Copy the page URI to the clipboard
Rist, M.A.; Tin, S.; Roder, B.A.; James, J.A. and Daymond, M.R.
(2006).
DOI: https://doi.org/10.1007/s11661-006-0017-y
URL: http://www.ingentaconnect.com/content/tmsasm/mmta/...
Abstract
A series of neutron diffraction measurements have been carried out to determine the elastic residual strains deep within a large, 40-cm-diameter, forged and water-quenched IN718 aeroengine compressor disc. Neutron path lengths of up to 6 cm were necessary to probe the thickest parts of the forging, and three-dimensional strain and stress components have been derived for the first time in such a large superalloy specimen. Measurements have been compared with the results from a coupled thermal-mechanical finite-element model of the quenching process, based upon appropriate temperature-dependent material properties, with some success. The general residual stress state in the disc is one of near-surface compression, balanced by tension within the disc interior. The steepest stress and strain gradients occur in the transition region from compression to tension, about 1 cm below the surface all around the disc. The largest stress component is in the disc tangential direction and reaches a magnitude of 400 to 500 MPa near the disc surface and at its core. This exceeds the effective yield stress because of the presence of significant hydrostatic stress.