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ABSTRACT Unmanned Aerial Vehicles (UAVs), or drones, are increasingly expected to operate in spaces
populated by humans while avoiding injury to people or damaging property. However, incidents and
accidents can, and increasingly do, happen. Traditional investigations of aircraft incidents require on-board
flight data recorders (FDRs); however, these physical FDRs only work if the drone can be recovered.
A further complication is that physical FDRs are too heavy to mount on light drones, hence not suitable for
forensic digital investigations of drone flights. In this paper, we propose a self-adaptive software architecture,
LiveBox, to make drones both forensic-ready and regulation compliant. We studied the feasibility of using
distributed technologies for implementing the LiveBox reference architecture. In particular, we found that
updates and queries of drone flight data and constraints can be treated as transactions using decentralised
ledger technology (DLT), rather than a generic time-series database, to satisfy forensic tamper-proof
requirements. However, DLTs such as Ethereum, have limits on throughput (i.e. transactions-per-second),
making it harder to achieve regulation-compliance at runtime. To overcome this limitation, we present a
self-adaptive reporting algorithm to dynamically reduce the precision of flight data without sacrificing the
accuracy of runtime verification. Using a real-life scenario of drone delivery, we show that our proposed
algorithm achieves a 46% reduction in bandwidth without losing accuracy in satisfying both tamper-proof
and regulation-compliant requirements.

INDEX TERMS Unmanned aerial vehicles (Drones), software engineering, self-adaptive systems, forensic
readiness, flight data recorders, simulators, unmanned traffic management.

I. INTRODUCTION
Unmanned Aerial Vehicles (UAVs), or drones, are increas-
ingly expected to operate in spaces populated by humans,
while avoiding injury to people and damage to property.
In the USA alone, the number of drones is predicted to reach
7.5 million by 2020, and with global companies like Amazon
testing them to deliver goods to households, the (UK) Civil
Aviation Authority (CAA) has begun to identify issues with
regulatory compliance.

Drones must also respect the privacy of people on the
ground, and avoid restricted spaces such as those occupied
by civilian aircraft or sensitive sites. However, incidents
and accidents can, and increasingly do, happen, e.g. on
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16 October 2017.1 According to the UK Airprox Board [1],
more near-miss incidents are caused by drones than by air-
craft, leading to a ‘‘new law for UK users to sit safety tests’’.2

The traditional method for investigating an aircraft incident is
to examine the flight data recorders (FDRs). For drones, this
is challenging because the FDRs are too heavy and do not
provide real-time data. FDRs also require physical access to
the drone, which may not be available when carrying out an
investigation into a drone which has flown away.

The following real world scenario highlights several of our
research challenges.

Scenario: Transport for London (TfL) is considering the
deployment of drones to deliver medical assets such as blood

1D. Lee, ’Drone collides with a commercial aeroplane’, BBC News
2UK drone users to sit safety tests under new law,http://www.bbc.co.uk/

news/uk-42126150
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and organs between hospitals. In the past, blue-light vehicles
were used by the London Ambulance Service to deal with such
medical emergencies. Blood and organs need to be delivered
ef�ciently and reliably, which is not always viable in a traf�c-
congested mega city. Therefore, motor-bikes are often used
instead. Cost aside, motor-bikes are noisy and one of the
causes of traf�c accidents. The use of drones for this purpose
has therefore been proposed. However, when drone-related
incidents happen, they must be analysed quickly, including
checks for their compliance to the regulations of the airspace
they navigated.

The above scenario illustrates the challenges in satisfying
two key requirements:
• Forensic-soundness: Digital evidence collected must
be tamper-proof by design, admissible in court,
and accurate enough to avoid errors in forensic
investigations;

• Regulation-compliance: The evidence must be capable
of being used to demonstrate whether or not a drone has
violated current regulations.

To address these challenges, in this paper we propose a dis-
tributed software architecture called ‘LiveBox’. In addition
to satisfying the above two core forensic-readiness require-
ments, several non-functional requirements are also critical.
The LiveBox services must be scalable to handle large vol-
umes of sensor data that will be collected, as well as resilient
in the face of accidental, environmental or intentional inter-
ference in collection and handling of the data needed to
investigate incidents. The integrity of the data and subsequent
analysis must be robust, even in the absence of mutual trust
between the stakeholders involved.

To provide an uninterrupted forensic-ready LiveBox ser-
vice, self-adaptation mechanisms need to perform the activ-
ities that form a MAPE-K feedback loop: monitoring (M),
analysis (A), planning (P), and execution (E), around
situation-awareness knowledge (K). This knowledge is part
of the forensic evidence collected.

