 Introduction

In this chapter, composite nanostructures comprising of MoS$_2$ 2D nanoflakes and TiO$_2$ nanoparticles (TiO$_2$-MoS$_2$ nanocomposite) with varying concentration (2.5 to 10.0 wt. %) have been investigated in terms of structural, optical, photocatalytic and photo-electrochemical properties in comparison to those of pristine TiO$_2$ nanoparticles. Large surface area of nanoparticles and large interface between 2D flakes and nanoparticles, along with useful optical properties of MoS$_2$ and photocatalytic and photo-electrochemical properties of TiO$_2$ are expected to result in potential advantage in terms of efficient light absorption and carrier separation.

4.2 Results and Discussion

4.2.1 Structural and morphological properties

XRD technique was used to study the phase and crystal structure of the TiO$_2$ and composite nanoparticles for the purpose of investigating if there is any change in the crystal structure on nanocomposite formation. Fig. 4.1 shows the XRD patterns of pristine TiO$_2$ nanoparticles and 5.0 wt. % MoS$_2$ in TiO$_2$ nanocomposite sample. As shown in Fig. 4.1, pristine TiO$_2$ nanoparticles comprise of pure Anataze phase of TiO$_2$. This may be due to the annealing of TiO$_2$ samples at 400°C in an air atmosphere, which is a suitable temperature for Anataze phase formation as discussed earlier in chapter 1 section 1.6.1. In the XRD spectra of MoS$_2$-TiO$_2$ nanocomposite, at MoS$_2$ concentration (< 5.0 wt. %)137, a single Anataze phase corresponding to TiO$_2$ nanoparticles was observed180. Crystallite size of pristine TiO$_2$ and MoS$_2$-TiO$_2$ nanocomposite has been calculated by using FWHM (full width and half maximum) of TiO$_2$ peaks and Debye-
Scherrer equation and was found to be 20 nm for pristine TiO\textsubscript{2} and slightly lower (16.6 nm) in 5wt.% MoS\textsubscript{2}-TiO\textsubscript{2} nanocomposite. As Scherrer method139 give an approximate value of crystallite size, it can be interpreted that there is no change in crystallite size on nanocomposite formation. Due to lower concentration of MoS\textsubscript{2}, XRD peaks having quite low intensity are observed in comparison to peaks corresponding to major TiO\textsubscript{2} phase.

Due to lower concentration of MoS\textsubscript{2}, XRD peaks having quite low intensity are observed in comparison to peaks corresponding to major TiO\textsubscript{2} phase.

![XRD spectra of a) TiO\textsubscript{2} and b) 5.0 % MoS\textsubscript{2}-TiO\textsubscript{2} nanocomposite sample.](image)

Figure 4.1: XRD spectra of a) TiO\textsubscript{2} and b) 5.0 % MoS\textsubscript{2}-TiO\textsubscript{2} nanocomposite sample.

XRD peaks indexed as A, R and M peaks correspond to Anatas, Rhombohedral TiO\textsubscript{2} and Rhombohedral MoS\textsubscript{2} phases.

Raman spectroscopy of the samples was carried out to further study the phase and composition on nanocomposite formation. Raman spectroscopy was carried out on pristine TiO\textsubscript{2} nanoparticles and 5.0 wt. % MoS\textsubscript{2}-TiO\textsubscript{2} nanocomposite. Raman analysis of pristine TiO\textsubscript{2} nanoparticles shows the formation of Anatas phase (Fig. 4.2). Anatas phase of TiO\textsubscript{2} has six Raman active modes (A\textsubscript{1g} + 2B\textsubscript{1g}+ 3E\textsubscript{g}) and out of thesesix modes, five modes are allowed181. In the pristine TiO\textsubscript{2} sample, Raman active modes were observed at 143.7 cm-1 (E\textsubscript{g}), 196.1 cm-1 (E\textsubscript{g}), 396.0 cm-1 (B\textsubscript{1g}), 515.8 cm-1 (B\textsubscript{1g}) and 638.4 cm-1 (E\textsubscript{g})181, as shown in Fig.4.2. As shown in Fig 4.4, Raman spectra of MoS\textsubscript{2}-TiO\textsubscript{2} nanocomposite sample exhibits an additional peak of Rhombohedral phase of
MoS$_2$ as E$_{1g}$ mode182 was observed at 381 cm$^{-1}$. Raman analysis confirms the presence of Rhombohedral phase of MoS$_2$ in MoS$_2$-TiO$_2$ nanocomposite sample.

Figure 4.2: Raman Spectra of Pristine TiO$_2$ nanoparticle sample showing Anatase phase

Figure 4.3: Raman spectra of 5.0 % MoS$_2$-TiO$_2$ nanocomposite samples
Scanning electron microscopy studies were carried out to study the changes in morphology on nanocomposite formation and the results are shown in Fig. 4.4. It is clearly observed in FESEM image (micrograph a1) that TiO$_2$ nanoparticles have uniform size and morphology. In case of TiO$_2$-MoS$_2$ composites, TiO$_2$ nanoparticles and MoS$_2$ nanoflakes are mixed together and there a close morphological proximity within both the phases (image c1).

![Figure 4.4: SEM microscopic images for structure evolution of (a1) pristine TiO$_2$ (b1) pure MoS$_2$ and (c1) 5.0% MoS$_2$-TiO$_2$ nanocomposite sample. TEM images of (a2) pristine TiO$_2$, (b2) pure MoS$_2$ and (c2) 5.0% MoS$_2$-TiO$_2$ nanocomposite sample.](image)

The crystallite size in image obtained from FESEM is consistent with that obtained through the XRD spectra. In order to further confirm the composite formation of TiO$_2$ nanoparticle and MoS$_2$ nanoflakes, TEM microscopy of the pristine TiO$_2$, pure MoS$_2$ and resulting MoS$_2$-TiO$_2$ nanocomposites are also shown in Fig.4.4. Micrograph b1 shows the SEM image of sample having only MoS$_2$ flakes. Fig. 4.4 shows the TEM images of pristine TiO$_2$ nanoparticles (micrograph a2) which indicates the homogeneous morphology in terms of size and shape with an average particle size of
about 10nm. TEM image (micrograph b2) of pure MoS$_2$ show the nanosheets formation having layered structure. When TiO$_2$ was incorporated into the MoS$_2$ nanosheets, TiO$_2$ agglomerates were formed on the surface of the nanosheets. TEM image of MoS$_2$-TiO$_2$ nanocomposite sample (micrograph c2) shows the presence of TiO$_2$ nanoparticles as well as some nanoflakes like structure of MoS$_2$. Structural and microscopic investigations show that both MoS$_2$ and TiO$_2$ phases are intact in the nanocomposite samples but there is a mixing of the two phases at morphological levels. In other words, both TiO$_2$ and MoS$_2$ phases are mixed together which will result in large interfacial area, but both the phases maintain their separate identity in terms of crystal structure and thus properties. Both these observations are useful for the application of nanocomposite samples in PEC applications.

