ACOUSTIC SCATTERING BY NEAR-SURFACE INHOMOGENEITIES IN POROUS MEDIA

Thesis submitted by
David Leonard Berry B.Sc.(Bath)
for the degree of
Doctor of Philosophy
March 1990

Faculty of Technology
The Open University

Date of submission: 8th March 1990
Date of award: 18th September 1990
Abstract

A theoretical and experimental investigation into the influence of near-surface inhomogeneities on the reflection of air-borne acoustic fields at a porous ground surface is conducted. Two theoretical approaches to the three-dimensional physical problem are presented, both being initially formulated as boundary value problems but with subsequent reformulation as boundary integral equations via Green's Second Theorem. In the first near-surface inhomogeneity approach, a rigid inhomogeneity is embedded within the porous medium and the boundary value problem is formulated by assuming continuity of pressure and normal velocity at the ground surface, Sommerfeld's radiation conditions, and the Neumann boundary condition on the surface of the inhomogeneity. In the second surface inhomogeneity approach, the boundary value problem is formulated by assuming an impedance boundary condition on the plane boundary. Any near-surface inhomogeneities are assumed to induce a local variation of surface impedance within the boundary, and analytical expressions for such induced variations in surface impedance are presented. The resultant integral equations require knowledge of the Green's function for acoustic propagation in the presence of a plane boundary but in the absence of the inhomogeneity, and methods for calculating these Green's functions are discussed.

The numerical solution of the boundary integral equations by a simple boundary element method is described. The solution, which reduces to a system of linear equations with a block circulant coefficient matrix, is applicable to any inhomogeneity which is axisymmetric about a vertical axis; and for the near-surface inhomogeneity approach, the inhomogeneity must also be smooth. The numerical solutions have shown good agreement with classical results. The experimental measurements, presented in the form of spectra of the difference in sound pressure levels received at vertically separated points above surfaces of different media containing various scatterers, are in good agreement with the theoretical predictions.
Detection is, or ought to be, an exact science, and should be treated in the same cold and unemotional manner.

Sir Arthur Conan Doyle *Sign of four*
I would like to thank first of all, my internal advisor, Dr.K. Attenborough, Reader in Acoustics at the Faculty of Technology, The Open University, for his guidance and constant encouragement throughout the three year period of research; and acknowledge too, the importance of his work in providing the foundations of this study. My thanks are equally due to my external advisor, Dr.S.N. Chandler-Wilde, Lecturer at the Department of Civil Engineering, Bradford University, for pointing the way to the mathematical model, for the many hours of enlightening discussions in the field of numerical analysis, and for the great enthusiasm he engendered.

My thanks must also go to Dr.C. Don, on study leave from the Chisholm Institute of Technology, Australia during the Summer of 1989, for his discussions in experimentation, and the following from The Open University: to Dr. N. Heap at the Faculty of Technology, for maintaining a broad overview of this study, to Dr. M. Bromilow at the Faculty of Mathematics, for his occasional suggestions, to the members of the Acoustics Group of the Faculty of Technology, for maintaining a lively working atmosphere, and to the technical staff of the Engineering Mechanics Discipline for their valuable expertise.

I also acknowledge the U.S. Army through its European Research Office, for sponsoring this study.

Finally, I would like to thank M and P, for their constant support through this latest entreprise, Té for being always there, even when in Portugal, and of course, anyone else who knows me.
Contents

1 Introduction .. 1
1.1 Background .. 1
1.2 Previous theoretical work ... 3
1.3 Previous experimental work ... 5
1.4 The present work ... 6

2 Mathematical formulation .. 9
2.1 Basic theory of sound propagation 9
2.2 The theoretical approaches ... 14
2.2.1 The first approach .. 15
2.2.2 The second approach ... 31
2.3 Summary .. 33

3 The Green's functions .. 35
3.1 Formulation of the Green's functions 35
3.2 The reflected wave field .. 39
3.2.1 The locally reacting boundary 42
3.3 The transmitted wave field ... 44
3.4 The ground acoustic characteristics 45
3.5 Summary .. 48

4 Induced surface impedance models 49
4.1 Rigidly backed layer .. 49
4.2 Medium containing a rigid sphere 50
4.3 Summary .. 54
B Analytical expression for the scattered field by a rigid sphere.

137

C Boundary integral equation formulation for sound propagation over a half-space containing an embedded sphere of infinite radius

138

D Listings of FORTRAN 77 subroutines referred to in the text

140

D.1 Complex function CCOTH ...141
D.2 Subroutine CD ...142
D.3 Complex function FFG ..144
D.4 Subroutine FRECCIR ...145
D.5 Subroutine FRECSPH ..147
D.6 Subroutine FRECSPHIM ...150
D.7 Subroutine FSURCIR ..152
D.8 Subroutine FSURSPH ..155
D.9 Subroutine FSURSPHIM ...158
D.10 Subroutine G11 ...161
D.11 Subroutine G12 ...163
D.12 Subroutine G12DER ..165
D.13 Subroutine G22DER ..167
D.14 Subroutine G11WVDP ..169
D.15 Subroutine GDER ..171
D.16 Subroutine GEOCIRCLE ...172
D.17 Subroutine GEOSPHERE ..173
D.18 Subroutine GEOSPHEROID ..175
D.19 Subroutine LEGNDR ...177
D.20 Complex function NDFG ...179
D.21 Subroutine PC ...180
D.22 Subroutine PLNSCATCOE ...182
D.23 Complex function PLNSCATFLD ...183
D.24 Function RMAG ...184
D.25 Subroutine SPHERES ...185
D.26 Subroutine SPHHNK ... 188
D.27 Subroutine W .. 190
D.28 Subroutine ZC .. 192
D.29 Subroutine ZL .. 193
D.30 Subroutine ZSPHERE ... 194
List of Figures

2.1 Geometry for scattering by a near-surface rigid inhomogeneity. 15
2.2 Geometry for scattering by a surface inhomogeneity. 31

3.1 Geometry for propagation over a plane boundary. 40

4.1 Reflection from the plane of a rigid porous half-space containing a rigid sphere. ... 50
4.2 Variation of the surface impedance induced by an embedded rigid sphere with radius. 55

5.1 Section through an oblate spheroid scatterer. 60
5.2 Element configuration for a sphere, including numbering system for the elements ... 62
5.3 Element configuration for a circular surface inhomogeneity including numbering system for the elements. 66
5.4 Theoretical source/receiver configuration for comparison of a boundary element method with classical scattering by a rigid sphere. .. 70
5.5 Error in the boundary element method versus element size for a rigid sphere in an infinite absorbing medium. 72
5.6 Theoretical source/receiver configuration for testing of convergence for the boundary element method for scattering by a sphere embedded within a rigid porous medium. 74
5.7 Theoretical source/receiver configuration for testing of convergence of the boundary element methods to simple results for increased scatterer radius. 75
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>Source/receivers configuration for the measurement of level difference over a porous medium</td>
<td>81</td>
</tr>
<tr>
<td>6.2</td>
<td>Variation of experimentally measured level difference spectra with the lower microphone height, for propagation over a rigid surface</td>
<td>82</td>
</tr>
<tr>
<td>6.3</td>
<td>Direct and surface reflected ray paths.</td>
<td>82</td>
</tr>
<tr>
<td>6.4</td>
<td>Variation of theoretical excess attenuation spectra with height of the receiver for propagation over a rigid surface</td>
<td>84</td>
</tr>
<tr>
<td>6.5</td>
<td>Floor plan of the Faculty of Technology anechoic chamber.</td>
<td>86</td>
</tr>
<tr>
<td>6.6</td>
<td>Photograph of the sample tray and gantry arrangement.</td>
<td>87</td>
</tr>
<tr>
<td>6.7</td>
<td>Schematic diagram of the transmission and reception system.</td>
<td>88</td>
</tr>
<tr>
<td>6.8</td>
<td>Section through the sound source and brass tube.</td>
<td>89</td>
</tr>
<tr>
<td>6.9</td>
<td>Source and axis of symmetry for the level difference technique.</td>
<td>90</td>
</tr>
<tr>
<td>6.10</td>
<td>Dimensions of the hemi oblate spheroids used.</td>
<td>91</td>
</tr>
<tr>
<td>6.11</td>
<td>Photograph of a typical hemi oblate spheroid used in this study.</td>
<td>92</td>
</tr>
<tr>
<td>6.12</td>
<td>Photograph of an example mild steel circular disk used in this study.</td>
<td>92</td>
</tr>
<tr>
<td>6.13</td>
<td>Side elevation and plan view of the Fibreglass slabs.</td>
<td>94</td>
</tr>
<tr>
<td>6.14</td>
<td>Side elevation and plan view of the polyurethane foam slabs.</td>
<td>95</td>
</tr>
<tr>
<td>7.1</td>
<td>Theoretical source/receiver configuration for the prediction of excess attenuation</td>
<td>98</td>
</tr>
<tr>
<td>7.2</td>
<td>Variation of the theoretical ratio of the scattered field to the direct field at 1kHz with source/receiver separation above an oblate spheroid embedded within a rigid porous medium</td>
<td>98</td>
</tr>
<tr>
<td>7.3</td>
<td>Variation of theoretical excess attenuation spectra with layer depth for a low flow resistive rigidly backed layer</td>
<td>99</td>
</tr>
<tr>
<td>7.4</td>
<td>Variation of theoretical excess attenuation spectra with layer depth for a high flow resistive rigidly backed layer</td>
<td>100</td>
</tr>
<tr>
<td>7.5</td>
<td>Variation of theoretical excess attenuation spectra with major axis radius for an oblate spheroid embedded within a rigid porous medium</td>
<td>101</td>
</tr>
</tbody>
</table>
7.6 Variation of theoretical excess attenuation spectra with minor axis radius for an oblate spheroid embedded within a rigid porous medium. .. 102
7.7 Variation of theoretical excess attenuation spectra with depth for an oblate spheroid embedded within a rigid porous medium. 103
7.8 Variation of theoretical excess attenuation spectra with radius of a circular disk embedded within a rigid porous medium. 104
7.9 Variation of theoretical excess attenuation spectra with depth for a circular disk embedded within a rigid porous medium. 104
7.10 Experimental and predicted level difference spectra measured over pea-gravel, Fibreglass and polyurethane foam. 106
7.11 Variation of experimental and predicted level difference spectra with minor axis radius of an oblate spheroid embedded in gravel. .. 107
7.12 Variation of experimental and predicted level difference spectra with radius of a circular disk embedded in gravel. 109
7.13 Variation of experimental and predicted level difference spectra with radius of a circular disk embedded in Fibreglass. .. 110
7.14 Variation of experimental level difference spectra with radius of a circular disk embedded in polyurethane foam. 111
7.15 Variation of experimental and predicted level difference spectra with position above an oblate spheroid in gravel. 112
7.16 Variation of experimental and predicted level difference spectra with position above a circular disk in gravel. 113
7.17 Variation of experimental level difference spectra with position above a circular disk in polyurethane foam. 114
List of Tables