The novel contribution of LiveBox in this paper is the
representation of flight data of drones as tamper-proof
blockchain ledgers, and the verification of the consensus of
these flight data through a self-adaptive reporting algorithm
using locality-sensitive hashes and making situation-aware
decisions on demand. Overall, a smart contract-based
blockchain representation of flight data enables recovery of
the knowledge about drone flight records as tamper-proof evi-
dence; a self-adaptive reporting algorithm on board monitors
the distance between the drone and the zone boundary, analy-
ses an approximate geolocation to report with minimal digits,
plans for skipping certain reports when current situation can
be inferred, and executesminimal reporting instructions with-
out sacrificing the two core forensic-readiness requirements.

The rest of the paper is structured as follows. Section II
presents a reference architecture of LiveBox to address the
two core requirements: forensic soundness and regulation
compliance. Section III illustrates the basic research problem
through some pilot studies and indicates why a self-adaptive

solution is needed. Section IV proposes and evaluates a
blockchain smart contract and a self-adaptive reporting algo-
rithm to address the technical challenges in achieving both
requirements for real-life drone forensic readiness scenarios.
Section V discusses related work, and Section VI summarises
our findings.

II. LIVEBOX REFERENCE ARCHITECTURE
Our proposed reference software architecture for LiveBox is
shown in Figure 1. It comprises three kinds of software
services:

FIGURE 1. LiveBox software reference architecture.

(i) On-drone LiveBox Services. Captures flight data from
various physical sensors and receivers with situation
awareness of other drones through automatic depen-
dent surveillance-broadcast (ADS-B) [2]. This live data
is cached locally and communicated as streams of
time-critical data to the LiveBox cloud service, preserv-
ing privacy when possible;

(ii) The LiveBox Cloud Service. Allows stakeholders
to specify no-fly zones as constraints, against which
drones are checked during forensic investigations. The
trusted storage solution uses Distributed Ledger Tech-
nology (DLT) as a scalable, tamper-proof, and reliable
way of handling forensic investigation or regulation
compliance queries;

(iii) LiveBox Ground Service. Uses additional sensors of
mobile or fixed ground stations to capture signals of
drones, whether or not they have on-drone LiveBox ser-
vices. This flight data is also communicated to the
LiveBox Cloud Service to cross-validate the behaviour
of drones. When a drone violates regulations due to
emerging failure conditions (e.g., changing weather,
lost connection, or temporary no-fly zones), a notifica-
tion is sent to a LiveBox compatible drone controller for
intervention and also used by other LiveBox services to
adaptively enhance forensic data collection.

To support all such communications requires protocols to
support forensic analysis of live flight data, on or off the
drones. Such protocols, however, are beyond the scope of this
paper.

Focusing on the software engineering characteristics of
LiveBox, two research challenges need to be addressed:
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RC1 Collecting and storing drone flight data, in real-time,
through a distributed mechanism, enabling forensically
sound investigations;

RC2 Live forensic analysis of flight data to check compli-
ancewith regulations such as ‘no-fly’, ’flight corridor’,
or ‘privacy zone’ zones, or non-compliance with the
‘line of sight’ rules for drone operations;

III. FROM LIVE BLACKBOX TO LIVEBOX
Since LiveBox is a complex system that extends beyond
software services, it is infeasible for us to demonstrate a
holistic solution (including hardware) yet. However, with
respect to the key properties and requirements, we can report
preliminary findings through pilot experiments that illustrate
the feasibility of our approach.

Live blackbox [3] was a pilot study we conducted to check
the feasibility of achieving five tracking and verification
requirements with respect to logging aircraft data, namely,
Tracking, Prediction, Scalability, Verification, and Liveness.
Tracking concerns collecting flight data from aircraft, Predic-
tion concerns sufficient accuracy in knowing the next location
of aircraft, Scalability concerns doing these at the global scale
with thousands of aircraft, Veri�cation concerns the capabil-
ity to tell whether an aircraft is within normal boundary or
not, and Liveness concerns the timely, live update of such
flight data and the services [4] to forensic investigators. Fur-
thermore, to accommodate the ephemeral nature of flights,
we also considered Snap forensics requirements to bound the
liveness by expiry timestamps [5].

In addition to these findings, it is worth emphasising that
drone forensics requires the LiveBox data to be tamper-proof,
while our preliminary Live Blackbox study assumed it from
properties of blackbox hardware, without any additional soft-
ware measures in place to enforce it.