4.2.2 Optical properties

Figure 4.5 shows the absorption spectra of pristine TiO$_2$ and MoS$_2$-TiO$_2$ nanocomposite for 5.0 wt. % and 10 wt. % MoS$_2$. In case of pristine TiO$_2$ nanoparticles, only absorption below 380 nm is observed which is attributed to its large band gap of 3.2 eV absorbs only UV light and exhibits an. As is well known, this results in a very poor absorption of visible light photon and the photo-electrochemical properties of TiO$_2$ are restricted to only UV light absorption. During the experiment, it was observed that the white coloured TiO$_2$ nanoparticle sample gets changed to dark-brown colour when the MoS$_2$ nanoflakes were incorporated along with the TiO$_2$ nanoparticles in case of nanocomposite sample. These observations indicate that the incorporation of MoS$_2$ nanoflakes into TiO$_2$ nanoparticles results in better light absorption in the visible region of the solar spectrum. The absorption intensity at around 450 nm for 10.0 wt. % TiO$_2$-MoS$_2$ nanocomposite is obviously enhanced, which is attributed to the visible light absorption characteristics of MoS$_2$ nanoflakes. The 10.0 wt. % MoS$_2$ nanoflakes in TiO$_2$
nanoparticles sample are observed to have absorption bands near 450 nm in the visible region, which are shown in the spectrum of 10.0 wt. % MoS$_2$ nanoflakes-TiO$_2$ nanocomposite sample. The above results show that the optical properties of nanocomposite samples can be modified by controlling the concentration of MoS$_2$ nanoflakes. In addition, the optical absorption edge of MoS$_2$ nanoflakes can be modified by controlling the thickness or number of layers183. Thus, the optical properties of MoS$_2$ nanoflakes-TiO$_2$ nanocomposites can be controlled by changing the layer thickness of MoS$_2$ and the concentration of MoS$_2$ flakes, which is potentially quite useful for improved photo-electrochemical properties. As these measurements were done by dispersing the nanoparticle samples in liquid medium, the value of absorbance depends upon the amount of sample and its dispersion in the liquid medium. The shift of the absorption edge is independent of the concentration of sample dispersed in liquid medium.

![Absorption Spectra](image_url)

Figure 4.5: Absorption spectra of pristine TiO$_2$, 5.0 % MoS$_2$-TiO$_2$, and 10.0 % MoS$_2$-TiO$_2$ nanocomposite sample.
Figure 4.6: XPS spectra of a) Ti 2p in pristine TiO$_2$ b) Ti 2p in 5.0 % MoS$_2$-TiO$_2$, c) O 1s in pristine TiO$_2$ and d) O 1s in 5.0 % MoS$_2$-TiO$_2$ samples.

4.2.3 X-ray photoelectron microscopy studies

XPS measurements on pristine TiO$_2$ nanoparticles and 5.0 wt. % MoS$_2$-TiO$_2$ nanocomposite were carried out and the value of peak positions of various elements were obtained by fitting the Gaussian peaks in the respective XPS spectra. In case of pristine TiO$_2$ nanoparticles, the position of Ti 2p$_{1/2}$ and Ti 2p$_{3/2}$ peaks are observed at 465.57 eV and 459.81 eV, respectively. Two peaks of O 1s are observed to be at 529.65 eV and 531.32 eV respectively. The two oxygen peaks are due to oxygen bonded to Ti and oxygen adsorbed on the surface. In the case of 5.0 wt. % MoS$_2$-TiO$_2$ nanocomposite sample, Ti 2p$_{1/2}$ and Ti 2p$_{3/2}$ peaks are observed at 464.37 eV and 458.68 eV, respectively. Whereas, two oxygen peaks are observed to be at 530.06 eV and 530.55 eV.
eV respectively. These results show that on addition of MoS$_2$ nanoflakes on to TiO$_2$ nanoparticles, Ti2p peaks shifts towards lower energy by 1.20 eV for Ti 2p$_{1/2}$ and by 1.13 eV for Ti 2p $_{3/2}$. Whereas the value of two oxygen peaks increase and decrease by 0.41 eV and 0.77 eV, respectively. Also, in the case of 5.0 wt. % MoS$_2$-TiO$_2$ nanocomposite sample, the position of Mo 3d $5/2$ and Mo 3d $7/2$ peaks are observed at 231.15 eV and 228.01 eV, respectively (Fig. 4.6) Similarly, the position of S 2p is observed to be at 160.48 eV. The above results indicate an electronic interaction between the two phases resulting in electron transfer and change in the element peak positions.

4.2.4 Photo-catalytic Activity

TiO$_2$ is known to have good photocatalytic properties. Therefore, it is important to investigate how incorporation of MoS$_2$ changes these properties. The photocatalytic properties of pristine TiO$_2$ nanoparticles and MoS$_2$-TiO$_2$ nanocomposite samples having different composition (2.5, 5.0, 7.5 and 10.0 wt.%) were determined by studying the degradation of Rhodamine B (RhB) dye in aqueous solution under visible light irradiation. In a typical measurement procedure, 40 mg of photo-catalytic sample was dispersed in 100 mL of 1.0 × 10$^{-5}$ M RhB aqueous solution. The dye solution with the catalyst was stirred in the dark for 1 hour time until the equilibrium adsorption was attained. No significant decrease in the concentration of the dye was observed after 1 hour for all the experiments. Experiments without simulated solar radiation in the presence of the catalyst, and experiments with simulated solar radiation in the absence of catalyst, showed no degradation of photo-catalytic dye. After centrifugation, a clear supernatant solution was analysed by UV–vis spectrophotometer to determine the concentration of Rh B dye.
Figure 4.7: a) Photocatalytic performance and b) degradation efficiency of TiO$_2$, and MoS$_2$ nanoflakes-TiO$_2$ nanocomposite sample at various concentration of MoS$_2$ nanoflakes (by weight) in TiO$_2$ (2.5, 5.0, 7.5, and 10.0 %) for the degradation of Rh B (rhodamine) dye solution under visible light irradiation.