3.1 The Green's functions and the subroutines for their calculation. 48

5.1 Comparison of the values of the ratio of the scattered to the direct pressure field at various receiver positions as calculated by using the boundary element method to those calculated by using classical theory for a rigid sphere in an infinite absorbing medium. .. 71

5.2 Variation of the ratio of the scattered to the direct pressure field at various receiver positions with decreasing element size for a rigid sphere embedded within a rigid porous medium. 73

5.3 Variation of the ratio of the total to direct pressure field with radius of embedded sphere at two receiver positions where the refractive index, $n = 1$, and the relative impedance $\zeta = 1$. 76

5.4 Variation of the ratio of the total to direct pressure field with radius of embedded scatterer (sphere and disk) at two receiver positions. ... 79

6.1 Measured and assumed constants of the propagating media. 93
Table of symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set notation</td>
<td></td>
</tr>
<tr>
<td>\mathbb{R}</td>
<td>set of real numbers</td>
</tr>
<tr>
<td>\mathbb{R}^3</td>
<td>Euclidean space</td>
</tr>
<tr>
<td>$X \cup Y$</td>
<td>union of sets X and Y</td>
</tr>
<tr>
<td>\overline{G}</td>
<td>closure of set G</td>
</tr>
<tr>
<td>$\text{int}(G)$</td>
<td>interior of set G</td>
</tr>
<tr>
<td>∂G</td>
<td>boundary of set G, $\overline{G}\setminus\text{int}(G)$</td>
</tr>
<tr>
<td>Special functions</td>
<td></td>
</tr>
<tr>
<td>J_m</td>
<td>Bessel function of the first kind of order m</td>
</tr>
<tr>
<td>H_n</td>
<td>Hankel function of the first kind of order n</td>
</tr>
<tr>
<td>erfc</td>
<td>complementary error function</td>
</tr>
<tr>
<td>Operators</td>
<td></td>
</tr>
<tr>
<td>∇</td>
<td>gradient</td>
</tr>
<tr>
<td>∇^2</td>
<td>Laplacian</td>
</tr>
<tr>
<td>Acoustic and geometrical quantities</td>
<td></td>
</tr>
<tr>
<td>α</td>
<td>k_2Z_2/k_1Z_1</td>
</tr>
<tr>
<td>β</td>
<td>normalised surface admittance</td>
</tr>
<tr>
<td>c</td>
<td>wave propagation velocity</td>
</tr>
<tr>
<td>Symbol</td>
<td>Explanation</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>c_p</td>
<td>complex wave propagation velocity</td>
</tr>
<tr>
<td>d</td>
<td>layer thickness</td>
</tr>
<tr>
<td>$E.A.$</td>
<td>excess attenuation</td>
</tr>
<tr>
<td>f</td>
<td>frequency of acoustic wave</td>
</tr>
<tr>
<td>k</td>
<td>wavenumber</td>
</tr>
<tr>
<td>k_p</td>
<td>complex wave number</td>
</tr>
<tr>
<td>$k_{1/2}$</td>
<td>constant</td>
</tr>
<tr>
<td>$k_{1/2}$</td>
<td>wavenumber in upper/lower half-space</td>
</tr>
<tr>
<td>λ</td>
<td>wavelength of acoustic wave</td>
</tr>
<tr>
<td>$L.D.$</td>
<td>level difference</td>
</tr>
<tr>
<td>n</td>
<td>unit normal</td>
</tr>
<tr>
<td>n'</td>
<td>refractive index</td>
</tr>
<tr>
<td>n'</td>
<td>grain shape factor</td>
</tr>
<tr>
<td>N_{pr}</td>
<td>Prandtl number</td>
</tr>
<tr>
<td>Ω</td>
<td>volume porosity of connected air-filled pores</td>
</tr>
<tr>
<td>ω</td>
<td>angular frequency</td>
</tr>
<tr>
<td>p</td>
<td>(complex) acoustic pressure</td>
</tr>
<tr>
<td>ϕ</td>
<td>(complex) velocity potential</td>
</tr>
<tr>
<td>Φ</td>
<td>(real) velocity potential</td>
</tr>
<tr>
<td>ρ</td>
<td>unperturbed density</td>
</tr>
<tr>
<td>ρ_p</td>
<td>effective fluid density</td>
</tr>
<tr>
<td>$\phi_{1/2}$</td>
<td>unperturbed densities in upper/lower half-space</td>
</tr>
<tr>
<td>r</td>
<td>distance from a fixed origin</td>
</tr>
<tr>
<td>r_0</td>
<td>position vector of source</td>
</tr>
<tr>
<td>r</td>
<td>position vector of receiver</td>
</tr>
<tr>
<td>R_p</td>
<td>plane wave reflection coefficient</td>
</tr>
<tr>
<td>σ</td>
<td>flow resistivity</td>
</tr>
<tr>
<td>T</td>
<td>tortuosity</td>
</tr>
<tr>
<td>T_p</td>
<td>plane wave transmission coefficient</td>
</tr>
<tr>
<td>t</td>
<td>time</td>
</tr>
<tr>
<td>v</td>
<td>particle velocity</td>
</tr>
<tr>
<td>x_0, y_0, z_0</td>
<td>Cartesian coordinates of source point, r_0</td>
</tr>
<tr>
<td>x, y, z</td>
<td>Cartesian coordinates of receiver point, r</td>
</tr>
<tr>
<td>ζ_s</td>
<td>relative surface impedance</td>
</tr>
<tr>
<td>Z_s</td>
<td>surface impedance</td>
</tr>
<tr>
<td>$Z_{1/2}$</td>
<td>characteristic impedance of upper/lower half-space</td>
</tr>
<tr>
<td>Symbol</td>
<td>Explanation</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
</tbody>
</table>

Green's functions and related functions

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>Green's function</td>
</tr>
<tr>
<td>G_F</td>
<td>free-field Green's function</td>
</tr>
<tr>
<td>$P_β$</td>
<td>$G_β - G_0$</td>
</tr>
</tbody>
</table>

Miscellaneous mathematical symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_{SG}, C_{SP}</td>
<td>constants</td>
</tr>
<tr>
<td>c_{SG}, c_{SP}</td>
<td>functions</td>
</tr>
<tr>
<td>C_F</td>
<td>constant</td>
</tr>
<tr>
<td>C^*</td>
<td>constant</td>
</tr>
<tr>
<td>C_0</td>
<td>constant</td>
</tr>
<tr>
<td>i,j,k</td>
<td>unit vectors in the cartesian coordinate system</td>
</tr>
<tr>
<td>i</td>
<td>$\sqrt{-1}$</td>
</tr>
<tr>
<td>o</td>
<td>small order</td>
</tr>
<tr>
<td>O</td>
<td>big order</td>
</tr>
</tbody>
</table>
Chapter 1

Introduction

1.1 Background

When a porous ground surface is insonified by an air-borne acoustic field, the air in the pores near the surface and, consequently, through viscous drag, the porous skeletal frame, are excited. Three different wave types then propagate in the medium, two dilatational and one shear [1,2]. There may also, of course, be direct interaction between air, particle motion and porous skeletal motion. It has been shown, for air-filled porous soils, that one of the dilatational wave types is associated with a propagation mode in which the air and the porous skeletal frame are in phase. This wave type is called the fast wave [3]; it corresponds to the P-wave of seismology. In the second type of dilatational wave motion, the air and porous skeletal frame are out of phase. This wave type propagates primarily through the air-filled connected pores and is called the slow or acoustic wave.

These wave types have interested geophysicists since the 1950's. The recent work concerned with this acoustic-to-seismic and acoustic-to-acoustic coupling has involved the analysis of air-borne signals detected by microphones and geophones buried close to a porous ground surface. These results show that the fast wave, to which a sub-surface geophone responds, suffers relatively little attenuation with depth, and is non-dispersive [4]. Furthermore, the structure of the coupled spectrum is dependent upon the seismic structure of the ground [4], for example, any surficial layering. The
spectrum contains peaks, the magnitude and frequency location of which
depend upon the seismic characteristics of the surficial layer. In contrast to
the fast wave, the slow wave, to which a sub-surface microphone responds,
is highly attenuating both with increasing frequency and depth [5].

For many purposes, most porous ground surfaces (grassland, forest floor,
bare soil, snow, etc.) can be modelled as modified fluids consistent with the
characteristics of rigid porous media, i.e. where the medium consists of a
rigid porous skeletal frame containing air in the pores. For example, Atten­
borough [6], has shown that, for frequencies above 200Hz, the only wave
possible in a rigid porous material is nearly identical to the slow wave pre­
dicted in a poro-elastic medium with the same pore characteristics. Various
theories are available which predict the acoustical characteristics of rigid
porous media. Delany and Bazley [7] deduced empirical relationships for
the acoustical properties of fibrous absorbent materials and these have been
used successfully in predicting the characteristics of outdoor ground surfaces
[8]. Recently, this empirical model has been replaced by a more rigorous mi­
crostructural model [9]. Here, the acoustical characteristics of rigid porous
media are predicted from four parameters: porosity, flow resistivity, grain
shape factor and pore shape factor ratio. The use of these four param­
ters for the prediction of the medium characteristics is rather impractical.
However, various approximations to this rigorous theory are available, in­
cluding, one, two and three parameter approximations [9]. A justification
for the extensive modelling of a porous ground as a rigid porous medium
has been obtained experimentally by measuring the acoustic field within a
porous ground using a purpose built probe microphone, [10,11,12,13]. The
existence of the seismic wave types has been verified experimentally by mea­
suring time of flight data from above-ground impulsive acoustic sources to
sub-surface geophones, [4,10,14].

The wave type that has the most influence on the reflection of air-borne
acoustic fields at a porous ground surface is the slow wave. The high atten­
uation associated with this wave type within the porous ground means that
only near-surface layering has an influence on the surface-reflected fields, and
that there is a critical depth from the surface, below which such layering has little effect on the sound field. Consequently, a ground that has near-surface layering at a depth greater than this critical depth appears acoustically to be homogeneous. Seismically, as a consequence of the relatively small attenuation of the fast wave, any near-surface layering has an influence on the surface reflected fields. These effects are seen in natural soils typically at low frequencies [15], less than 200Hz.

It has been stated above that the reflection of air-borne acoustic fields at the porous ground surface is influenced by the slow wave type and, to a limited extent, by the fast wave type, and hence by the variation of the porous ground structure with depth. Consequently, it is possible that any inhomogeneities on or beneath the porous surface may also have an influence on the surface reflected acoustic fields. If such an influence exists, how can it be studied and, to what extent is this influence dependent upon the nature of the inhomogeneity? This question is considered in this study both theoretically and experimentally. Similar problems have been considered before in the literature, and are summarised in the following sections.