As drones are different from aircraft in terms of lim-
ited battery capacity (most drones can fly no longer than
30 minutes per session), limited communication distances
(usually ADS-B is not used except for very high-end drones),
higher update frequency (usually in seconds rather than in
minutes), etc., one cannot take for granted that a Live Black-
box solution is sufficient for the proposed LiveBox. In the
following, we describe a number of pilot experiments we
conducted to test how feasible it is to implement each Live-
Box sub-service proposed. Later on, we will also discuss
the limitations in these pilot studies to achieve the vision of
self-adaptive live boxes.

A. REAL-WORLD PROBLEMS AND PILOT STUDIES
Many high profile ‘near-miss’ incidents have been logged
by the UK Airprox Board (see e.g. [1]). These are quali-
tative records when pilots or someone on board an aircraft
report to an authority (e.g., CAA) about an object, such as
a bird or an unidentified drone, that flies by dangerously.
Despite the tightening safety standards, one can see from the
trends over the last 20 years that the number of incidents
has started to climb in recent years (see Figure 2a), and

FIGURE 2. Statistics w.r.t. drone-caused incidents in UK.

the growth is, unfortunately, accelerating for drone-related
incidents (Figure 2b). These phenomena are an international
concern recognised, for example, by the FAA in the USA
and the ICAO in Canada – in a recent incident on 17 October
2017, an 8-passenger aircraft in Quebec was actually hit by a
drone.3

In addition, regulator constraints with respect to aircraft
safety have been imposed on the drone pilots, through the
development of an official app ‘Drone Assist’ by NATS and
Altitude Angel. Figure 3 illustrates a location-based plot of
the no-fly zones, with different colours indicating the risk
levels if a violation occurs. As one can see, geometrical
boundaries of the no-fly zone regions are not always circular.
Their shape can be irregular in the case of, for example,
prisons and other points of interests. A pilot is required to
restrict their flights to areas outside these boundaries.

When it comes to a metropolitan city such as London,
the no-fly zones can be congested and overlapping, as shown
in Figure 4. However, that does not mean it is impossible to
fly a drone there, because not all no-fly zones are in force at
all times for everyone. For example, the LondonMetropolitan
Police has been allowed to send surveillance drones to sites
like London bridge at night, or any time when buildings such
as Grenfell Tower in London4 were on fire when residents
inside needed to be rescued.

3http://www.bbc.co.uk/news/technology-41635518
4https://www.bbc.com/news/uk-england-london-40272168
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FIGURE 3. No-fly zones highlighted for drone pilots.

Flight data can also bemisreported, even though theymight
have been captured automatically. Figure 5a shows the status
of a Parrot Bebop2 drone in terms of connectivity, GPS avail-
ability, battery levels, and crash status. In this view, several
‘crash’ events are in fact just normal landings in a grass field.
Figure 5b gives a satellite view of the flight path, where
different segments of the path are plotted along with the two
nodes indicating the ‘‘Start’’ and ‘‘End’’ of the journey. It is
worth noting that the GPS locations, when available, do not
necessarily require the storage of satellite images because
they can be pinned to the satellite images later. Figure 5c
presents the plots of individual parameters including altitude,
speed and battery percentages, all aligned with the time
stamps. As long as such data cross-validate, their internal
integrity (with respect to physical law compliance) could be
checked using differential equations. However, storing the
flight data of drones on the controller (mobile phones in this
case) is no guarantee of tamper-proof integrity. It is possible
to tamper with such data by replacing the files on the devices
once attackers know where the database files are accessible.

B. ON-DRONE DATA COLLECTION AND
INSTRUMENTATION
To check whether drones without GPS sensors (e.g., Parrot
AR Drone 2.0) could still have accessible flight data, we used
an open-source Image Forensic tool EXIF5 to extract detailed

5https://www.sno.phy.queensu.ca/ phil/exiftool

FIGURE 4. Congested no-fly zones in Central London and the Need for a
Flight Corridor to medical delivery.

TABLE 1. Flight data retrieved from videos using EXIF tool.

data videos stored on the drone in MPEG format. Table 1
shows a snapshot of such records below (the floating point
numbers are already rounded up to 3 digits, where the exact
number is much more precise). The first column is the per-
centage of battery, the second is a number indicating the
discrete status (0 = unknown, 1 = initiated, 2 = landed,
3/7 = flying, 4 = hovering, 5/6 = taking off, 8 = landing,
9= looping, etc.), the third, fourth, fifth columns are rotation
degrees, in terms of Yaw, Roll, and Pitch and the last column
is the altitude in metres.