The degradation of RhB dye was used to evaluate the photo-catalytic properties of pristine TiO$_2$, MoS$_2$-TiO$_2$ having different concentrations, which are shown with respect to irradiation time in Fig. 4.7. The degradation rates increase with increase in the MoS$_2$ concentration up to a 7.5 wt. % MoS$_2$ in TiO$_2$. The degradation efficiency of all the five samples are shown in Fig. 4.7. From the above results, kinetics of photo-degradation of Rh-B dye under visible light was also investigated and is given in Fig. 4.8. Kinetics plot clearly shows a linear relationship between ln(C$_0$/C) and reaction time, indicating that the photo-degradation of RhB dye follows the first-order kinetics. The apparent rate constants were determined as 0.0017, 0.0162, and 0.0306 min$^{-1}$ for TiO$_2$, MoS$_2$-TiO$_2$ (5.0 %) and MoS$_2$-TiO$_2$ (10.0 %), respectively. The order of rate constants is consistent with the conclusions of photo-catalytic degradation curves as shown in Figure 4.8. The result of the above study shows that up to 7.5 % concentration the surface catalytic properties are enhanced. It can be therefore concluded that large surface area of MoS$_2$ nanoflakes further increases the surface catalytic properties of TiO$_2$. It is only at a very high concentration (> 7.5% in the present case), MoS$_2$
nanoflakes seems to screen the TiO$_2$ nanoparticle surface and thus impede the surface catalytic properties. The above investigation is important from the point of view of the present study. The above results show that at small concentrations, MoS$_2$ nanoflakes surface and its interface with TiO$_2$ provide additional sites for photocatalytic reaction, in addition to higher absorption of visible light photons.

Figure 4.8: Plot of ln(C$_0$/C) as a function of visible irradiation time for photocatalysis of Rh B (Rhodamine) dye solution containing: TiO$_2$, TiO$_2$-MoS$_2$ (5.0 %), TiO$_2$-MoS$_2$ (7.5 %) and TiO$_2$-MoS$_2$ (10.0 %) hetero-structures under visible light irradiation.

4.2.5 Photo-electrochemical properties

The photo-electrochemical performance of the samples were investigated as described earlier in Chapter 2 on experimental studies by forming photoelectrodes from the nanocomposite powder on conducting substrates. The photocurrent response at applied potential in a three-electrode PEC cell with the TiO$_2$ and TiO$_2$-MoS$_2$ nanocomposite photoanodes was investigated. Fig. 4.9 shows the current-voltage characteristics of the pristine TiO$_2$ and TiO$_2$-MoS$_2$ nanocomposite samples having different concentrations of MoS$_2$ nanoflakes measured under the visible-light conditions. As already mentioned, 1M NaOH solution was used as electrolyte. During photo-
electrochemical reaction, the photo-generated holes in the material reaches on the surface of the photoanode and the photo-generated electrons migrates to the Pt counter electrode through external circuit and participate in chemical reactions at the electrode-electrolyte interface resulting in water splitting reactions. The photocurrent densities for pristine TiO$_2$ and TiO$_2$-MoS$_2$ nanocomposite samples were measured with respect to applied potential under dark and visible light conditions. The difference in the current under light and dark conditions represents the photocurrent and the values are shown in Fig. 4.9. The photocurrent density for pristine TiO$_2$ was obtained at 0.04 mA/cm2, which is quite low. However, the TiO$_2$-MoS$_2$ nanocomposite samples exhibits significantly higher photocurrent density as compared to pristine TiO$_2$ which are 0.22, 0.91, 2.27 and 1.21 mA/cm2, (at 1.0 V) for the samples of MoS$_2$-TiO$_2$ nanocomposite samples with 2.5, 5.0, 7.5 and 10.0 wt.% MoS$_2$ in TiO$_2$, respectively. The considerably low photocurrent density in pristine TiO$_2$ photo-electrode is due to large band gap of TiO$_2$ which responds only to UV (Ultra-violet) light. The enhancement in photocurrent density of TiO$_2$-MoS$_2$ nanocomposite photo-electrodes can be understood through two aspects of (i) enhanced visible light absorption and (ii) accelerated photo-excited charge separation. As shown in schematic diagram in Fig. 4.10, TiO$_2$-MoS$_2$ nanocomposites exhibits efficient light absorption in the visible region. Also, the TiO$_2$-MoS$_2$ nanocomposites could trap more incident light within the nanocomposite material as MoS$_2$ nanoflakes in TiO$_2$ nanoparticles may cause multiple reflections due to dispersion of two phase in the nanocomposite sample. This can further increase photon absorption and thus PEC response. In addition, the band alignment between MoS$_2$ and TiO$_2$ is favourable for the electron transfer from the conduction band (CB) of MoS$_2$ to the CB of TiO$_2$ which suppresses the photo-generated carrier recombination in TiO$_2$ effectively. Moreover, upto 7.5 wt.% TiO$_2$-MoS$_2$ nanocomposite sample, the TiO$_2$
particles seem to connected with the neighbouring MoS$_2$ nanoflakes and act as bridge routes which benefit the electron transfer along the TiO$_2$ channel to the conductive substrate. Mixing of two phases as seen in the SEM and TEM micrographs of the nanocomposite samples indicate this type of morphology. At higher concentration, MoS$_2$ nanoflakes may not be uniformly distributed due to segregation and thus screen the TiO$_2$ nanoparticle surface from photo-electro-chemical reaction. This may be responsible for decrease in photo-electro-chemical (PEC) activity at higher concentration of MoS$_2$ nanoflakes, thus making 7.5 wt. % concentration as the optimum concentration of MoS$_2$ nanoflakes for highest photo-electro-chemical activity.

Figure 4.9: Photocurrent density vs. applied potential (V vs. Ag/AgCl) curves for TiO$_2$ and MoS$_2$-TiO$_2$ measured in 1M NaOH solution under visible light illumination.

