Copy the page URI to the clipboard
Rowland, Eric and Yassawi, Reem
(2017).
DOI: https://doi.org/10.1016/j.indag.2016.11.019
Abstract
In this article we study p-adic properties of sequences of integers (or p-adic integers) that satisfy a linear recurrence with constant coefficients. For such a sequence, we give an explicit approximate twisted interpolation to ℤp. We then use this interpolation for two applications. The first is that certain subsequences of constant-recursive sequences converge p-adically. The second is that the density of the residues modulo pα attained by a constant-recursive sequence converges, as α→∞, to the Haar measure of a certain subset of ℤp. To illustrate these results, we determine some particular limits for the Fibonacci sequence.
Viewing alternatives
Download history
Metrics
Public Attention
Altmetrics from AltmetricNumber of Citations
Citations from DimensionsItem Actions
Export
About
- Item ORO ID
- 67091
- Item Type
- Journal Item
- ISSN
- 0019-3577
- Academic Unit or School
-
Faculty of Science, Technology, Engineering and Mathematics (STEM) > Mathematics and Statistics
Faculty of Science, Technology, Engineering and Mathematics (STEM) - Copyright Holders
- © 2016 Royal Dutch Mathematical Society
- Depositing User
- Reem Yassawi