When a drone is not flying, commercial tools such as
Oxygen Drone Forensics kit could also be used to recover
flight data from the memory chips and SD-cards. However,
when a drone is flying and one would like to obtain live
streamed data, it is possible to carry a mobile SIM card

148404 VOLUME 7, 2019



Y. Yu et al.: LiveBox: Self-Adaptive Forensic-Ready Service for Drones

FIGURE 5. Different types of flight data recorded by FreeFlight.

with telecommunication chips with the drone, to track their
movement using a LiveBox cloud service.

C. LIVEBOX CLOUD SERVICE
There are many ways to implement the LiveBox cloud
service; e.g., using a centralised server on the Internet, or
distributed ground devices to pick up the signals on the volun-
teering basis. Both the OpenSky and FlightRadar24 networks
record air traffic data with ADS-B radar transponders if they
communicate with a networked node.

However, it has been reported that OpenSky and Fligh-
tRadar24 do not capture the same datasets, and it is possible
to do an insertion attack to report fake flight data into the net-
work. Currently, both OpenSky and FlightRadar24 services
do not have a way to distinguish the truthful flight data from
the false ones.

Blockchains are known to be tamper-proof, in the sense
that to modify the consensus reached previously, it would
require more than 50% of all the mining power, which is

almost impossible in reality when there are a large number
of decentralised nodes.

Public ledgers, such as Bitcoin, offer a possible stor-
age medium for the flight data. However, more specialist
blockchain technology capable of running smart contracts;
e.g., Ethereum and Neo, are better suited to both data storage
and retrieval.

IV. SELF-ADAPTIVE FORENSIC READINESS
In this section, we propose a feasible solution to provide
forensic ready LiveBox services by evaluating alternatives in
distributed technology and self-adaptation.

A. TAMPER-PROOF TO PROVIDE DATA INTEGRITY
If the data reported could be modified or tampered with,
the intelligence would not be treated as forensically sound
evidence, as indicated by the research challenge (RC1).
Therefore, we formulate the following research ques-
tion (RQ) to evaluate various flight data storage mechanisms
against the tamper-proof property.
RQ1 When the �ight data are live streamed, can they be

tampered with to change the veri�cation results?
In experiments we compared two mechanisms for live data
streaming including time-series distributed databases such
as InfluxDB [6], which is specialised to record Internet
of Things (IoT) data for efficient and scalable handling
of time-series queries; and blockchain technology such as
Ethereum [7]–[9], which uses a distributed ledger to store
transactions.

For the sake of simplicity, we assume in our evaluation that
the reported locations are the same as those detected on board
the drones.

To evaluate a mechanism by the tamper-proof property,
we launch two kinds of attacks against it:

• inject false locations into the data records and remove
true locations;

• inject false zone constraints into the data records and
remove true zone constraints;

Only if both kinds of data injection attack fail, can the
mechanism be used for our forensic readiness solution.

For InfluxDB, by inserting false locations post-mortem,
that is, inserting the record of a geolocation with a time
stamp older than a previously recorded event, we found that
tampering is possible. Even worse, a query of the flight
path after such an insertion attack would show the inserted
geolocation as if it had occurred earlier. Similarly, the zone
constraints key-value pairs can also be inserted post-mortem,
while subsequent queries cannot distinguish them from the
genuine transactions. Even though InfluxDB is highly effi-
cient at querying and updating time-series data (in our batch
experiment the transaction rate peaked above 10000 per
second), we found it an infeasible solution to satisfy the
tamper-proof requirement and the validity of the recorded
data could be questioned if one cannot eliminate the possi-
bility of injection attacks. In contrast, the rate of transaction
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FIGURE 6. Flight data transacted on Ethereum Rinkeby network.

with Ethereum is reported 15 per second,6 which is the cost
paid for higher-level integrity. However, one could package
multiple FDR into one transaction to alleviate the situation.

We have also launched injection attacks against our
Ethereum smart contract deployed to the Ethereum test net-
work Rinkeby. Since the smart contract transaction times-
tamps are recorded as part of the blockchain ledger using
crypto hashes, an injected transaction would raise an incon-
sistency between the time-stamp of drone position and
the time-stamp of the blockchain transaction. Therefore,
a transaction cannot be inserted post-mortem, eliminat-
ing the possibility of either inserting (resp. removing) a
false (resp. true) flight data record or zone constraint
record.