There are two factors which inhibit the performance of as photocatalyst in water splitting applications. The first limitation is its relatively large optical band gap, about 3.2 eV, which limits its photo response only in UV light; the other being rapid recombination of photogenerated electron-hole pairs, which results in a low quantum efficiency and exhibit low photocatalytic activity under visible light illumination184. In the present studies, use of lower band gap of 2D MoS$_2$ nanoflakes and choosing the optimum concentration of 7.5\% results in increased visible light absorption in the
nanoparticle samples. The present study shows that 7.5% MoS$_2$ is the optimum concentration in terms of increase in the PEC response. In addition to the visible light absorption, the large interface between TiO$_2$ and MoS$_2$ increasing the charge separation by forming the junction with is also important for improved performance. This is derived from the recent literature which shows that the layered two-dimensional transition metal dichalcogenides (TMDs), such as molybdenum disulphide (MoS$_2$) based TiO$_2$ nanocomposite (TiO$_2$-MoS$_2$), satisfy the above-mentioned requirements$^{185-192}$. In TiO$_2$-MoS$_2$ nanocomposite, MoS$_2$ may also play the role of an effective photosensitizer to enhance the photoactivity of TiO$_2$$^{193-195}$. For a given nanocomposite system, interface band alignment is important for the electron–hole separation, which is desired to be tuned to enhance the charge separation efficiency. It has been observed that type II band alignment is formed between MoS$_2$ and TiO$_2$, which is beneficial for the separation of photogenerated electrons and holes196. Since MoS$_2$ 2D layers are one atomic layer to few atomically thin layers, interfacial interactions are expected to be pronounced with a strong effect on their charge transport properties196. At higher concentration, MoS$_2$ nanoflakes which are not an integral part of the nanocomposite topography seem to screen the TiO$_2$-electrolyte interface resulting in lower performance

![Diagram of electron and hole transport in TiO$_2$-MoS$_2$ system]
Figure 4.10: Energy band diagram of MoS$_2$-TiO$_2$ nanocomposite shows absorption of low energy photons and separation of photogenerated electrons and holes due to favorable band alignment.

4.3 Conclusions

In summary, MoS$_2$-TiO$_2$ nanocomposites having various concentration (2.5, 5.0, 7.5, 10.0 wt. %) of MoS$_2$ nanoflakes have been prepared by two step hydrothermal method. A reduction in absorption edge was observed in MoS$_2$-TiO$_2$ nanocomposites. An important result of the present study is that there is an optimum value of MoS$_2$ concentration at which the PEC response is maximum and further increase in concentration results in degradation in response. The MoS$_2$-TiO$_2$ nanocomposite sample with an optimum concentration of 7.5 wt. % possesses highest photo-catalytic and photo-electro-chemical activity which is due to the appropriate amount of MoS$_2$ which increases visible light absorption and prohibits the recombination of photogenerated charge carriers in TiO$_2$-MoS$_2$ nanocomposite samples without screening TiO$_2$ surface from photo-electro-chemical reaction. The present study also shows that there is electronic interaction at the TiO$_2$-MoS$_2$ interface. In addition, highly apparent photocatalytic reaction rate constant was observed in 7.5 wt. % MoS$_2$-TiO$_2$ nanocomposite sample which is about 17 times than that observed for pristine TiO$_2$ nanoparticles.
Chapter 5

BiVO₄-TiO₂ core-shell heterostructure

5.1 Introduction

In the present study, pristine BiVO₄, TiO₂ and BiVO₄-TiO₂ core-shell heterostructure nanoparticles are prepared by hydrothermal methods and studied for structural, morphological, optical, photo-electrochemical (PEC) water splitting and photocatalytic (PC) degradation. Both pristine BiVO₄ and TiO₂ exhibit poor PEC and PC performance under visible light illumination. However, an enhanced PEC and PC activity in BiVO₄-TiO₂ core-shell heterostructure is observed due to high solar energy absorption and superior charge separation properties in core-shell nanoparticles. The main objective of the present study is to understand the role of low band gap core nanoparticle coated with TiO₂ shell on the PEC properties

5.2 Results and Discussion

5.2.1 Structure and morphology

Pristine TiO₂, BiVO₄ and BiVO₄-TiO₂ core-shell nanoparticles are characterized for the determination of the crystal phase structure and phase purity by XRD technique and the results are shown in Fig 5.1. XRD peaks for TiO₂ samples are observed at 20 values of 25.5, 37.9, 48.2 and 55.06 which correspond to (101), (004), (200) and (105) planes, respectively of anatase phase of TiO₂. In case of BiVO₄ nanoparticle sample, peaks are observed at 20 values of 29, 31, 35, 40, 42, 46, 47, 49, 53, 56, and 59° corresponding to (112), (004), (202), (114), (105), (213), (204), (220), (116), (301) and (107) hkl indices of monoclinic phase of BiVO₄. In case of BiVO₄-TiO₂ core shell samples, XRD peaks corresponding to both anatase TiO₂ and monoclinic BiVO₄ phases are observed. The absence of any other phase and the observation of peaks
corresponding to main phases indicate the absence of other impurity phase or mixed phase. This confirms that both TiO$_2$ and BiVO$_4$ phases with their crystal structure preserved are present in core-shell nanoparticle sample.

![X-ray diffractogram](image)

Figure 5.1: X-ray diffractogram of a) BiVO$_4$ nanoparticles and b) TiO$_2$ nanoparticles c) BiVO$_4$-TiO$_2$ core-shell nanoparticles. hkl indices of different XRD peaks are shown. B and T represents XRD peaks corresponding to BiVO$_4$ Monoclinic phase and TiO$_2$ Anatase phase, respectively.

5.2.2 Nanoparticle Morphology

Surface morphology obtained from scanning electron microscopy investigations (SEM) for pristine BiVO$_4$, TiO$_2$ and BiVO$_4$-TiO$_2$ core-shell nanoparticles are shown in Fig. 5.3. SEM micrographs for pristine BiVO$_4$ indicate dendritic shaped nanoparticles within the size range of around 80-100 nm. SEM image for TiO$_2$ nanoparticles show quasi-spherical nanoparticles with size of about 10-15 nm. SEM micrograph of the core shell nanoparticle indicate the coverage of the dendric shaped features with an overlayer.