1.2 Previous theoretical work

There is considerable literature that considers similar theoretical scattering problems, using a variety of techniques for solution. Most of this work, however, has been concerned with the scattering problem from bodies in a homogeneous fluid medium. This work includes the early work of Faran [16], Junger [17], Hickling [18], and others [19,20,21,22] and more recent studies using the T-matrix method [23,24,25,26,27,28], and resonance scattering theory [29,30,31,32,33,34]. This work involves scatterers that are spherical or spheroidal in shape. When the obstacle has an arbitrary shape, numerical methods have been used as opposed to approximate analytical methods. Such work has involved the use of the T-matrix method, boundary element methods, and hybrid methods such as the finite element/boundary element method.
The T-matrix method has been used only to obtain farfield data and only when the shape of the obstacle does not deviate substantially from the basic geometrical shape (e.g. a sphere) used and cannot be used to obtain data near the surface of the scatterer. This situation may be contrasted with integral equation methods, where there has been a greater degree of flexibility in its use both in the near- and far-field and in the shape of the scatterers. Previous work has involved solving problems of scattering from rigid bodies \([35,36,37,38,39,40,41,42]\) and elastic bodies \([43]\). Indeed, most of the applications of integral equation methods to acoustic scattering have been concerned with such scattering problems by finite objects in free space. Survey monographs and articles include Colton and Kress \([44]\), Filippi \([45]\), and Shaw \([46]\). Recently, these methods have been extended to consider acoustic scattering by a half space containing some form of local disturbance, for example, a noise barrier \([47,48,49]\). Others \([50,51,52]\) have considered the application of integral equation methods to the case of a surface impedance variation on a flat boundary.

There are few references that consider the solution of the scattering of sound waves due to a source in one medium (air) by an inhomogeneity in another medium. Kristensson and Ström \([53]\) consider this problem using the T-matrix method. However, their method still requires further development, in particular, with respect to the numerical integration problems. The method requires the numerical calculation of \(O(n^2)\) integrals (see \([53]\), equations \((60)\) and \((65)\)), where \(n\) is the degree of the expansion in spherical harmonics used to approximate the anomalous scattered field, and the rapid oscillations of the integrands of these integrals cause difficulties in numerical evaluation. These problems have only been partly solved by Kristensson and Ström, for the special case when the source and receiver lie on the plane boundary between the two media.
1.3 Previous experimental work

Essentially, there are two techniques for analysing the influence of near-surface inhomogeneities on the reflection of air-borne acoustic fields at the porous ground surface. The first method involves analysing the acoustic field reflected from the ground surface and the surface of the inhomogeneity separately. This has been considered by Bass and Baird [54], and involves the use of a pulsed acoustic source to enable the separation of the two reflected signals. The method, although satisfactory under certain conditions, did not overcome adequately the major problem of separating the pulses reflected from the ground surface and from the surface of the inhomogeneity.

The second method involves the analysis of the acoustic fields associated with the layer between the surface of the inhomogeneity and the ground surface (i.e. the acoustic fields reflected from the ground surface and the surface of the inhomogeneity are considered together). This method has only been considered previously in the context of determining sub-surface ground layering for agricultural purposes [11]. It involves measuring directly the acoustic field due to a source obliquely incident on the ground surface by a microphone placed at a horizontal distance from the source. The direct and ground surface reflected contributions to the received signal will interfere [8]. The resulting spectrum, of the attenuation in excess of that due to spherical spreading (the excess attenuation spectrum), after taking account of the free-field spectrum and directivity of the source, shows one or more minima depending upon the source and microphone configuration above the ground surface, the frequency range, and the acoustic characteristics of the ground considered. Over acoustically hard ground with zero phase change on reflection, the frequency locations of the minima are determined entirely by the source-microphone configuration. Over absorbing ground, the location and shape of the first minimum is determined both by the configuration and the acoustical nature of the ground including its sub-surface structure. The free-field spectrum and directivity of the source can be either measured in an anechoic chamber [55] or over a perfectly reflecting plane [56,57].

A refinement of this method is that proposed by Glaretas [58]. Instead
of using one microphone, two vertically separated microphones are used to receive the acoustic field and the difference in the sound pressure levels (i.e. the Level Difference) between the two microphones is calculated. The resulting spectra produce maxima and minima similar to those of the excess attenuation spectra. However, if the vertical separation of the two microphones is sufficiently small then the directivity of the source can be neglected and the free-field spectrum of the source is directly cancelled in the calculation of the level difference. For small source-microphone(s) configurations (a maximum of ~ 1m), meteorological effects are unimportant, but for large configurations (a minimum of ~ 10m), measurements can be taken only under calm conditions (a wind speed of less than 2m.s\(^{-1}\)) and with a frequency range of up to 5kHz [59]. For all geometries, the received signals must be at least 10dB above background noise [60].

1.4 The present work

The purpose of this study is to develop a method of theoretically predicting the influence of near-surface inhomogeneities on the reflection of air-borne acoustic fields at a porous ground surface. The frequency range to be considered is 200Hz to 5kHz, for which seismic effects may safely be ignored and the porous ground is modelled as rigid porous with only the slow wave considered within the porous medium. The inhomogeneities that will be investigated will have a smooth, rigid surface and will be typically ~ 0.25m in dimension. This theoretical prediction method is then compared with experimental results.

Two mathematical approaches to this scattering problem are considered and chapter 2 deals with their mathematical formulation as Boundary Value Problems and subsequent reformulation as Boundary Integral Equations. The first approach is to consider the scattering by a near-surface inhomogeneity embedded within a rigid porous medium directly, and in the second approach it is assumed that the surface impedance of the porous ground surface is modified locally in a region directly above the inhom-
The boundary integral equations formulated in chapter 2 require expressions for the Green's function which is the solution to the simple problem of acoustic propagation in the presence of a plane boundary separating two semi-infinite media of different properties with various configurations of source and receiver. There have been many papers concerned with this problem, an exact solution of which, for wave propagation between source and receiver, above a plane boundary was first given by Sommerfeld [61,62]. Later, further advances were made by Van der Pol [63], Norton [64,65], Rudnick [66], and others [67,68,69,70,71]. The exact solution for the corresponding problem with a locally reacting boundary has been given by Ingard [72], Thomasson [73], and Wenzel [74]. Ingard [72] and Lawhead and Rudnick [75] have given approximate solutions, whereas Thomasson [76], Chien and Soroka [77,78] and others [79,80,81,82] have given asymptotic solutions. An exact solution for the transmission of sound across a plane boundary with extended reaction has been given by Richards et al [5]. The theory is based on the earlier work of Paul [69] and Brekhovskikh [83]. These various solutions are discussed in chapter 3. Finally, modelling the effect of the rigid porous ground is discussed and reviewed.

The expressions for the induced surface impedance required for the second approach are derived in chapter 4. It will be seen that this second approach gives more flexibility to the shapes of the scattering surfaces; indeed scattering by local surface impedance discontinuities caused by circumstances other than the presence of an embedded inhomogeneity may be considered.

In chapter 5 the numerical solution of the boundary integral equations developed in chapter 2 is considered, and numerical tests and comparisons of the solutions with standard results are presented.

The experimental investigation of this study is introduced in chapter 6, which details the experimental procedure, apparatus, test scatterers and media. The experimental results are then presented in chapter 7. The object of these experiments was to confirm the main qualitative features of
the models developed. The chapter also details a series of theoretical results.

In the concluding chapter, chapter 8, a review of the study is presented, together with limitations and recommendations for future work, and finally, some concluding remarks.
Chapter 2

Mathematical formulation

The theoretical problem of determining the influence of near-surface inhomogeneities on the reflection of air-borne acoustic fields at the porous ground surface is described in this chapter. Section 2.1 briefly summarises some basic acoustic theory relevant to the theoretical problem. The basic theoretical problem to be considered is then described in section 2.2, where two treatments are formulated mathematically as boundary value problems and subsequently reformulated as boundary integral equations by using standard arguments and Green's second theorem. The final section then briefly summarises these treatments.

2.1 Basic theory of sound propagation

This study is basically concerned with sound propagation in a fluid medium above an absorbing boundary. It is assumed that the fluid medium is homogeneous and, in the absence of the sound field, is at rest; this means that the prediction of outdoor sound propagation, in situations where wind and temperature gradients have a significant effect, cannot be considered. Further, the flow induced by the sound wave in the fluid medium is assumed to be inviscid and isentropic, which means that internal energy loss and slight energy losses due to viscosity and heat conduction associated with boundary layer effects can be neglected [84]. If the above conditions are satisfied and the perturbations due to the sound field are small, then the theory of
linear sound propagation applies [45], and the perturbation in the pressure P, satisfies the homogeneous wave equation

$$\nabla^2 P = \frac{1}{c^2} \frac{\partial^2 P}{\partial t^2},$$
(2.1)

where c is the wave propagation velocity. The sound pressure, in a fluid of unperturbed density ρ, is related to the velocity potential Φ by

$$P = -\rho \frac{\partial \Phi}{\partial t},$$
(2.2)

and the particle velocity is related to velocity potential by,

$$V = \nabla \Phi.$$
(2.3)

The assumption is made throughout this thesis that the sources of sound are single frequency (though, of course, by Fourier analysis an arbitrary transient wave can be built up by superposing monofrequency waves) with wavelength λ, corresponding to a frequency $f = c/\lambda$. With this assumption, P can be written as

$$P = \text{Re}(pe^{-i\omega t}),$$
(2.4)

where $\omega = 2\pi f/c, i = \sqrt{-1}$ and the complex acoustic pressure p, which is independent of t, satisfies the Helmholtz equation

$$(\nabla^2 + k^2)p = 0,$$
(2.5)

where $k = 2\pi/\lambda$ is the wavenumber. Similarly to equation (2.4), it is possible to write

$$\Phi = \text{Re}(\phi e^{-i\omega t})$$
(2.6)

and

$$V = \text{Re}(ve^{-i\omega t}),$$
(2.7)

and equations (2.2) and (2.3) are satisfied provided the complex-valued functions ϕ and v satisfy

$$p = i\omega \rho \phi$$
(2.8)

and

$$v = \nabla \phi.$$
(2.9)
The theoretical content of this study is concerned with the solution of equation (2.5), subject to just sufficient boundary conditions so as to permit equation (2.5) to have exactly one solution. The appropriate boundary condition at a rigid surface, for example, is that

\[v \cdot n = \frac{\partial \phi}{\partial n} = 0, \quad (2.10) \]

where \(n \), the unit normal to the boundary is directed out of the fluid medium.

On boundaries between two different fluid media, two conditions must be satisfied: the acoustic pressures on both sides of the boundary and the normal components of the particle velocity must be equal. The first continuity of pressure condition is required so that there can be no net force on the boundary separating the fluids. The second continuity of normal velocity condition is required so that the fluids remain in contact. In certain circumstances, these two conditions combined imply that the fluid satisfies approximately the locally reacting boundary condition, i.e. the pressure in the boundary is proportional to the normal velocity,

\[p = \frac{\partial \phi}{\partial n} Z_s, \quad (2.11) \]

where the value of the constant \(Z_s \), the surface impedance, is dependent only on local surface properties. \(Z_s \) may vary from point to point on the boundary, but at each point \(Z_s \) is independent of the acoustic field above the boundary. Any boundary to which the boundary condition (2.11) does not apply (i.e. the surface is not locally reacting) is said to be externally reacting. Equation (2.11) can be written as the impedance (or Robin impedance) boundary condition

\[\frac{\partial \phi}{\partial n} = ik\beta \phi, \quad (2.12) \]

or,

\[\frac{\partial p}{\partial n} = ik\beta p, \quad (2.13) \]

where \(\beta = 1/\zeta_s \) is the normalised surface admittance and \(\zeta_s \) is the relative surface impedance, defined by \(\zeta_s = Z_s/\rho c \).