Under normal conditions the public Ethereum network is
capable of verifying a transaction within 15 seconds, given
that there is sufficient incentive for the miners (or signers in
Ethereum speak) to include the transaction into the current
block. As shown in Figure 4 we have deployed a smart
contract on the Ethereum Rinkeby test network, where trans-
actions have been executed to record the flight data. 1.

Since Ethereum handles incoming transactions as a
pipeline, the overall throughput can be larger than 15 seconds
per transaction because the incoming transactions in a queue
are periodically processed into the block in a batch, even
though an individual transaction may take up to 15 seconds
to be verified. In the worst case scenario, high frequency
updates for an individual drone, would result in queu-
ing up unverified transactions for that drone. Whilst a

6https://www.coindesk.com/information/will-ethereum-scale

trust-less public blockchain may not meet such needs of high
frequency update, there are alternative private blockchain
solutions one can utilise. In this work, we assume that
the update frequency per drone can be accommodated by
Ethereum-like blockchains using a self-adaptive reporting
mechanism described in the next subsection.

Using smart contracts (written in the Solidity program-
ming language) in Ethereum, we have achieved a prelimi-
nary implementation to store the data on Table 1 into the
distributed ledger.

While blockchain ledgers were initially designed for finan-
cial transactions, smart contracts have enabled them to be
used for a wide range of applications. We are making use
of them for recording the movement of drones in the cyber-
physical airspace. By ‘cyber-physical airspace’, wemean that
the spatial locations may not be the ‘exact places’ to which
one can associate interpretable semantics [10]. For example,
the safety implication is significantly different if the reported
GPS location is near to airports or prisons, rather than an
open field where no harm could be done to aircraft or people.
Furthermore, the same physical location may have differ-
ent connotations depending on the misuse cases of drones
(e.g., near-misses or drug deliveries). The key point here
is to settle the analogous ‘double-spending’ disputes in the
terminology of distributed ledgers, where blockchains are
designed to verify this by proof-of-work or proof-of-stake
consensus protocols. In the case of near-miss incidents, the
same drone cannot appear in more than one partitioned
airspaces at any given time; in the case of drug deliveries,
airspace around a prison may be treated differently during
daylight than during the night.
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B. SELF-ADAPTIVE REPORTING ALGORITHM
Due to inevitable communication delays of the LiveBox ver-
ification, a key to achieving self-adaptation is to build a
prediction model based on the previously built ones. This is
articulated as the following research question to address the
regulation-compliance research challenge (RC2) timely.
RQ2 How accurate do geolocations need to be to tell pre-

cisely whether a drone is inside or outside a zone?
Drones on the move in physical space have a certain degree
of continuity. Let � be the time interval between geoloca-
tion, and the drone is located at L(t) at the time t where L
can be some dimension of the geolocation such as latitude,
longitude, or altitude. The new location L(t + � ) at the time
t + � should satisfy (L(t + � ) − L(t))=� ≤ v, where v is
the maximum speed of the drone, there exists a maximum
distance that a drone can travel away away from its current
location L(t) for a known time interval.

FIGURE 7. Illustration of self-adaptive reporting on compliance to a flight
corridor.

Our basic concept of self-adaptive reporting is illustrated in
Figure 7. Given an irregularly-shaped flight corridor through
an area that is completely enclosed by a ‘‘no fly zone’’,
we first check whether a drone at a marked geolocation at
a given (numbered) time stamp is inside or outside the flight
corridor. We report an approximate location within an error
circle around the exact location so that one can always tell
from the reported location if the drone is inside or outside the
flight corridor.

The level of precision is adaptively selected for each geolo-
cation based on its distance from the flight corridor boundary
to ensure that its circumference never intersects the boundary
of the flight corridor. If a non-adaptive approximation is used
it would be possible for the error boundary to intersect with
the flight corridor and the no fly zone.

For example, in-between the two London hospitals
St Thomas and Guys, a flight corridor is defined by the area
mainly above the Thames River, which is relatively safer to
retrieve a fallen drone, see Figure 8. For a given flight path,
see Figure 9, the reported locations of the dronemay be inside
or outside the corridor. Their distance to the boundary of the
corridor is indicated by a circle. If one reports any position
inside the circle, the verification results would be guaranteed
to be the same as reporting the exact location of the drone.

The reason for not reporting the exact location here is to
reduce the bandwidth and the delay for live streaming, which
has been identified as a bottleneck to adopt tamper-proof
blockchain technology in the evaluation of RQ1.