![SEM micrographs](image)

Figure 5.2: SEM micrographs of a) BiVO$_4$ nanoparticles b) TiO$_2$ nanoparticles and c) BiVO$_4$-TiO$_2$ core-shell nanoparticle samples.
Transmission electron microscopic (TEM) images of BiVO$_4$, TiO$_2$ and BiVO$_4$-TiO$_2$ core-shell nanoparticles are shown in Fig. 5.3. TEM images clearly show the formation of nanoparticles with an average particle size of about 80-100 nm for BiVO$_4$ (Micrograph a) and 10-15 nm for TiO$_2$ (Micrograph b) samples. TEM analysis of sample BiVO$_4$-TiO$_2$ core-shell nanoparticles (Micrographs c & d) clearly show an approximately 10 nm thick overlayer of TiO$_2$ around BiVO$_4$ core nanoparticles. Further, the core-shell composition is confirmed by energy-dispersive X-ray spectroscopy (Micrograph e & f), which revealed clearly that BiVO$_4$ samples is composed of Bi, V and O only however, in BiVO$_4$-TiO$_2$ core-shell nanoparticle one additional element Ti is present.

![Figure 5.3: TEM images of a) BiVO$_4$ nanoparticles showing dendritic structure b) TiO$_2$ nanoparticles showing agglomerated structure c) BiVO$_4$-TiO$_2$ core-shell nanoparticles and d) magnified image of BiVO$_4$-TiO$_2$ core-shell nanoparticles clearly showing the formation of core-shell structure. TEM-EDS analysis of e) BiVO$_4$ nanoparticles and f) BiVO$_4$-TiO$_2$ core-shell heterostructures.](image-url)
5.2.3 Optical properties

Diffuse reflectance spectra (DRS) of pristine BiVO$_4$, TiO$_2$ and BiVO$_4$-TiO$_2$ core shell nanoparticles obtained by spectrophotometry technique on bulk samples are shown in Fig. 5.4. From these results absorption spectra is obtained and the results are shown in Fig 5.5. Pristine BiVO$_4$ nanoparticle sample exhibit an absorption edge at 530 nm, while pristine TiO$_2$ nanoparticle sample show the absorption edge at 375 nm. Anatase TiO$_2$ exhibits a prominent absorption edge in the UV region of solar spectrum, however, the BiVO$_4$ samples exhibits the optical absorption in visible region which stated at around 530 nm with absorption tail extending up to 660 nm.

![DRS spectra of BiVO$_4$, TiO$_2$ and BiVO$_4$-TiO$_2$ core-shell nanoparticles.](image)

Figure 5.4: DRS spectra of BiVO$_4$, TiO$_2$ and BiVO$_4$-TiO$_2$ core-shell nanoparticles. Two absorption features for core-shell nanoparticles are observed.

The estimated band gap from the DRS spectra consistent with the known values of band gap values of 2.4 eV and 3.2 eV for BiVO$_4$ and TiO$_2$, respectively. The absorption edge values obtained in both the cases are in a good agreement with earlier reported values for the anatase TiO$_2$ and monoclinic BiVO$_4$. Due to nanoparticle effect, a slight increase in the absorption edge values is expected. DRS spectrum of the BiVO$_4$-TiO$_2$ core-shell heterostructures validates the generation of a new energy level, as a clear red shift of
the absorption edge is observed compared with that of the TiO\textsubscript{2}. The BiVO\textsubscript{4}-TiO\textsubscript{2} core-shell heterostructures demonstrate a characteristic absorption spectrum, and the fundamental absorption stopping edge at $\lambda \approx 510$ nm lies within the visible light region. Because of the presence of two phases, two absorption edge features are clearly observed. This clearly shows that increased absorption in the visible region due to the visible optical absorption in BiVO\textsubscript{4} core. Thus, both UV and visible light can be utilized by BiVO\textsubscript{4}-TiO\textsubscript{2} core-shell nanoparticle which may potentially lead to improved photocatalytic activity of BiVO\textsubscript{4}-TiO\textsubscript{2} core-shell nanoparticles because of increase in the photon absorption.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure5.5.png}
\caption{Absorbance spectra of BiVO\textsubscript{4}, TiO\textsubscript{2} and BiVO\textsubscript{4}-TiO\textsubscript{2} core-shell nanoparticles obtained from DRS measurements.}
\end{figure}

5.2.4 Photocatalytic Investigations

The photocatalytic activity of all three samples is evaluated by measuring the time-dependent degradation of methylene blue (MB) under visible-light irradiation. From Fig. 5.6, we can see that the pristine BiVO\textsubscript{4} and TiO\textsubscript{2} sample shows poor photocatalytic activity in the visible-light. The degradation rate constant k of pristine TiO\textsubscript{2} and BiVO\textsubscript{4} are calculated as $\sim 3.4 \times 10^{-3}$ and 2.9×10^{-3} min-1. This small value is attributed to the large band gap energy of TiO\textsubscript{2}. For the BiVO\textsubscript{4}-TiO\textsubscript{2} samples, the photodegradation
activity increases and the photodegradation rate constant k reaches the maximum $\sim 8.4 \times 10^{-3}$ min$^{-1}$. This value is approximately three times of magnitude higher than that of pristine TiO$_2$ under visible-light irradiation (Fig. 5.6). To check the long stability of the defect generated in BiVO$_4$-TiO$_2$ samples when stored under ambient conditions, we used BiVO$_4$-TiO$_2$ samples to re-examine the photocatalytic and photo-electrochemical application tests. We found that BiVO$_4$-TiO$_2$ samples still exhibit the enhanced photocatalytic activity for phenol degradation.

![Graphs showing photocatalytic activity](image)

Figure 5.6: a) Solar-light driven photocatalytic decomposition of methylene blue and (b) rate constant calculation for BiVO$_4$, TiO$_2$ and BiVO$_4$-TiO$_2$ core-shell nanoparticles.

5.2.5 Photo-electrochemical properties

The main objective of this study is to investigate the effect of core-shell nanoparticle formation on the photo-electrochemical response. For this, the pristine BiVO$_4$, TiO$_2$ and BiVO$_4$-TiO$_2$ core-shell nanoparticles were used as working electrode in a photo-electrochemical cell to investigate the solar water splitting activity. The photocurrent density for both the pristine and core-shell nanoparticles is calculated by subtracting the value of dark current from that of light current and then by dividing it by the exposed area (0.5 cm2) of the samples to the incident light. Results are shown in Fig.5.7. It can
be noted that BiVO$_4$-TiO$_2$ core shell nanoparticle sample shows (Fig 5.7) the photocurrent density in cathodic side, which correspond to p-type nature of the core-shell nanoparticles. Whereas, pristine TiO$_2$ and BiVO$_4$ nanoparticles samples show the photoanodic behavior which correspond to n-type behavior for both BiVO$_4$ and TiO$_2$ nanoparticles. The change from anodic to cathodic behavior in core-shell nanoparticles is an important result and will be discussed in more details later. Maximum photocurrent density of 0.1 mA/cm2 was obtained for BiVO$_4$-TiO$_2$ core–shell nanoparticles at -0.8 V/Ag/AgCl as compared to value of 0.006 mA/cm2 in case of BiVO$_4$ and 0.04 mA/cm2 for TiO$_2$. The photocurrent density values obtained for BiVO$_4$-TiO$_2$ core-shell nanoparticles is approximately 2.5 times higher than of TiO$_2$ nanoparticle which may be attributed to the enhanced optical absorption and efficient charge separation charge separation at the interface of the BiVO$_4$ and TiO$_2$, probably due to of built in electric field at the BiVO$_4$ and TiO$_2$ interface.