In addition to boundary conditions on physical boundaries, a boundary condition in the far-field must be specified, and this Sommerfeld radiation
condition is
\[
\begin{align*}
\frac{\partial p}{\partial r} - ikp &= o(r^{-1}), \\
p &= O(r^{-1}),
\end{align*}
\] (2.14)
where \(r \) is the distance from a fixed origin. In physical terms, given the \(e^{-i\omega t} \) convention used here, this condition ensures that the sound waves, at large distances from the source and scatterer are travelling outwards.

Sound propagation in a homogeneous porous medium has been reviewed by Attenborough [85], who considered the case of a rigid matrix and that of an elastic matrix. For the case of the rigid matrix, the acoustic pressure within the porous medium was shown to satisfy the Helmholtz equation,
\[
(\nabla^2 + k_p^2)p = 0,
\] (2.15)
where \(k_p \) is a complex function of \(\omega \), with \(\text{Re}(k_p), \text{Im}(k_p) > 0 \) and \(k_p = \omega/c_p \), \(c_p \) being a complex wave propagation velocity. Also,
\[
p = i\omega \rho_p \phi, \tag{2.16}
\]
\(\rho_p \) being an effective fluid density, also a complex function of \(\omega \).

Consider now a plane wave travelling within a fluid medium, incident upon a plane boundary between the fluid and a porous medium. Let the boundary have the equation \(z = 0 \) (rectangular Cartesian coordinates), and assume that the plane incident wave makes the angle \(\theta \) with the \(z \)-axis and that the upper fluid half-space \((z > 0) \) is characterised by characteristic impedance \(Z_1 \) and wavenumber \(k_1 \) and the lower porous medium half-space \((z < 0) \) is characterised by characteristic impedance \(Z_2 \) and wavenumber \(k_2 \).
For oblique incidence, the incident acoustic field at \(r = (x,y,z) \) is given by
\[
p_i(r) = e^{i(k_{1,\text{in}}z - k_{1,z}z)}, \tag{2.17}
\]
for \(z \geq 0 \), where \(k_{1,\text{in}} = k_1 \sin \theta, k_{1,z} = k_1 \cos \theta \), so that \(p_i \) satisfies
\[
(\nabla^2 + k^2_1)p_i(r) = 0. \tag{2.18}
\]
The reflected acoustic field is given by
\[
p_r(r) = R_p e^{i(k_{1,\text{in}}z + k_{1,z}z)}, \tag{2.19}
\]
for $z \geq 0$, where R_p is a plane wave reflection coefficient, and where p_r satisfies
\[(\nabla^2 + k_0^2)p_r(r) = 0. \tag{2.20}\]
The transmitted acoustic field is given by
\[p_t(r) = T_pe^{i(k_2,z - k_2,n)}, \tag{2.21}\]
for $z < 0$, where T_p is the plane wave transmission coefficient, and
\[k_2 = (k_{2,x}^2 + k_{2,n}^2)^{1/2}, \tag{2.22}\]
so that p_t satisfies
\[(\nabla^2 + k_0^2)p_t(r) = 0. \tag{2.23}\]
Continuity of pressure at the plane boundary requires,
\[(1 + 2\rho)\exp(i\kappa - \kappa n) = T_p\exp(i\kappa_n), \tag{2.24}\]
which implies that
\[k_{2,x} = k_{1,x} \tag{2.25}\]
and
\[1 + R_p = T_p. \tag{2.26}\]
Continuity of normal velocity requires
\[\lim_{z \to 0^+} \frac{\partial p}{\partial z} = \lim_{z \to 0^-} \frac{\partial p}{\partial z}, \tag{2.27}\]
as obtained by using equations (2.3) and (2.8), with ρ_1 and ρ_2 being the un-perturbed densities in $z > 0$ and $z < 0$, respectively. This gives expressions for T_p and R_p as
\[T_p = (1 - R_p) \frac{k_{1,x}\rho_2}{k_{2,x}\rho_1} \tag{2.28}\]
and
\[R_p = \frac{k_{1,x}\rho_2 - k_{2,x}\rho_1}{k_{1,x}\rho_2 + k_{2,x}\rho_1}. \tag{2.29}\]
Equation (2.29) can be written as
\[R_p = \frac{\cos \theta - \beta(\theta)}{\cos \theta + \beta(\theta)}, \tag{2.30}\]
where

$$\beta(\theta) = \frac{1}{\zeta}(1 - \sin^2 \theta / n^2)^{1/2}, \quad (2.31)$$

and $\zeta = \rho_1 c_1 / \rho_2 c_2$ and the refractive index $n = k_2 / k_1$. If $|n^2| > 1$, then $\beta(\theta)$ is approximately independent of θ and

$$\beta(\theta) \approx \beta(0). \quad (2.32)$$

In this case, the boundary is approximately locally reacting with surface admittance.

$$\beta = \beta(0). \quad (2.33)$$

2.2 The theoretical approaches

In the previous section the basic mathematical concepts behind the theoretical study to be discussed in this section have been summarised, and it is the purpose of this section to define the mathematical problem of determining the influence of near-surface inhomogeneities on the reflection of acoustic fields at the surface of a porous medium. Two approaches to this problem will be considered. In the first approach, the acoustic fields transmitted through the plane boundary are incident on the inhomogeneity and scattered, and, using the various boundary conditions, the transmission of the scattered wave into the upper medium is calculated. In the second approach, any near-surface inhomogeneity is assumed to induce a local surface impedance variation at the boundary above the inhomogeneity. In both approaches, the complex acoustic pressure at a point in the upper half-space is to be determined when the plane boundary is insonified by a monofrequency point source at a point also in the upper half-space. It will be seen that the first approach is sufficiently general that the acoustic pressure in the lower half-space may be calculated also. These approaches are first stated as boundary value problems with subsequent reformulation as boundary integral equations by a standard procedure via Green's second theorem.

To formulate the boundary integral equations, the solutions to much simpler but related problems are required. These are the determination of
Figure 2.1 Geometry for scattering by a near-surface rigid inhomogeneity.

Green's functions for sound propagation in two half-spaces, separated by the plane boundary, and these are discussed in the next chapter.

2.2.1 The first approach

The geometry for this first approach is shown in figure 2.1. An inhomogeneity, labelled S, with a smooth (Lyapunov), rigid surface ∂S, is embedded in a porous half-space, characterised by a complex characteristic impedance Z_2, and a complex wavenumber, k_2. The upper half-space, denoted U_+, contains air, and is assumed to be characterised by real characteristic impedance and wavenumber, Z_1 and k_1, respectively. To define the other notation in figure 2.1, $U_- := \mathbb{R}^3 \setminus (S \cup U_+)$ denotes the porous medium, and $\Gamma = \{(x, y, z) \in \mathbb{R}^3 | z = 0\}$, the boundary between the two halfspaces.

The complex acoustic pressure is assumed to satisfy the following boundary value problem:
an inhomogeneous Helmholtz equation for $r \in U_+$,

$$\nabla^2 + k_1^2)p(r, r_0) = \delta(r - r_0), \quad (2.34)$$
the Helmholtz equation for $r \in U_-$,

$$ (\nabla^2 + k_1^2)p(r, r_0) = 0, \quad (2.35) $$

the Neumann boundary condition for $r \in \partial S$, for a rigid surface on the inhomogeneity,

$$ \frac{\partial p(r, r_0)}{\partial n(r)} = 0, \quad (2.36) $$

continuity of complex acoustic pressure, for $r \in \Gamma$,

$$ p_+(r, r_0) = p_-(r, r_0), \quad (2.37) $$

continuity of normal velocity, for $r \in \Gamma$,

$$ \alpha \frac{\partial p_+(r, r_0)}{\partial z} = \frac{\partial p_-(r, r_0)}{\partial z}, \quad (2.38) $$

where $\alpha = k_2 Z_2 / k_1 Z_1$, and the radiation conditions for $r \in U_+$, uniformly in r as $r := |r| \to \infty$,

$$ \begin{aligned} \frac{\partial p(r, r_0)}{\partial r} - ik_1^2 p(r, r_0) &= o(r^{-1}), \\
p(r, r_0) &= O(r^{-1}), \\
p(r, r_0) &= O(r^{-1}), \end{aligned} \quad (2.39) $$

and for $r \in U_-$, uniformly in r as $r := |r| \to \infty$,

$$ \begin{aligned} \frac{\partial p(r, r_0)}{\partial r} - ik_2 p(r, r_0) &= o(r^{-1}), \\
p(r, r_0) &= O(r^{-1}). \end{aligned} \quad (2.40) $$

In the above, the subscripts $+/-$ denote the limiting values of a function as Γ is approached from the U_+/U_- side and $n(r)$ denotes the normal to the surface ∂S at point r.

Two integral equation formulations of the above boundary value problem shall now be considered. It will be seen that the first reformulation requires Green's functions in the presence of plane boundaries, and this reformulation is quite general. The second reformulation, involving Free-Field Green's functions, uses some of the results of the first approach and thus the derivation given is less detailed.
2.2.1.1 First integral equation formulation

The first integral equation reformulation of the boundary value problem involves letting the Green's function, \(G(r, r_0)\), satisfy the following boundary value problem, for each \(r_0 \in \mathbb{R}^3 \setminus \Gamma\):

- an inhomogeneous Helmholtz equation for \(r \in U_+\),
 \[
 (\nabla^2 + k^2_0)G(r, r_0) = \delta(r - r_0),
 \]
 \(2.41\)

- an inhomogeneous Helmholtz equation for \(r \in U_-\),
 \[
 (\nabla^2 + k_0^2)G(r, r_0) = \alpha \delta(r - r_0),
 \]
 \(2.42\)

- the following jump conditions for \(r \in \Gamma\), the boundary between the two half-spaces,
 \[
 G_+(r, r_0) = G_-(r, r_0),
 \]
 \(2.43\)

and

\[
\alpha \frac{\partial G_+(r, r_0)}{\partial z} = \frac{\partial G_-(r, r_0)}{\partial z},
\]
\(2.44\)

- and the radiation conditions for \(r \in U_+\), uniformly in \(r\) as \(r := |r| \to \infty\),
 \[
 \begin{align*}
 \frac{\partial G(r, r_0)}{\partial r} - ik_1 G(r, r_0) &= o(r^{-1}), \\
 G(r, r_0) &= O(r^{-1}),
 \end{align*}
 \]
 \(2.45\)

and for \(r \in U_-\), uniformly in \(r\) as \(r := |r| \to \infty\),

\[
\begin{align*}
\frac{\partial G(r, r_0)}{\partial r} - ik_2 G(r, r_0) &= o(r^{-1}), \\
G(r, r_0) &= O(r^{-1}).
\end{align*}
\]
\(2.46\)

Note that in the case when no inhomogeneity is present

\[
p(r, r_0) = G(r, r_0)
\]
\(2.47\)

for \(r \in \mathbb{R}^3\) and \(r_0 \in U_+\); but \(G(r, r_0)\) is defined also when \(r_0 \in U_-\). In physical terms, and for this integral equation reformulation, \(G(r, r_0)\) is the complex acoustic pressure at point \(r\) in a medium consisting of two half-spaces of different characteristic impedances and/or propagation constants.
due to a simple point source at point \(r_0 \) of unit volume flux strength; the point \(r_0 \) may lie in either half space.