The radius of the reported circle is adaptable so that it is
less likely to come to a wrong conclusion from the reports.
Similarly, when the marker is inside the zone, one can adapt
the report precision so that it remains accurate with respect to
whether the drone is inside or outside of a boundary.

The second adaptable parameter is the frequency of report-
ing. One has to be careful though because by adjusting the
time intervals between two consecutive reports, it is possi-
ble to deduce incorrect conclusions. As shown in Figure 7,
the markers not reported may contain a violation to the flight
corridor. By counting how many markers may be wrongly
reported, it is possible to calculate the maximum possible
interval that maintains compliance to the flight corridor.

Returning to the TfL drone flight scenario, increasing the
intervals from reporting every 30 seconds to every 2 minutes,
fewer way-points will be communicated, see Figure 10. Even
when all of them are within the flight corridor, it is still not
necessarily true that the entire journey has been compliant to
the zone constraints.

To develop a self-adaptive algorithm to adjust the reporting
accuracy, we created a feedback loop to rounding the loca-
tions to a tolerable precision, depending on their distances
to the boundary of no-fly/flight corridor zones Z .7 In other
words, one would like to maintain a certain level of pre-
dictability so that for any given time t , the drone is safely
outside a no-fly zone (resp. inside a flight corridor), i.e.:

P(L(t) ∈ Z ) < � (1)

where � is a threshold close to zero to indicate the error
tolerance level.

Taking into account the current location and the spatial
continuity and proximity, the criteria can be rewritten as:

P(L ′(t) ∈ Z ) < � H⇒ P(L(t + � ) ∈ Z ) < � (2)

where L ′(t) is the location of the drone reported previ-
ously, which may not be as accurate as physical location in
reality L(t).

To test the verification correctness with required pre-
dictability in adaptation, we introducemultiple levels of noise
in the reporting function. Given a trajectory of drone flight
locations (i.e., a flight path) and a zone, by reducing the
accuracy of the reported locations, one can observe how likely
the verification fails to report any non-fly zone violation of
drone flights.

In the following experiment, we have generated 100 flight
paths using a software the simulators Dronology [12],
Dragon�y [13], [14] and a specialised airspace editing tool
ArduPilot. 8 Here is a basic algorithm to check compliance
of zone by the geolocations on the flight paths of a duration T ,
which provides a a probabilistic answer to each flight path:

P(L(t) ∈ Z ) = |L(i� ) ∈ Z |=(T=� ): (3)

7Rounding is a simple form of a general class of locality-sensitive hash
algorithms [11]

8http://ardupilot.org
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For a compliance threshold � , one obtains a boolean to
tell whether the flight corridor is followed. For self-adaptive
reporting of the compliance check results, the monitor takes
into account the nearest distance to the boundary d to adjust
the interval � .
There are also several strategies to choose in self-reporting.

E.g., the approximation function L ′ (e.g., how many decimal
digits one uses in reporting the locations). According to the
theory of locality-sensitive hashes, approximation may not
reduce the accuracy of reporting with respect to the verifi-
cation results.

C. EVALUATION ON REAL-LIFE SCENARIOS
First, we chose a flight path and a flight corridor informed
by TfL and NHS Blood, as mentioned in the scenario of
Section I. The scenario requires the delivery of emergency
medical assets including blood and organs between three
hospitals, St. Thomas (T) Hospital near the Waterloo Sta-
tion, St Bartholomew Hospital (B), and Guys Hospital (G).
Straightline distance between each pair of the three hospitals
is less than 5km, while the road travel time each way is
typically 60 minutes due to traffic congestion.

In consultation with TfL drone experts, it is much safer
to fly drones over the water because it may be less likely
to hit someone on the ground. With this in mind, the flight
corridor is defined to maximise the use of the waterfront on
the Thames, while trying to take off and land the drones on
helicopter pads or green parks near the sending and receiv-
ing ends of the deliveries. Figure 8 shows a flight corridor
between T (lat = 51.49828, lon = −0.12007) and G (lat =
51.50378, lon = −0.08734), utilising the waterfront, which
is defined by a blue polygon enclosed the zone on the map.
The blue markers on the map also show a possible flight path
from T to G.

FIGURE 8. A flight corridor between St Thomas and Guys hospitals.

When the marker is outside the polygon it is considered
violating the flight corridor. Figure 9 shows a problematic
flight path between T and G. If all the markers are inside the
corridor (see Figure 8, it would be a perfect journey, cutting
the time required from 60 minutes down to 20 minutes.

FIGURE 9. Checking compliance of a flight path against the corridor.

FIGURE 10. Increasing the intervals between way-points in a drone flight.