Figure 5.7: Photocurrent vs. applied bias curves for a) TiO$_2$ nanoparticle samples, BiVO$_4$ nanoparticle (in inset) and b) BiVO$_4$-TiO$_2$ core–shell nanoparticles. Interestingly, both TiO$_2$ and BiVO$_4$ nanoparticles exhibits the anodic behavior of and relatively low photocurrent density, however, the BiVO$_4$/TiO$_2$ core-shell nanoparticles show cathodic behavior with relatively large value of photocurrent density.
5.2.6 Electrochemical Impedance spectroscopy

The charge transfer process at the electrolyte and semiconducting material surface is investigated using electrochemical impedance spectroscopy (EIS) measurements under light conditions. Fig. 5.8 show the Nyquist plots for pristine BiVO$_4$, TiO$_2$ and BiVO$_4$-TiO$_2$ core-shell nanoparticles. As shown in Fig. 5.8, it is evident that the radii of semicircle on the real axis of Nyquist plots of BiVO$_4$-TiO$_2$ core-shell heterostructured sample is much smaller than those for pristine BiVO$_4$ and TiO$_2$ samples, which indicates that the core-shell heterostructured reduces the semiconductor–electrolyte contact resistance and improves the charge transport. Therefore, the charge transport efficiency in BiVO$_4$-TiO$_2$ core-shell heterostructured sample increased significantly both on the surface (i.e., surface reaction kinetics) and in the bulk, leading to an improved PEC activity199.

![EIS spectra of for a) BiVO$_4$, b) TiO$_2$ and c) BiVO$_4$-TiO$_2$ core-shell nanoparticles.](image1.png)

Figure 5.8: EIS spectra of for a) BiVO$_4$, b) TiO$_2$ and c) BiVO$_4$-TiO$_2$ core-shell nanoparticles.

5.2.7 Mott Schottky Measurements

To determine the electrical properties of BiVO$_4$, TiO$_2$ and BiVO$_4$-TiO$_2$ core-shell nanoparticle interface, Mott–Schottky measurements were carried out at 1 kHz AC signal frequency in 1M NaOH solution under dark conditions to calculate the flat band
potential (V_{FB}) by using the Mott–Schottky equation. Fig. 5.9 shows the Mott–Schottky plots ($1/C^2$ vs applied bias) for pristine BiVO$_4$ and TiO$_2$ and BiVO$_4$-TiO$_2$ core-shell heterostructure. The flat-band potential values of these samples were obtained from the linear fit of the data of these curves using a $1/C^2$ vs V relationship. The pristine BiVO$_4$ and TiO$_2$ show a negative slope of a linear region of a plot indicating its n-type nature with a flat band potential values of -0.38 and -0.30 volts (vs Ag/AgCl), respectively. However, BiVO$_4$-TiO$_2$ sample shows the positive slope of a linear region of a plot indicating its p-type nature with a flat band potential values of 0.58 V (vs Ag/AgCl).

The positive value of flat band potential value for the BiVO$_4$-TiO$_2$ core-shell nanoparticle based photoelectrode indicates photocathodic behavior. This change in the electronic nature of BiVO$_4$-TiO$_2$ nanoparticles in comparison to BiVO$_4$ and TiO$_2$ nanoparticles is in consistent with photo-electrochemical results. The more positive values of flat band potential indicate better efficient charge transport at electrolyte-semiconductor interface and its higher photo-electrochemical activity.

Figure 5.9: $1/C^2$ vs V curves for a) BiVO$_4$ b) TiO$_2$ and c) BiVO$_4$-TiO$_2$ core-shell nanoparticles (in inset)
5.2.8 Discussion

The central objective of the present study is to improve the solar energy absorption capacity by making the core-shell heterostructure using two semiconductor materials having different optical properties. Shell of a wide band gap (TiO$_2$) materials and nanoparticle core of smaller band gap (BiVO$_4$) semiconductor have been used and the properties of core shell nanoparticle has been compared with those of BiVO$_4$ and TiO$_2$ nanoparticles of similar sizes. BiVO$_4$ nanoparticles samples showed lower photocurrent density due to poor carrier transport properties because of lower hole diffusion length201. The present strategy of using core-shell heterostructure resulted in photogenerated carriers very close to BiVO$_4$-TiO$_2$ interface. Surface catalytic properties of the semiconductor surface in contact with liquid electrolyte is also very important. TiO$_2$ surface is known to have superior surface photocatalytic properties in comparison to other semiconductors, as well as high stability in liquid electrolyte202. Therefore, the use of TiO$_2$ shell in core-shell nanoparticle is expected to result in stability and better surface catalytic properties. Further, for improving the charge transfer in a heterojunction, a favorable band alignment is an important pre-requisite. The favorable potential difference between BiVO$_4$ and TiO$_2$ for efficient charge transfer has also been reported in thin film heterojunction203. The improved properties at BiVO$_4$ and TiO$_2$ interface explained in terms of favorable Fermi level alignment in the BiVO$_4$/TiO$_2$ interface with conduction band of BiVO$_4$ higher than that of TiO$_2$ resulting in a type II band alignment. This will favor photoelectrons created in BiVO$_4$ being efficiently transferred to TiO$_2$ preventing recombination and efficient PEC reaction at TiO$_2$/ electrolyte interface. Based on our photo-electrochemical results, it can be confirmed that the separation of photogenerated charge carriers of BiVO$_4$ nanoparticles could be enhanced after making the BiVO$_4$-TiO$_2$ core-shell heterostructure by
depositing a thin TiO$_2$ shell. Accordingly, there is an increase in photocatalytic activity for the degradation of methylene blue dye under visible-light irradiation. In previous studies, it has been reported that the increased separation of photogenerated charges in BiVO$_4$-TiO$_2$ heterostructure, when TiO$_2$ is in contact with electrolyte as a top layer, are mainly attributed to the uncommon transfers of photo-excited high-energy electrons from bottom BiVO$_4$ layer to top TiO$_2$ layer. When BiVO$_4$-TiO$_2$ core-shell is illuminated by one sun radiation to excite the charge carriers, the TiO$_2$ shell layer absorbs the UV radiation shorter than 375 nm. The remaining light with radiation larger than 375 nm and shorter wavelengths than 530 nm reaches to excite the BiVO$_4$ core and generate a large concentration of high-energy electrons (e) in BiVO$_4$ above the conduction band (CB) with positive holes (h$^+$) left in the valence band (VB). Generally, these high-energy electrons are active for water reduction, because they possess a higher energy level than that standard hydrogen electrode (SHE) of water reduction, while the holes would be captured by water to oxidize. However, it should be noted that the high-energy electrons migrated easily to the bottom of the CB in a remarkably short time, as they relax and then immediately recombine with the holes at the VB, leading to weakened charge separation with a lowered photoactivity. Interestingly, when the BiVO$_4$ is coupled with TiO$_2$ in core–shell configuration, the visible-light-excited high-energy electrons of BiVO$_4$ would thermodynamically transfer to the CB of TiO$_2$, which prolongs the lifetimes of the high-energy electrons. In addition, it is well known that the CB energy level of TiO$_2$ is higher than that of water reduction potential, meaning that the transferred high-energy electrons can be used directly for hydrogen generation.

