Fire in the Swamp Forest: Palaeoecological Insights Into Natural and Human-Induced Burning in Intact Tropical Peatlands

Cole, Lydia E. S.; Bhagwat, Shonil A. and Willis, Katherine J. (2019). Fire in the Swamp Forest: Palaeoecological Insights Into Natural and Human-Induced Burning in Intact Tropical Peatlands. Frontiers in Forests and Global Change, 2, article no. 48.

DOI: https://doi.org/10.3389/ffgc.2019.00048

Abstract

Tropical peat swamp forests are invaluable for their role in storing atmospheric carbon, notably in their unique below-ground reservoirs. Differing from terra firme forests, the peat-forming function of tropical swamps relies on the integrity of discrete hydrological units, in turn intricately linked to the above-ground woody, and herbaceous vegetation. Contemporary changes at a local, e.g., fire, to global level, e.g., climatic change, are impacting the integrity, and functioning of these ecosystems. In order to determine the level of impact and predict their likely future response, it is essential to understand past ecosystem disturbance, and resilience. Here, we explore the impact of burning on tropical peat swamp forests. Fires within degraded tropical peatlands are now commonplace; whilst fires within intact peat swamp forests are thought to be rare events. Yet little is known about their long-term natural fire regime. Using fossil pollen and charcoal data from three peat cores collected from Sarawak, Malaysian Borneo, we looked at the incidence and impact of local and regional fire on coastal peat swamp forests over the last 7,000 years. Palaeoecological results demonstrate that burning has occurred in these wetland ecosystems throughout their history, with peaks corresponding to periods of strengthened ENSO. However, prior to the Colonial era c. 1839 when human presence in the coastal swamp forests was relatively minimal, neither local nor regional burning significantly impacted the forest vegetation. After the mid-nineteenth century, at the onset of intensified land-use change, fire incidence elevated significantly within the peatlands. Although fire does not correlate with past vegetation changes, the long-term data reveal that it likely does correlate with the clearance of forest by humans. Our results suggest that human activity may be strongly influencing and acting synergistically with fire in the recent past, leading to the enhanced degradation of these peatland ecosystems. However, intact tropical peat swamp forests can, and did recover from local fire events. These findings support present-day concerns about the increase in fire incidence and combined impacts of fire, human disturbance and El Niño on peat swamp forests, with serious implications for biodiversity, human health and global climate change.

Viewing alternatives

Download history

Metrics

Public Attention

Altmetrics from Altmetric

Number of Citations

Citations from Dimensions

Item Actions

Export

About