However, some of the markers went out of the flight corridor,
hence may cause safety and privacy damages.

By increasing the intervals, some waypoints will not be
reported, which might decrease the accuracy of verification.
For example, Figure 10 shows a reported flight path by
5 times bigger intervals: although all of points were inside
the flight corridor, in fact the report was erratic because some
of the skipped way points were in fact outside the corridor
(cf. Figure 9).

By simulating random turbulence in 100 flight paths
between T to G, Figures 11 and 12 shows the accumulated
error rates P(L(t) ∈ Z ) of various configurations, which
are characterised by two adaptable reporting parameters,
� and d .

The self-adaptive reporting solutions could adjust � , d , or
both.

Let the probability of compliance P(L(t) ∈ Z ) with
the minimal interval be an oracle, in our case, every � =
15 seconds a way point. For the 20 minutes journey there
were 80 way-points collected for each of the 100 flight paths
between T and G. When � increases by a unit of 15 sec-
onds, we show the absolute error rates of |P(L ′(t) ∈ Z ) −
P(L(t) ∈ Z )| on the average of all the 100 drone flights
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FIGURE 11. Climbing error rates of P(L′(t) ∈ Z ) while increasing the
intervals between way-points in a drone flight.

in Figure 11. From these data, the trend is clear that the
absolute error rates increases when the intervals increases in
reporting flight data.

Next, when d are fixed to a certain constant value d0,
i.e., reporting the truncated geolocation to a fixed precision
nomatter the drone is far away from the boundary of the flight
corridor zone or not. In this case, one can see in Figure 12 that
the error rate of |P(L ′(t) ∈ Z )−P(L(t) ∈ Z ) increases, almost
in proportion to the accuracy thresholds (i.e. the horizontal
axis shows the distance threshold by multiplying a unit of
every 0.00005 degrees or 300m).

FIGURE 12. Increasing error rates of P(L′(t) ∈ Z ) while decreasing the
precision of way-points in flight data reports; while self-adaptive
distance threshold can reduce the error rates to zero.

The self-adaptive reporting algorithm reports a more pre-
cise location only when the distance of the drone is closer to
the boundary, otherwise it reports a less precise location. As a
result, the error rates is reduced to zero, as shown in Figure 12.
In other words, any point selected from inside the circle can
approximate the exact location (i.e., the centre of the circle)
with respect to the verification queries.

Finally, putting the two self-adaptive parameters together
by considering both the increased intervals and the reduced
precisions in the algorithm, we estimate the bandwidth
required for communicating fewer, less precise geolocations.

FIGURE 13. The total number of digits required to report the
approximated geolocations with respect to non-adaptive or self-adaptive
(SA) precision reporting strategies: SA reduces the bandwidth required by
46% from 64940 down to 44336 digits, while maintaining zero error rate.

Figure 13 shows the number of digits required to report
the geolocations per way-point. We aim to use minimal digits
to approximate way points, while maintaining the approxi-
mation to be within a given radius to the centre and avoid-
ing crossing the zone boundary. The vertical axis shows
the total number of digits required to store the approximate
geolocations. The horizontal axis shows the distance for
a non-adaptive algorithm to choose an approximate point
within that distance to the exact way points.

The distance, i.e. the radius of the circles centred around
the way points, is shown in Figure 7 by a unit of 0:00005
degree or 30m. The radius values range from zero for the
finest approximation to 39 × 0:000005 degree = 1200m for
the coarsest approximation, and the total number of digits
required for the decreasing precision would also decrease,
ranging from the maximum 64940 digits to the minimum
44336 digits.

As shown in Figure 12, on the other hand, using the self-
adaptive reporting algorithm on all the geolocationswhere the
approximation radius is adjusted according to the minimal
distance to the zone boundary, the total number of digits
required would become 47804, which is a reduction from
64940 by 46% compared to the non-adaptive reporting algo-
rithm of the same level of accuracy.

V. RELATED WORK
It is an active research area to elicit requirements and sketch
architectures for secure vehicles [15], including the Internet
of drones [16]. However, the problem of regulating drones
have specific requirements which also calls for specific
architectures.

A. DRONE SAFETY
Dronology is a metaphor to simulate the crowd of drones
through a combination of cyber and physical domain prop-
erties, such as airspaces, drone behavioural data, etc. [12].
Apart from simulation-based approaches [13], policies-
based [17] and autonomy [18] approaches have also been
proposed to control drone safety [19]. The goal of these
approaches is to identify critical safety hazards where drones
may collide with each other (i.e., collision avoidance), whilst
our goal is in forensic readiness, i.e., to track the drones and
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log their situations as tamper-proof and reliable evidence for
forensic investigations [20].