One of the most important finding in the result of the present study is the change in the nature of PEC response from anodic behavior of TiO$_2$ and BiVO$_4$ nanoparticle samples to cathodic behavior for BiVO$_4$/TiO$_2$ core- shell nanoparticles along with enhanced
PEC response. The change in the work function due to nanoparticle size, core-shell nanoparticle configuration and interaction of nanoparticle with water may be responsible for the change in this electronic behavior. The above discussion supports this conjecture. the enhancement mechanism of charge separation in BiVO$_4$-TiO$_2$ type-2 heterojunction204.

Work function of a semiconductor surface is one of the most important parameters determining band alignment at the interface important for metal-semiconductor contacts, photovoltaic junction and photo-electro-chemical devices. In the context of the present study, effect of interaction of semiconductor surface with water adsorbed is important. Studies for measuring the surface properties of semiconductors and changes on water adsorption are normally performed at liquid nitrogen or lower temperature in vacuum conditions involving adsorption of few layers of water. It is clear that this can give results different from when a semiconductor is in direct contact with liquid electrolyte as in case of photo-electro-chemical cell. Despite its importance, work function of widely used TiO$_2$ semiconductor has only been investigated in limited studies205. In an interesting study, the effect of surface treatment (oxidation and annealing) has been carried out206. The results show overall variation of work function to be 1.74, 2.14 and 1.39 eV for Anatase (001), Anatase (101) and polycrystalline Anatase, respectively. Work function is found to be in the order: oxidized$>$stoichiometric$>$annealed$>$sputtered. As discussed above, work function values can get modified by surface conditions, stoichiometry, doping, surface charge layers or the surface dipole207. As work function is difference in the Fermi energy and vacuum level energy, it may also change with any change in these parameters. In the context of present study involving application of TiO$_2$ and BiVO$_4$ nanoparticles for water splitting, interaction of semiconductor surface with water may also result in some changes.
Distribution of vacancies may also influence interface of TiO$_2$ and water206. There is a general agreement that water interaction with TiO$_2$ will affect work function of a semiconductor surface, but it is not clear which way and how much is the effect on the change in work function values as adsorption affect the work function values of surface207. In a study on effect of work function on water adsorption, work function has been measured and shown that it can vary in the range of 4.70-6.44, 4.62-6.76 and 4.51-5.62 eV for (001), (101) and polycrystalline surfaces, respectively206.

One of the most important result of the present study is the change in the nature of PEC response from anodic response for TiO$_2$ and BiVO$_4$ nanoparticle samples to cathodic response for BiVO$_4$/TiO$_2$ core-shell nanoparticles along with enhanced photo-electrochemical response. The change in the work function due to nanoparticle size, core-shell nanoparticle configuration and interaction of nanoparticle with water may be responsible for the change in this electronic behavior. The above discussion supports this conjecture.

5.3 Conclusions

In summary, pristine BiVO$_4$, TiO$_2$, and BiVO$_4$-TiO$_2$ core-shell heterostructure nanoparticle have been fabricated by chemical method. TEM analysis confirm the formation of core-shell nanoparticles. The present study shows that the fabricated core-shell heterostructure can not only provide a high optical absorption in visible region, but also cause the formation of a staggered BiVO$_4$-TiO$_2$ core-shell nanoparticle heterojunction to promote the charge separation and transfer, leading to a significantly enhanced photo-electrochemical water splitting efficiency and high rate of photocatalytic degradation of organic pollution as compared to pristine BiVO$_4$ and TiO$_2$ nanoparticles. The change in PEC response from anodic (for TiO$_2$ and BiVO$_4$ nanoparticles) to cathodic for BiVO$_4$-TiO$_2$ core-shell nanoparticles is explained on the
sensitive dependence of work function values to surface conditions, nanoparticle effect, core-shell configuration and interaction of core-shell nanoparticle with water.
Chapter 6

Summary and Scope of Further Work

6.1 Summary

The present study has been carried out with the objective of modifying the optical absorption, surface catalytic and charge separation properties of TiO\textsubscript{2} nanoparticles using novel and widely different methodologies and for understanding the relationship between the modified properties and the enhanced photo-electrochemical response. Three different methodologies have been employed to achieve the stated objectives of the present thesis. Post deposition hydrogenation surface treatment in mild vacuum hydrogen environment has been employed for modifying the optical absorption and surface catalytic properties of TiO\textsubscript{2} nanoparticles. Synergetic combination of layer dependent properties of MoS\textsubscript{2} 2D nanoflakes and size dependent properties of TiO\textsubscript{2} nanoparticles have been utilized by forming 1D-2D nanocomposites. Use of core-shell nanoparticles with the core comprising of a lower band gap material (BiVO\textsubscript{4}) and the shell comprising of a chemically stable oxide material having efficient surface catalytic properties (TiO\textsubscript{2}) has resulted in an improved PEC response. The important take away from the thesis work are an improved basic understanding of the relationship between materials properties and the device performance. The novel nanostructures having tailorable properties have been fabricated by simple chemical methods that are suitable for low cost and large area applications.