The integral equation for this first reformulation may be obtained by considering regions \(V_1 \) and \(V_2 \), \(V_1/V_2 \) consisting of that part of \(U_+/U_- \) contained within a large hemisphere of surface, \(\Sigma \) and radius \(R \), centred on the origin, and the boundary, \(\Gamma \), but excluding small spheres, \(\sigma_r \) and \(\sigma_{r_0} \) of radii \(\varepsilon \), centred on \(r \) and \(r_0 \). The interiors of the spheres \(\sigma_r \) and \(\sigma_{r_0} \) are excluded so that the conditions of Green's second theorem are satisfied by \(p \) and \(G \) in regions \(V_1 \) and \(V_2 \). By applying Green's second theorem to regions \(V_1 \) and \(V_2 \), the following two equations are obtained:

\[
\int_{\partial V_1} (p(r, r_0) \frac{\partial G(r, r)}{\partial n(r)}) - G(r, r) \frac{\partial p(r, r_0)}{\partial n(r)} ds(r) = \\
\int_{V_1} (p(r, r_0) \nabla^2 G(r, r) - G(r, r) \nabla^2 p(r, r_0))dV(r), \tag{2.48}
\]

and

\[
\int_{\partial V_2} (p(r, r_0) \frac{\partial G(r, r)}{\partial n(r)}) - G(r, r) \frac{\partial p(r, r_0)}{\partial n(r)} ds(r) = \\
\int_{V_2} (p(r, r_0) \nabla^2 G(r, r) - G(r, r) \nabla^2 p(r, r_0))dV(r), \tag{2.49}
\]

for \(r_0 \in U_+ \) and \(r \in \mathbb{R}^3 \) and where \(\nabla^2 G = \frac{\partial^2}{\partial x_1^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} \), \(ds(r) \) denotes an element of surface area at the point \(r \) on \(\partial V_1 \) and \(\partial V_2 \), and \(dV(r) \) denotes an element of volume at the point \(r \). (In each equation, the normal \(n \) is directed out of the respective region, \(V_1/V_2 \).)

Since \(p(r, r_0) \) and \(G(r, r) \), both considered as functions of \(r \), satisfy Helmholtz's equation in \(V_1 \) and \(V_2 \), the integrals over volumes \(V_1 \) and \(V_2 \) in equations (2.48) and (2.49) are equal to zero. Thus, equations (2.48) and (2.49) reduce to

\[
\int_{\partial V_1} (p(r, r_0) \frac{\partial G(r, r)}{\partial n(r)}) - G(r, r) \frac{\partial p(r, r_0)}{\partial n(r)} ds(r) = 0 \tag{2.50}
\]

and

\[
\int_{\partial V_2} (p(r, r_0) \frac{\partial G(r, r)}{\partial n(r)}) - G(r, r) \frac{\partial p(r, r_0)}{\partial n(r)} ds(r) = 0, \tag{2.51}
\]

for \(r_0 \in U_+ \) and \(r \in \mathbb{R}^3 \). These two integrals are now considered in turn.
2.2.1.1 Integral over ∂V_1
Equation (2.50) is considered for three different cases: $r \in U_+, r \in \Gamma$, and $r \in U_-$.

For $r \in U_+$ the region V_1 is bounded by the hemispherical surface Σ, of radius R, the plane boundary Γ, and the surfaces of the spheres σ_r and σ_{r_0} of radii ϵ. The integral (2.50) is now evaluated with the radius of the surface Σ taken to the limit $R \to \infty$, and the radii of the surfaces σ_r and σ_{r_0} taken to the limit $\epsilon \to 0$. The integral (2.50) can now be written as

$$I_1^{U_+} + I_2^{U_+} + I_{\sigma r}^{U_+} + I_{\sigma r_0}^{U_+} = 0,$$

(2.52)

where $I_1^{U_+}, I_2^{U_+}, \ldots$ represent the values of the integral (2.50) taken over the surfaces $\Gamma, \Sigma, \sigma_{r_0}, \text{and } \sigma_r$ respectively. It is assumed that these integrals exist, which will be shown to be the case. The contributions $I_1^{U_+}, I_2^{U_+}, \text{and } I_{\sigma r_0}^{U_+}$ to equation (2.52) will now be evaluated.

The limit $I_1^{U_+}$ is given by

$$I_1^{U_+} = \lim_{R \to \infty} \int_\Sigma (p(r_s, r_0) \frac{\partial G(r_s, r)}{\partial n(r_s)} - G(r_s, r) \frac{\partial p(r_s, r_0)}{\partial n(r_s)}) ds(r_s)$$

(2.53)

and may be written as

$$I_1^{U_+} = \lim_{R \to \infty} \int_\Sigma p(r_s, r_0) \left(\frac{\partial G(r_s, r)}{\partial_{rs}} - ik_1 G(r_s, r) \right)$$

\[- G(r_s, r) \left(\frac{\partial p(r_s, r_0)}{\partial_{rs}} - ik_1 p(r_s, r_0) \right) \] ds(r_s),

(2.54)

since $\partial G(r_s, r)/\partial n(r_s) = \partial G(r_s, r)/\partial_{rs}$ on Σ. This may now be evaluated by utilising the radiation conditions for G and p which state that, for $r_s \in U_+$, uniformly in r_s as $r_s := |r_s| \to \infty$,

$$\begin{align*}
\frac{\partial G(r_s, r)}{\partial_{rs}} - ik_1 G(r_s, r) &= o(r_s^{-1}), \\
G(r_s, r) &= O(r_s^{-1}),
\end{align*}$$

(2.55)

and

$$\begin{align*}
\frac{\partial p(r_s, r_0)}{\partial_{rs}} - ik_1 p(r_s, r_0) &= o(r_s^{-1}), \\
p(r_s, r_0) &= O(r_s^{-1}).
\end{align*}$$

(2.56)

These conditions imply that there exist constants C_{SG} and C_{SP} and functions $c_{SG}(r_s)$ and $c_{SP}(r_s)$ defined for $r_s > 0$ and such that $c_{SG}(r_s)$ and
\(c_{SP}(r_s) \to 0 \) as \(r_s \to \infty \) and

\[
\begin{align*}
 & rs |\frac{\partial G(r_s, r)}{\partial r_s} - i k_1 G(r_s, r)| \leq c_{SG}(r_s), \\
 & rs |G(r_s, r)| \leq C_{SG},
\end{align*}
\]

(2.57)

and

\[
\begin{align*}
 & rs |\frac{\partial p(r_s, r_0)}{\partial r_s} - i k_1 p(r_s, r_0)| \leq c_{SP}(r_s), \\
 & rs |p(r_s, r_0)| \leq C_{SP}.
\end{align*}
\]

(2.58)

Utilising these inequalities in equation (2.54) gives

\[
|I_2^{1U+}| \leq \lim_{R \to \infty} \int_{\Sigma} \frac{(C_{SP}c_{SG}(R) + C_{SG}c_{SP}(R))}{R^2} ds(r_s),
\]

\[
= \lim_{R \to \infty} \{2\pi(C_{SP}c_{SG}(R) + C_{SG}c_{SP}(R))\},
\]

\[
= 0. \quad (2.59)
\]

The limit \(I_{\sigma r_0}^{1U+} \) is given by

\[
I_{\sigma r_0}^{1U+} = \lim_{\epsilon \to 0} \int_{\sigma r_0} (p(r_s, r_0) \frac{\partial G(r_s, r)}{\partial n(r_s)} - G(r_s, r) \frac{\partial p(r_s, r_0)}{\partial n(r_s)}) ds(r_s). \quad (2.60)
\]

This may be evaluated by writing \(p(r_s, r_0) \) as the sum of the free-field Green's function,

\[
G_F(r_s, r_0) = -\frac{e^{ik_1 |r_s - r_0|}}{4\pi |r_s - r_0|}, \quad (2.61)
\]

plus a correction term, \(g_F(r_s, r_0) \), i.e.,

\[
p(r_s, r_0) = G_F(r_s, r_0) + g_F(r_s, r_0), \quad (2.62)
\]

where \(g_F(r_s, r_0) \), considered as a function of \(r_s \), is continuous and has continuous partial derivatives of all orders in \(U_+ \), so that, for small enough \(\epsilon \), and for all \(r_s \) on \(\sigma r_0 \),

\[
|g_F(r_s, r_0)| \leq C_F, \quad (2.63)
\]

and

\[
|\frac{\partial g_F(r_s, r_0)}{\partial n(r_s)}| \leq C_F, \quad (2.64)
\]

where \(C_F \) is a constant. Also, for \(r_s \) on \(\sigma r_0 \),

\[
|G_F(r_s, r_0)| = \frac{1}{4\pi \epsilon}, \quad (2.65)
\]

20
and

\[\frac{\partial G_F(r_s, r_0)}{\partial n(r_s)} = -\frac{1}{4\pi \varepsilon^2} + g^*(r_s, r_0), \quad (2.66) \]

where

\[|g^*(r_s, r_0)| \leq \frac{C^*}{\varepsilon}, \quad (2.67) \]

\(C^* \) being a constant. Further, \(G(r_s, r) \) and \(\nabla r_s G(r_s, r) \) are continuous functions of \(r_s \) in a neighbourhood of \(r_0 \). Thus, there exists a constant \(C_G \) such that, for all small enough \(\varepsilon \), and all \(r_s \) on \(\sigma r_0 \),

\[|G(r_s, r)| \leq C_G, \quad (2.68) \]

and,

\[\left| \frac{\partial G(r_s, r)}{\partial n(r_s)} \right| \leq |\nabla r_s G(r_s, r)| \leq C_G. \quad (2.69) \]