For due diligence it is mandatory to be unbiased and avoid
any conflict of interests amongst stakeholders who do not
necessarily trust each other. In that sense, blockchains tech-
nology seems to be an obvious choice, given their decen-
tralised and trust-less design.

B. BLOCKCHAINS
With respect to the LiveBox requirements, software-based
blockchain technology [5], [7], [8] already offers (1) scalable
verification of live streamed flight status and (2) regulation
of drone behaviour. In doing so, it can already address two
challenges of physical FDRs: software has no weight and
remote storage survives the destruction of drones, that is
why Ethereum was considered for writing smart contracts to
represent drone data [9].

However, they are not sufficient to address the forensic-
readiness problem because both Bitcoin and Ethereum proto-
cols cannot yet achieve the real-time verification requirement
economically (as indicated by our pilot experiments). Fur-
thermore, they need to establish a continuous communication
channel, which cannot be assumed for drones operating in
environments where communications are often intermittent.
Therefore, we propose to enhanceDLT, amongmany possible
choices of solutions, that allows forensically sound caching of
data until communications are re-established.

C. PROACTIVE VERSUS SELF-ADAPTIVE FORENSICS
Proactive forensics or forensic readiness has been proposed
to selectively log the evidence so long as the reasoning of
forensic claims is not affected [21]. However, there is a gap
between proactive and self-adaptive approaches to forensics.
In proactive forensic readiness, we aim to collect the data as
expected or predicted in order to establish or refute certain
given hypotheses defined beforehand. On the other hand,
in self-adaptive forensics, the amount of data we aim to
collect would depend on the context of the running system.
The case of the LiveBox self-adaptive reporting algorithm is
such an example. In this sense, the forensic-ready adaptation
is a special form of ‘cautious adaptation’ whereby the defiant
component adapts to the global needs (e.g., forensic readi-
ness) of the system of systems [22].

Compared to self-adaptive systems to deal with uncer-
tainty using feedback loops [23], our self-adaptive reporting
mechanism already knows how to deal with the adaptable
parameters to the zone boundaries, i.e., a ‘set-point’ where
the observed and the predicted contextual factors are com-
pared at runtime to decide on which control actions to take in
the next step. In this paper, we identified two of such adapt-
able parameters: the time interval and the distance to bound-
ary. Interval is a controllable parameter by the self-adaptive
system, while distance is a contextual factor parameter.

VI. CONCLUSION AND FUTURE WORK
A ‘‘forensic ready’’ system is one that is able to, and does,
collect the information necessary to support the investigation

of an incident in which that system is subsequently involved.
A flight data recorder (a blackbox, for example), provides
such forensic readiness for an aircraft in case it is involved in
an accident. Drones cannot usually carry heavy blackboxes,
so alternatives are needed. As shown by our pilot studies
and simulations, the LiveBox service for implementing the
forensic-readiness requirements for drones is feasible. The
service is self-adaptive because the forensic evidence to be
collected is the result of a trade-off between the cost and the
benefits of alternatives and the associated risks.

In this paper, we evaluated two research questions using
a real-life scenario of emergency delivery of medical assets
using drones through a flight corridor along the Thames
River between two hospitals in London. When the flight
data was live streamed, we showed that it cannot be tam-
pered with when blockchain technology (such as a smart
contract) is used to record the flight data in a distributed
ledger. In contrast, traditional distributed database technology
fails to achieve the tamper-proof property required. However,
given that distributed ledger technology (especially public
blockchains) is limited inmanaging large throughput of trans-
actions for drone flight data, we investigated a self-adaptive
reporting algorithm to selectively disclose geolocations at
adaptable intervals and precision. Using our algorithm, the
probability to infer whether a drone is inside or outside a zone
does not change, while the total number of digits required by
the approximated geolocation is greatly reduced. In a real-life
case study, we showed such reduction to be up to 46%, while
a zero error rate in terms of the verification results can still be
achieved.

With these promising results, however, one must be aware
that forensic-readiness requirements are only part of the
overall solution; that is, there is still a need to provide full
security life-cycle support for drone deployments, managing
security threats as appropriate, managing privacy concerns,
and investigating forensically incidents of misuse or accident.
To achieve this in the future requires substantial collabo-
ration by a community of stakeholders including not only
researchers, but also law makers, law enforcement authori-
ties, drone vendors, and pilots themselves.
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