The important results of the present thesis investigation can be summarized as follow:

1. Vacuum hydrogenation treatment has been utilized to modify the optical absorption properties of TiO\textsubscript{2} nanoparticles. The main advantage of carrying out the hydrogenation treatment in a mild vacuum environment (at 10^{-2} Torr
pressure) is the possibility of controlled modification of the properties of TiO$_2$ nanoparticles by controlling the hydrogenation environment. Detailed and comprehensive characterization of pristine and hydrogenated TiO$_2$ nanoparticles using diverse and complementary characterization tools has provided an improved understanding of the modified properties. NMR and EPR measurements have shown that the presence of Ti$^{3+}$ defects and corresponding energy states in the bandgap of TiO$_2$ results in increased absorption in visible part of the spectrum at energy values lower than the band gap of TiO$_2$. As the samples were synthesized under rather mild hydrogen conditions, it has been concluded from the DFT simulations that the majority of oxygen vacancies are not occupied by atomic hydrogen, which results in occupied midgap states. This study has also identified the conditions that favor the formation of localized or delocalized states due to vacancies. This is important in suitably selecting the hydrogenation treatment conditions useful for improved PEC response. Formation of amorphous TiO$_2$ shell and structural defects present in the crystalline nanoparticle core, as revealed by HRTEM, XRD, Raman spectroscopy and other characterization techniques, improved the surface catalytic properties.

2. TiO$_2$-MoS$_2$ nanoflake-nanoparticle composite has been used for utilizing the layer and size dependent properties of 1D and 2D nanocomposites, respectively. In addition, a large surface and interface area of the 1D-2D nanocomposite results in an improved charge-separation property at the interface. It has been shown that the two components maintain their structural and compositional integrity and the chemical mixing is minimal as revealed by XRD, HRTEM, Ramam and XPS spectroscopy studies. XPS results show that there is electronic
interaction at the TiO₂-MoS₂ interface which may be responsible for the improved carrier separation at the TiO₂ and MoS₂ interface. An important result of the present study is that there is an optimum value of MoS₂ concentration (7.5 w%), upto which the increased absorption in lower photon energy and charge separation at the TiO₂-MoS₂ interface favours the improvement in PEC response. At higher MoS₂ concentration, a possible screening of superior surface catalytic properties of TiO₂ results in lowering the PEC response.

3. In an important investigation of the present study, the structural, optical and electronic properties of BiVO₄-TiO₂ core-shell nanoparticle have been compared with TiO₂ and BiVO₄ nanoparticle prepared by similar methods and having similar dimensions. The improved PEC response of the core-shell nanoparticle is accompanied by the change in anodic response of TiO₂ and BiVO₄ nanoparticle to cathodic response of the core-shell nanoparticles. A possible modification in the work function values due to the presence of a thin TiO₂ shell and the modification in the semiconductor properties at semiconductor-electrolyte interface may be responsible for this large change in the nature of the PEC response.

4. As summarized above, modification in the properties of TiO₂ nanoparticles on hydrogenation, nanocomposite formation with MoS₂ and core-shell nanoparticle with BiVO₄ has resulted in the improved PEC response. Especially in case of TiO₂-MoS₂ nanocomposite samples, higher photocurrent density of 2.27 mA/cm², (at 1.0 V) is observed for the samples of MoS₂-TiO₂ nanocomposite samples 7.5 wt.% MoS₂ in TiO₂. As these samples are prepared using simple chemical synthesis techniques suitable for low cost and large area applications, these results can be potentially used in large scale applications.
6.2 Scope for further work

1. Hydrogenation treatment of TiO$_2$ nanoparticle investigated in the present study may be extended to other oxide materials. The nature of the defect depends upon the chemistry of hydrogenation of the oxide material in addition to the hydrogenation conditions (as shown in the present study). This research direction is therefore, potentially useful for further improving the understanding of the role of defect type and its concentration in improving optical and electronic properties and the the resulting catalytic and PEC properties.

2. In the present study, the effect of concentration of MoS$_2$ 2D nanoflakes on the optical and photo-electrochemical properties has been investigated. As was mentioned earlier, it is important to study the effect of thickness or number of atomic layers on the optical and catalytic properties and resulting photo-electrochemical properties.

3. It may also be useful to apply the methodology used in this thesis work using other 2D materials like WS$_2$, WSe$_2$ or MoSe$_2$. As the optical properties of these 2D layers are very different from that of MoS$_2$ (used in the present study), this is expected to result in improvement in the light absorption at different parts of the solar spectrum. This is of potential interest not only for PEC devices but also for solar cell and other optoelectronic devices. It is proposed that multiple 2D layers of different materials having appropriate band gap values and absorption coefficients may be used to improve the visible light absorption in a broader spectral range. 2D layers having diverse advantages like highly conducting nature (graphene) and visible light absorption (MoS$_2$) and superior catalytic properties may result in a comprehensive improvement in PEC properties.
4. Application of core-shell nanoparticles with other stable oxide materials may also be investigated. It is also important to study the effect of nanoparticle size and shell thickness on the optical and electronic properties and the resulting PEC response.
List of Publications

Publications in Journals

Presentations in conferences:

8. Core-shell nanoparticles and 2D-3D nanocomposites for photo-electrochemical applications for water splitting, Manan Mehta, Aadesh P. Singh, Satheesh Krishnamurthy and SuddhasatwaBasu, GLAD conference, Delhi, India, 30-31 March 2018 (Best Poster Award).

References

88. Qiu J., Lai C., Gray E., Li S., Qiu S., and Strounina E., Blue hydrogenated lithium titanate as high-rate anode material for lithium-ion batteries, J Matericals Chemistry A, 2, 6353 (2014).

cocatalyst/BiVO4 photoanode with minimized bias, Physical Chemistry Chemical Physics, 15, 4589 (2013).

180. (a) TiO$_2$ anatase (JCPDS card no. 21-1272), (b) TiO$_2$ rutile (JCPDS card no. 21-1276), and (c) TiO$_2$ brookite (JCPDS card no. 29-1360).

200. Dao T. D., Dang C. T. T., Han G., Hoang C. V., Yi W., Narayananamurti V, and Nagao T, Chemically synthesized nanowire TiO\textsubscript{2}/ZnO core-shell p-n junction