Substituting equation (2.62) into (2.60) gives

\[J^+_U = \lim_{\varepsilon \to 0}(I_1 + I_2 + I_3 + I_4), \quad (2.70) \]

where

\[I_1 = \int_{\sigma r_0} G_F(r_s, r_0) \frac{\partial G(r_s, r)}{\partial n(r_s)} ds(r_s), \quad (2.71) \]

\[I_2 = \int_{\sigma r_0} g_F(r_s, r_0) \frac{\partial G(r_s, r)}{\partial n(r_s)} ds(r_s), \quad (2.72) \]

\[I_3 = -\int_{\sigma r_0} G(r_s, r) \frac{\partial G_F(r_s, r_0)}{\partial n(r_s)} ds(r_s), \quad (2.73) \]

and

\[I_4 = -\int_{\sigma r_0} G(r_s, r) \frac{\partial g_F(r_s, r_0)}{\partial n(r_s)} ds(r_s). \quad (2.74) \]

Now,

\[|I_1| \leq \int_{\sigma r_0} |G_F(r_s, r_0)| \left| \frac{\partial G(r_s, r)}{\partial n(r_s)} \right| ds(r_s) \]

\[\leq C_G \varepsilon, \quad (2.75) \]

from inequalities (2.65) and (2.69),

\[|I_2| \leq \int_{\sigma r_0} |g_F(r_s, r_0)| \left| \frac{\partial G(r_s, r)}{\partial n(r_s)} \right| ds(r_s), \]

\[\leq C_F C_G 4\pi \varepsilon^2, \quad (2.76) \]
from inequalities (2.63) and (2.69), and

\[|I_4| = \int_{\sigma_{r_0}} |G(r_s, r)| \left| \frac{\partial g_F(r_s, r_0)}{\partial n(r_s)} \right| ds(r_s) \leq C_G C_F 4\pi \varepsilon^2, \] \hspace{1cm} (2.77)

from inequalities (2.64) and (2.68). Thus, \(|I_1|, |I_2|, \text{ and } |I_4| \to 0 \text{ as } \varepsilon \to 0.\)

Finally, \(I_3\) can be expanded to give,

\[I_3 = \int_{\sigma_{r_0}} G(r_s, r)/4\pi \varepsilon^2 ds(r_s) \]

\[- \int_{\sigma_{r_0}} G(r_s, r) g^*(r_s, r_0) ds(r_s), \] \hspace{1cm} (2.78)

using equation (2.66). The magnitude of the second integral of equation (2.78) is bounded above by

\[\int_{\sigma_{r_0}} |G(r_s, r)||g^*(r_s, r_0)| ds(r_s) \leq 4\pi C_G C^* \varepsilon \] \hspace{1cm} (2.79)

from inequalities (2.67) and (2.68). Now,

\[\lim_{\varepsilon \to 0} \int_{\sigma_{r_0}} G(r_s, r)/4\pi \varepsilon^2 ds(r_s) = G(r_0, r). \] \hspace{1cm} (2.80)

Thus, the limit \(I^U_{\sigma r_0}\) is given by

\[I^U_{\sigma r_0} = G(r_0, r). \] \hspace{1cm} (2.81)

The limit \(I^U_{\sigma r}\) is given by

\[I^U_{\sigma r} = \lim_{\varepsilon \to 0} \int_{\sigma_{r_0}} (p(r_s, r) \frac{\partial G(r_s, r)}{\partial n(r_s)} - G(r_s, r) \frac{\partial p(r_s, r_0)}{\partial n(r_s)}) ds(r_s), \] \hspace{1cm} (2.82)

and is evaluated in the same manner as \(I^U_{\sigma r_0}\). \(G(r_s, r)\) may be written as the sum of the free-field Green's function

\[G_F(r_s, r) = \frac{-e^{ik_1|r_s-r|}}{4\pi |r_s-r|}, \] \hspace{1cm} (2.83)

plus a correction term, \(g_F(r_s, r),\) i.e.

\[G(r_s, r) = G_F(r_s, r) + g_F(r_s, r), \] \hspace{1cm} (2.84)
where \(g_F(r_s, r) \), considered as a function of \(r_s \), is continuous and has continuous partial derivatives of all orders in \(U_+ \). Also, \(p(r_s, r_0) \) and \(\nabla_r p(r_s, r_0) \) are continuous functions of \(r_s \) in a neighbourhood of \(r \). Thus, it can be shown that

\[
I_{\sigma_T}^{1U_+} = -p(r_0, r). \tag{2.85}
\]

By applying equations (2.59), (2.81), (2.85), equation (2.52) reduces to

\[
p(r_0, r) = G(r_0, r) + \int_\Gamma p_+(r_s, r_0) \frac{\partial G_+(r_s, r)}{\partial n(r_s)}
- G_+(r_s, r) \frac{\partial p_+(r_s, r_0)}{\partial n(r_s)} ds(r_s) \tag{2.86}
\]

for \(r_0 \in U_+ \) and \(r \in U_+ \).

For \(r \in \Gamma \) the region \(V_1 \) is again bounded by the hemispherical surface \(\Sigma \), of radius \(R \), the plane boundary \(\Gamma \), the surface of the sphere \(\sigma_{r_0} \), of radius \(\varepsilon \) and, in this case, the hemispherical surface \(\sigma_r \) of radius \(\varepsilon \), as \(r \in \Gamma \). Again, as for the case with \(r \in U_+ \), integral (2.50) is evaluated with the radius of the surface \(\Sigma \) taken to the limit \(R \to \infty \) and the radii of the surfaces \(\sigma_r \) and \(\sigma_{r_0} \) taken to the limit \(\varepsilon \to 0 \). Equation (2.50) can now be written as

\[
I_{\Sigma}^{1\Gamma} + I_{\sigma_{r_0}}^{1\Gamma} + I_{\sigma_T}^{1\Gamma} = 0, \tag{2.87}
\]

using similar notation to previously. The contributions of \(I_{\Sigma}^{1\Gamma} \) and \(I_{\sigma_{r_0}}^{1\Gamma} \) to equation (2.87) will be identical to those of \(I_{\sigma_T}^{1U_+} \) and \(I_{\sigma_T}^{1U_+} \) previously. However, it is found that the contribution \(I_{\sigma_T}^{1\Gamma} \) is

\[
I_{\sigma_T}^{1\Gamma} = -\frac{1}{2} p(r_0, r), \tag{2.88}
\]

and equation (2.87) reduces to

\[
\frac{1}{2} p(r_0, r) = G(r_0, r) + \int_\Gamma p_+(r_s, r_0) \frac{\partial G_+(r_s, r)}{\partial n(r_s)}
- G_+(r_s, r) \frac{\partial p_+(r_s, r_0)}{\partial n(r_s)} ds(r_s) \tag{2.89}
\]

for \(r_0 \in U_+ \) and \(r \in \Gamma \).

For \(r \in U_- \) the region \(V_1 \) is again bounded by the hemispherical surface \(\Sigma \), of radius \(R \), the plane boundary \(\Gamma \), and the surface of the sphere \(\sigma_{r_0} \) of
radius ε. As $r \in U_-$, a surface σ_T is absent. Again, as for the cases with $r \in U_+$ and $r \in \Gamma$, equation (2.50) is evaluated with the radius of the surface Σ taken to the limit $R \to \infty$, and the radius of the surface σ_{T0} taken to the limit $\varepsilon \to 0$. Equation (2.50) can now be written as

$$I_{\Sigma}^{1U_-} + I_{\Sigma}^{1U_-} + I_{#0}^{1U_-} = 0,$$ \hspace{1cm} (2.90)

with similar notation to previously. The contributions of $I_{\Sigma}^{1U_-}$ and $I_{#0}^{1U_-}$ to equation (2.90) will be identical to those of $I_{\Sigma}^{1U_+}$ and $I_{#0}^{1U_+}$, and equation (2.90) reduces to

$$0 = G(r_0, r) + \int_{\Gamma} p_+(r_s, r_0) \frac{\partial G_+(r_s, r)}{\partial n(r_s)} - G_+(r_s, r) \frac{\partial p_+(r_s, r_0)}{\partial n(r_s)} ds(r_s), \hspace{1cm} (2.91)$$

for $r_0 \in U_+$ and $r \in U_-$. The results of evaluating equation (2.50) for the three different cases, $r \in U_+$, $r \in \Gamma$, and $r \in U_-$, i.e., equations (2.86), (2.89) and (2.91) may now be combined to give the following integral equation for $r_0 \in U_+$ and $r \in \mathbb{R}^3$,

$$\kappa_1(r)p(r, r_0) = G(r_0, r) - \int_{\Gamma} p_+(r_s, r_0) \frac{\partial G_+(r_s, r)}{\partial z_s} - G_+(r_s, r) \frac{\partial p_+(r_s, r_0)}{\partial z_s} ds(r_s), \hspace{1cm} (2.92)$$

where $\kappa_1(r) := 1$ for $r \in U_+$, $1/2$ for $r \in \Gamma$, 0 for $r \in U_-$. In the above equations (2.86), (2.89), (2.91) and (2.92), the subscript + implies that p and G are calculated as limiting values as r_s approaches Γ from the U_+ side of the boundary.

2.2.1.1.2 Integral over ∂V_2

Equation (2.51) is considered for the three different cases, $r \in U_-$, $r \in \Gamma \cup \partial S$, and $r \in U_+$. For $r \in U_-$ the region V_2 is bounded by the hemispherical surface Σ of radius R, the plane boundary Γ, the surface of the sphere σ_T of radius ε and the surface of the rigid inhomogeneity, ∂S. As $r_0 \in U_+$, a surface σ_{T0} is absent. The integral (2.51) is evaluated with the radius of the surface Σ taken to the limit $R \to \infty$, and the radius of the surface σ_T taken to the limit $\varepsilon \to 0$. Equation (2.51) can now be written as

$$I_{\Sigma}^{2U_-} + I_{\Sigma}^{2U_-} + I_{#0}^{2U_-} + I_{\partial S}^{2U_-} = 0,$$ \hspace{1cm} (2.93)
with the similar notation for I as previously and I_{SG}^{2U-} represents the integral in (2.51) over the surface ∂S. The contribution I_{SG}^{2U-} to equation (2.93) will be identical to that of I_{3}^{1U+} obtained previously. The evaluation of I_{SG}^{2U-} follows that of I_{3}^{1U+} except, here, the Green's function $G(r, r)$ can be written as

$$G(r, r) = \alpha G_{F}(r, r) + g_{F}(r, r), \quad (2.94)$$

where $G_{F}(r, r)$ is the free-field Green's function given by equation (2.83), and $g_{F}(r, r)$ is a correction term, which considered as a function of r is continuous and has continuous partial derivatives of all orders in U_\rightarrow. Thus, it is found that

$$I_{SG}^{2U-} = -\alpha p(r_0, r). \quad (2.95)$$

The limit I_{SG}^{2U-} is given by

$$I_{SG}^{2U-} = \int_{\partial S} \left(p(r, r_0) \frac{\partial G(r, r)}{\partial n(r)} - G(r, r) \frac{\partial p(r, r_0)}{\partial n(r)} \right) ds(r),$$

$$= \int_{\partial S} p(r, r_0) \frac{\partial G(r, r)}{\partial n(r)} ds(r), \quad (2.96)$$

from the boundary condition, equation (2.36), on ∂S.

