Citation

URL

https://oro.open.ac.uk/69322/

License

(CC-BY-NC-ND 4.0) Creative Commons: Attribution-Noncommercial-No Derivative Works 4.0

https://creativecommons.org/licenses/by-nc-nd/4.0/

Policy

This document has been downloaded from Open Research Online, The Open University's repository of research publications. This version is being made available in accordance with Open Research Online policies available from Open Research Online (ORO) Policies

Versions

If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type setting, copy editing or publisher branding
Investigating the Relationship Between Ozone and Water-Ice Clouds Using Data From the ExoMars Trace Gas Orbiter

M.A.J. Brown¹, M.R. Patel¹, S.R. Lewis¹ and A. Bennaceur²
¹Open University, School of Physical Sciences, Milton Keynes
²Open University, Computing and Communications, Milton Keynes

Background: Ozone on Mars

Ozone is a trace gas in the martian atmosphere (<0.01%) and is:
- Formed by photodissociation of CO₂
- Absorbed, breaking down in the ultra violet (UV) region (220–260 nm)
- Photooxidised
- Anti-correlated with water vapour
- Seasonal with diurnal variation

Ozone–water anticorrelation

Photolysis of water vapour produces hydroxyl radicals (HO)²³
HO are highly reactive and destroy ozone:
\[\text{H}_2\text{O} + h\nu \rightarrow \text{HO} + \text{H}_2 \]
\[\text{HO} + \text{O} \rightarrow \text{HO}_2 \]
\[\text{O}_3 + \text{HO}_2 \rightarrow \text{HO} + 2\text{O}_2 \]

Water vapour abundance reduces in colder seasons and ozone can form in its absence²⁴
Ozone detected at similar altitudes to water-ice clouds²⁵,²⁶
Ozone–water relationship is not universal to all states of water

Water

Clouds on Mars

Most water-ice clouds form at the water vapour saturation level. Three main types of clouds²⁷,²⁸
- Orographic
- Polar hood
- Higher opacity
- Larger particle size
- Aphelion Cloud Belt

Ozone is a trace gas in the martian atmosphere (<0.01%) and is:
- Formed by photodissociation of CO₂
- Absorbed, breaking down in the ultra violet (UV) region (220–260 nm)
- Photooxidised
- Anti-correlated with water vapour
- Seasonal with diurnal variation

Next steps

- Examine the relationship between water-ice and ozone at different latitudes
- Use UVIS vertical profiles to compare altitudes of ozone and water-ice layers
- Heterogeneous chemistry is dependent on particle size: compare different cloud regions with ozone
- Investigate heterogeneous and homogenous chemistry throughout the martian year

Hypothesis: Water-ice chemistry

Known:
- Water-ice and ozone relationship are used as a proxy for HO₂
- Global climate models (GCMs) are in disagreement of HO₂ and water-ice chemistry
- Two types of chemistry GCMs were tried (figure below)
 - Heterogeneous – positive correlation between ozone and water-ice
 - Homogeneous – negative correlation between ozone and water-ice

Unknown:
- Ozone near water-ice cloud regions
 - Chemical processes preventing the destruction of ozone from HO₂
 - Positive correlation
 - Water-ice clouds act as a sink for hydroxyl radicals

Importance: why we care

Ozone is dependant on other atmospheric species and has a short lifetime:
- Tracking global wind patterns with little photochemical destruction which extends its average lifetime
- Proxy for water vapour and trace gases such as hydroxyl radicals which are necessary to keeping the CO₂ in the atmosphere stable
- Understanding photochemical processes

Observations: Trace Gas Orbiter

One of the Trace Gas Orbiter’s (TGO’s) main missions includes mapping trace gases in the martian atmosphere²⁹
NOMAD (Nadir and Occultation for Mars) is an instrument aboard TGO which contains a UV and visible spectrometer, UVIS³⁰
Both ozone and water-ice are detected in the UV region and so retrieved data from UVIS will be used to investigate the ozone and water-ice
Data will be temporally and spatially binned to visualise patterns
Correlation tests to compare ozone and water-ice in different cloud regions

Below shows the nadir latitudinal coverage of UVIS since it began scientific mapping back in April 2018
UVIS has two observational modes:
- Nadir – spatial coverage and total column abundance
- Occultation – vertical profiles

Credit (figures/images):
Barth et al (1973);
Clancy et al. (2016), planetary.s3.amazonaws.com, thisispaperfiles.wordpress.com

References:
Benson et al. (2010);
Benson et al. (2011);
Bertaux et al. (2006);
Clancy and Nair (1996);
Clancy et al (2003);
Holmes et al. (2017);
Lefèvre et al. (2004);
Lefèvre et al. (2008);
Lefèvre and Montmessin (2004);
Montmessin et al. (2004);
Patel et al. (2011);
Wolfe et al. (2008);
Bertaux et al. (2006);