So, equation (2.93) reduces to

$$\alpha p(r_0, r) = \int_{\Gamma} p-(r, r_0) \frac{\partial G-(r, r)}{\partial n(r)} - G-(r, r) \frac{\partial p-(r, r_0)}{\partial n(r)} ds(r)$$

$$+ \int_{\partial S} p(r, r_0) \frac{\partial G(r, r)}{\partial n(r)} ds(r), \quad (2.97)$$

for $r_0 \in U_\rightarrow$ and $r \in U_\leftarrow$.

For $r \in \Gamma \cup \partial S$, the region V_2 is bounded by the hemispherical surface Σ of radius R, the plane boundary Γ, the surface of the rigid inhomogeneity ∂S and the hemispherical surface σ_r of radius ϵ. The integral (2.51) is evaluated with the radius of the surface Σ taken to the limit $R \rightarrow \infty$, and the radius of the surface σ_r taken to the limit $\epsilon \rightarrow 0$. Equation (2.51) can now be written as

$$I^2\Gamma + I^2\Sigma + I_{SG}^{2\Gamma} + I_{SG}^{2\Sigma} = 0, \quad (2.98)$$

with the similar notation for I as used previously. The only contribution that will be affected by imposing $r \in \Gamma \cup \partial S$, is $I_{SG}^{2\Gamma}$, for which the integration
surface is a hemisphere, and it is found that

$$I_{T}^{2(r)} = \frac{1}{2} \alpha p(r_0, r). \quad (2.99)$$

So, equation (2.98) reduces to

$$\frac{1}{2} \alpha p(r_0, r) = \int_{T} p_{-}(r_s, r_0) \frac{\partial G_{-}(r_s, r)}{\partial n(r_s)} - G_{-}(r_s, r) \frac{\partial p_{-}(r_s, r_0)}{\partial n(r_s)} ds(r_s)$$
$$+ \int_{\partial S} p(r_s, r_0) \frac{\partial G(r_s, r)}{\partial n(r_s)} ds(r_s), \quad (2.100)$$

for \(r_0 \in U_+ \) and \(r \in \Gamma \cup \partial S \).

For \(r \in U_+ \) the region \(V_+ \) is bounded by the surface \(\Sigma \), of radius \(R \), the plane boundary \(\Gamma \) and the surface of the rigid inhomogeneity \(S \). As \(r \in U_+ \), a surface \(\sigma_r \) is absent. The integral (2.51) is evaluated with the radius of the surface \(\Sigma \) taken to the limit \(R \to \infty \). Equation (2.51) can now be written as

$$I_{T}^{2(U_+)} + I_{T}^{2(U_+)} + I_{\partial S}^{2(U_+)} = 0, \quad (2.101)$$

with the similar notation for \(I \) as used previously. The contributions \(I_{\Sigma}^{2(U_+)} \) and \(I_{\partial S}^{2(U_+)} \) to equation (2.101) will be identical to those of \(I_{\Sigma}^{2(U_-)} \), \(I_{\partial S}^{2(U_-)} \). So equation (2.101) reduces to

$$0 = \int_{T} p_{-}(r_s, r_0) \frac{\partial G_{-}(r_s, r)}{\partial n(r_s)} - G_{-}(r_s, r) \frac{\partial p_{-}(r_s, r_0)}{\partial n(r_s)} ds(r_s)$$
$$+ \int_{\partial S} p(r_s, r_0) \frac{\partial G(r_s, r)}{\partial n(r_s)} ds(r_s), \quad (2.102)$$

for \(r_0 \in U_+ \) and \(r \in \Gamma \cup U_+ \).

The results of evaluating equation (2.51), i.e. equations (2.97), (2.100) and (2.102) for the three different cases \(r \in U_- \), \(r \in \Gamma \cup \partial S \) and \(r \in U_+ \), may be combined to give the following integral equation for \(\partial V_2 \), for \(r_0 \in U_+ \) and \(r \in \mathbb{R}^3 \),

$$\alpha \kappa_2(r)p(r, r_0) = \int_{T} (p_{-}(r_s, r_0) \frac{\partial G_{-}(r_s, r)}{\partial z_s} - G_{-}(r_s, r) \frac{\partial p_{-}(r_s, r_0)}{\partial z_s}) ds(r_s)$$
$$+ \int_{\partial S} (p(r_s, r_0) \frac{\partial G(r_s, r)}{\partial n(r_s)}) ds(r_s), \quad (2.103)$$

where \(\kappa_2(r) := 1 \) for \(r \in U_- \), \(1/2 \) for \(r \in \Gamma \cup \partial S \), \(0 \) for \(r \in U_+ \). In the above equations (2.97), (2.100), (2.102) and (2.103), the subscript \(- \) implies that
p and G are calculated as limiting values as r approaches Γ from the U_- side of the boundary.

2.2.1.1.3 The final integral equation

Equations (2.92) and (2.103) can now be combined to give a single integral equation. Multiplying equation (2.92) by α, and adding equation (2.103) to this, and making use of the conditions on Γ satisfied by p and G (equations (2.37), (2.38), (2.42) and (2.43)), gives, for $r_0 \in U_+$ and $r \in \mathbb{R}^3$,

$$
\alpha \kappa(r)p(r, r_0) = \alpha G(r_0, r) + \int_{\partial S} p(r_s, r_0) \frac{\partial G(r_s, r)}{\partial n(r_s)} ds(r_s) \quad (2.104)
$$

where $\kappa(r) := 1$ for $r \in \mathbb{R}_+^3$, $1/2$ for $r \in \partial S$. This integral equation is completely equivalent to the original boundary value problem, i.e. the integral equation has exactly one solution, and the solution satisfies the original boundary value problem. This equation has been presented previously in [86] though without such a thorough derivation.

2.2.1.1.4 Reciprocity of the Green's function

The arguments to derive equation (2.104) via equations (2.92) and (2.103), can be used to show that G satisfies reciprocity, i.e. $G(r, r_0) = G(r_0, r)$. Equations (2.50) and (2.51) hold good with $p(r_s, r_0)$ replaced by $G(r_s, r_0)$. Thus, and by letting the surface of the inhomogeneity S become negligibly small,

$$
\int_{V_i} (G(r_s, r_0) \frac{\partial G(r_s, r)}{\partial n(r_s)} - G(r_s, r) \frac{\partial p(r_s, r_0)}{\partial n(r_s)}) ds(r_s) = 0, \quad (2.105)
$$

for $i = 1, 2$ and $r, r_0 \in \mathbb{R}_+^3 \setminus \Gamma$. V_2 is now defined to be that part of $\mathbb{R}_+^3 \setminus (U_+ \cup \Gamma)$ contained within a large sphere, excluding small spheres about r and r_0. Following the procedure which gave equation (2.92) gives

$$
\epsilon_1(r) G(r, r_0) = \epsilon_1(r) G(r_0, r) - \int_\Gamma (G_+(r_s, r_0) \frac{\partial G_+(r_s, r)}{\partial z_s} - G_+(r_s, r) \frac{\partial G_+(r_s, r_0)}{\partial z_s}) ds(r_s), \quad (2.106)
$$

for $r, r_0 \in \mathbb{R}_+^3 \setminus \Gamma$, and $\epsilon_1(r) = 1$ for $r \in U_+$, 0 for $r \in \mathbb{R}_+^3 \setminus U_+$. Similarly, following the procedure which gave equation (2.103) gives

$$
\alpha \epsilon_2(r) G(r, r_0) = \alpha \epsilon_2(r) G(r_0, r) + \int_\Gamma (G_-(r_s, r_0) \frac{\partial G_-(r_s, r)}{\partial z_s}) \quad (2.107)
$$

for $r, r_0 \in \mathbb{R}_+^3 \setminus \Gamma$, and $\epsilon_2(r) = 1$ for $r \in U_+$, 0 for $r \in \mathbb{R}_+^3 \setminus U_+$. Similarly, following the procedure which gave equation (2.103) gives

$$
\alpha \epsilon_2(r) G(r, r_0) = \alpha \epsilon_2(r) G(r_0, r) + \int_\Gamma (G_-(r_s, r_0) \frac{\partial G_-(r_s, r)}{\partial z_s}) \quad (2.107)
$$

for $r, r_0 \in \mathbb{R}_+^3 \setminus \Gamma$, and $\epsilon_2(r) = 1$ for $r \in U_+$, 0 for $r \in \mathbb{R}_+^3 \setminus U_+$. Similarly, following the procedure which gave equation (2.103) gives

$$
\alpha \epsilon_2(r) G(r, r_0) = \alpha \epsilon_2(r) G(r_0, r) + \int_\Gamma (G_-(r_s, r_0) \frac{\partial G_-(r_s, r)}{\partial z_s}) \quad (2.107)
$$

for $r, r_0 \in \mathbb{R}_+^3 \setminus \Gamma$, and $\epsilon_2(r) = 1$ for $r \in U_+$, 0 for $r \in \mathbb{R}_+^3 \setminus U_+$. Similarly, following the procedure which gave equation (2.103) gives

$$
\alpha \epsilon_2(r) G(r, r_0) = \alpha \epsilon_2(r) G(r_0, r) + \int_\Gamma (G_-(r_s, r_0) \frac{\partial G_-(r_s, r)}{\partial z_s}) \quad (2.107)
$$
for \(r, r_0 \in \mathbb{R}^3 \setminus \Gamma \), where \(\epsilon_2(r) = 1 \) for \(r \in U_+ \), 0 for \(r \in \mathbb{R}^3 \setminus U_+ \). Multiplying equation (2.106) by \(\alpha \) and adding to equation (2.107), and making use of the boundary conditions on \(\Gamma \), equations (2.42) and (2.43), gives

\[
\alpha G(r, r_0) = \alpha G(r_0, r), \quad (2.108)
\]
a statement of reciprocity.

2.2.1.2 Second integral equation reformulation

The second integral equation formulation of the boundary value problem has been proposed by Chandler-Wilde [87], and will be presented here for completeness. This makes use of the Green's functions, \(G_1 \) and \(G_2 \), given by

\[
G_j(r, r_0) = -\frac{e^{ik_j|r - r_0|}}{4\pi |r - r_0|}, \quad (2.109)
\]
\(r, r_0 \in \mathbb{R}^3 \), \(j = 1, 2 \). These functions satisfy the inhomogeneous Helmholtz equation

\[
(\nabla^2 + k_j^2)G_j(r, r_0) = \delta(r - r_0) \quad (2.110)
\]
for \(j = 1, 2 \), and also the radiation conditions, for \(r \in \mathbb{R}^3 \), uniformly in \(r \) as \(r := |r| \to \infty \),

\[
\begin{align*}
\frac{\partial G_j(r, r_0)}{\partial r} - ik_j G_j(r, r_0) & = o(r^{-1}), \\
G_j(r, r_0) & = O(r^{-1}).
\end{align*} \quad (2.111)
\]
The same procedure as in the first formulation is now followed: i.e., consider regions \(V_1 \) and \(V_2 \), \(V_1/V_2 \) consisting of that part of \(U_+/U_- \) contained within a large sphere of radius \(R \), centred on the origin, but excluding small spheres of radius \(\epsilon \), centred on \(r \) and \(r_0 \). By applying Green's second theorem to regions \(V_1 \) and \(V_2 \) and using the Helmholtz equations satisfied by \(p \) and \(G_i \), equations similar to equations (2.50) and (2.51) are obtained,

\[
\int_{\partial V_1} (p(r_s, r_0) \frac{\partial G_1(r_s, r)}{\partial n(r_s)}) - G_1(r_s, r) \frac{\partial p(r_s, r_0)}{\partial n(r_s)}) ds(r_s) = 0, \quad (2.112)
\]
and

\[\int_{\partial V_2} (p(r_0, r) \frac{\partial G_2(r_0, r)}{\partial n(r_0)} - G_2(r_0, r) \frac{\partial p(r_0, r)}{\partial n(r_0)}) ds(r_0) = 0, \]

(2.113)

for \(r_0 \in U_+ \) and \(r \in \mathbb{R}^3 \). By letting the radius of the small spheres, \(\epsilon \to 0 \), and the radius of the large sphere, \(R \to \infty \), and using the radiation conditions satisfied by \(p \) and \(G_i \), in a similar manner to the first formulation, the following pair of equations is obtained,

\[\kappa_1(r)p(r, r_0) = G_1(r_0, r) - \int_{\Gamma} p_+(r_0, r_0) \frac{\partial G_1(r_0, r)}{\partial n(r_0)} + G_1(r_0, r) \frac{\partial p_+(r_0, r)}{\partial n(r_0)} ds(r_0), \]

(2.114)

and

\[\kappa_2(r)p(r, r_0) = \int_{\Gamma} p_-(r_0, r_0) \frac{\partial G_2(r_0, r)}{\partial n(r_0)} - G_2(r_0, r) \frac{\partial p_-(r_0, r)}{\partial n(r_0)} ds(r_0) + \int_{\partial S} p(r_0, r_0) \frac{\partial G_2(r_0, r)}{\partial n(r_0)} ds(r_0), \]

(2.115)

for \(r_0 \in U_+ \) and \(r \in \mathbb{R}^3 \), where the normal \(n \) on \(\partial S \) is directed into \(S \), \(\kappa_1 \) and \(\kappa_2 \) being defined as previously by \(\kappa_1(r) := 1 \) for \(r \in U_+ \), 1/2 for \(r \in \Gamma \), 0 for \(r \in U_- \) and \(\kappa_2(r) := 1 \) for \(r \in U_-, 1/2 \) for \(r \in \Gamma \cup \partial S \) and 0 for \(r \in U_+ \). A further equation is obtained by adding equations (2.114) and (2.115) and using the boundary conditions (2.37) and (2.38) on \(\Gamma \), giving

\[\kappa(r)p(r, r_0) = G_1(r_0, r_0) + \int_{\Gamma} p_+(r_0, r_0) \left(\frac{\partial G_2(r_0, r)}{\partial z_0} - \frac{\partial G_1(r_0, r)}{\partial n(r_0)} \right) + \frac{\partial p_+(r_0, r)}{\partial n(r_0)} (G_1(r_0, r) - \alpha G_2(r_0, r)) ds(r_0) \]

\[+ \int_{\partial S} p(r_0, r_0) \frac{\partial G_2(r_0, r)}{\partial n(r_0)} ds(r_0), \]

(2.116)

for \(r_0 \in U_+ \), \(r \in \mathbb{R}^3 \setminus S \). \(\kappa(r) \) has been defined previously as \(\kappa(r) := 1 \) for \(r \in \mathbb{R}^3 \setminus S \), 1/2 for \(r \in \partial S \). Note that the derivatives \(\partial G_i/\partial z_i, i = 1, 2 \) in equation (2.116) vanish when \(r \in \Gamma \). Taking the derivative with respect to \(z \) of equation (2.116), gives

\[\kappa(r) \frac{\partial p(r, r_0)}{\partial z} = \frac{\partial G_1(r_0, r)}{\partial z} \]
for $r_0 \in U_+, \ r \in \mathbb{R}^3 \setminus (\overline{5} \cup \Gamma)$. Letting $z \to 0+$ in equation (2.117), gives,

\[
\frac{1}{2}(1 + \alpha) \frac{\partial p_+(r, r_0)}{\partial z} = \frac{\partial G_1(r_0, r)}{\partial z} + \int_{\Gamma} p_+(r, r_0) \frac{\partial}{\partial z} \left(\frac{\partial G_2(r, r)}{\partial z} - \frac{\partial G_1(r, r)}{\partial z} \right) ds(r) + \int_{\partial S} p(r, r_0) \frac{\partial^2 G_2(r, r)}{\partial z \partial n(r)} ds(r)
\]

(2.118)

for $r \in \Gamma, r_0 \in U_+$. A system of three equations has been obtained, in which the unknown functions are p and $\partial p/\partial z$ on Γ, and p on ∂S. These equations are (2.116) restricted to Γ, and (2.118) and (2.116) restricted to ∂S. As for the first integral equation formulation, they are completely equivalent to the original boundary value problem, i.e. the combined integral equations have exactly one solution, and the solution satisfies the original boundary value problem.

2.2.1.3 Comparison of formulations

It is apparent that the solution of the system of three integral equations from the second formulation has several disadvantages in comparison to the single integral equation of the first. Firstly, having a system of coupled equations to solve in contrast to the single equation of the first formulation will tend to a more computationally expensive solution. Secondly, in all of the three coupled integral equations, there is an integral having an infinite region of integration, Γ, making, again, computation expensive. Nevertheless, the Green's functions involved in the second formulation are straightforward conceptually, and easy to calculate. The Green's functions for the first formulation are less straightforward, since they involve the plane boundary, Γ. But, under certain circumstances (e.g. conditions which are nearly locally
reacting), they may be simply approximated. In view of this and the disad­
advantages associated with the second formulation, the second formulation
shall be discarded in favour of the first formulation, in the present study.

2.2.2 The second approach

The basic concept behind this second approach is that the embedded in­
homogeneity is assumed to induce a variation in the surface admittance
directly above it. This implies that knowledge of any near-surface structur­
ing is not required, once the variation in surface impedance the near-surface
structuring induces has been calculated. This approach therefore gives more
flexibility to the types of surface and near-surface inhomogeneities consid­
ered. Note however that this approach, as formulated, applies only to locally
reacting surfaces whereas the first formulation does not have this restriction.

The geometry for this second approach is shown in figure 2.2. An irreg­
ular patch, S, of normalised surface admittance, β, is embedded in a plane
of homogeneous admittance, characterised by a constant normalised surface
admittance, β_c. As for the first case, the upper half-space is again denoted
U_+, contains air, and is assumed to be characterised by real characteristic
impedance and wavenumber, Z_1 and k_1, respectively; the boundary between
the upper and lower half spaces is denoted by $\Gamma = \{(x,y,z) \in \mathbb{R}^3|z = 0\}$. It is assumed that $|n^2| \gg 1$ so that the locally reacting assumption is justi­
fied. The complex acoustic pressure is assumed to satisfy the inhomogeneous
Helmholtz equation,

\[(\nabla^2 + k_1^2)p(r, r_0) = \delta(r - r_0), \quad (2.119) \]

for \(r, r_0 \in U_+ \). This equation is to be satisfied subject to the impedance boundary condition, equation (2.13),

\[\frac{\partial p(r, r_0)}{\partial z} + ik_1\beta(r)p(r, r_0) = 0, \quad (2.120) \]

for \(r \in \Gamma \), where \(\beta(r) = \beta_c \) for \(r \in \Gamma \setminus \mathcal{S} \), and the radiation conditions: for \(r \in U_+ \), uniformly in \(r \) as \(r := |r| \to \infty \),

\[\left\{ \begin{array}{l}
\frac{\partial p(r, r_0)}{\partial r} - ik_1p(r, r_0) = o(r^{-1}), \\
p(r, r_0) = O(r^{-1}).
\end{array} \right. \quad (2.121) \]

This boundary value problem is now reformulated in terms of an integral equation. As for the first approach, the formulation of an integral equation from the boundary value problem via Green's second theorem involves letting the Green's function, \(G(r, r_0) \), satisfy an appropriate boundary value problem: for each \(r_0, r \in U_+ \), an inhomogeneous Helmholtz equation,

\[(\nabla^2 + k_1^2)G(r, r_0) = \delta(r - r_0), \quad (2.122) \]

the impedance boundary condition,

\[\frac{\partial G(r, r_0)}{\partial z} + ik_1\beta_cG(r, r_0) = 0; \quad (2.123) \]

for \(r_0 \in U_+, r \in \Gamma \); and the radiation conditions

\[\left\{ \begin{array}{l}
\frac{\partial G(r, r_0)}{\partial r} - ik_1G(r, r_0) = o(r^{-1}), \\
G(r, r_0) = O(r^{-1}).
\end{array} \right. \quad (2.124) \]

for \(r \in U_+ \), uniformly in \(r \) as \(r := |r| \to \infty \). Now consider the region \(V_1 \) consisting of that part of \(U_+ \) contained within a large hemisphere of surface \(\Sigma \) and radius \(R \) centred on the origin, and the boundary \(\Gamma \), but excluding small spheres \(\sigma_r \) and \(\sigma_{r_0} \) of radii \(\epsilon \), centred on \(r \) and \(r_0 \). Upon applying Green's second theorem to the region \(V_1 \), and noting that \(p(r, r_0) \) and
$G(r_s, r)$ satisfy the Helmholtz equation, the following equation is obtained for $r, r_0 \in U_+$,

$$p(r, r_0) = G(r_0, r) + \int_{\partial S} (p(r_s, r_0) \frac{\partial G(r_s, r)}{\partial n(r_s)}) - G(r_s, r) \frac{\partial p(r_s, r_0)}{\partial n(r_s)}) ds(r_s).$$

(2.125)

Substituting the impedance boundary conditions (2.120) and (2.123) into equation (2.125) gives, for $r, r_0 \in U_+$,

$$p(r, r_0) = G(r_0, r) - i k \int_S p(r_s, r_0) G(r_s, r) (\beta(r_s) - \beta_c) ds(r_s).$$

(2.126)

This integral equation is completely equivalent to the original boundary value problem: i.e. the integral equation has exactly one solution, and the solution satisfies the original boundary value problem [88]. This integral equation is, of course, not new, and is stated in [84] but without a rigorous derivation.

2.3 Summary

This chapter has been concerned with describing mathematically the influence of near-surface inhomogeneities on the reflection of air-borne acoustic fields at a rigid porous ground surface, and two approaches to the problem have been considered. In both approaches, the complex acoustic pressure at a point in the upper half-space was determined when the plane boundary was insonified by a monofrequency point source at a point also in the upper half-space. In the first approach, the transmitted acoustic fields that become incident on the inhomogeneity are scattered, and the boundary value problem could be stated through the various boundary conditions on the inhomogeneity, the plane boundary and in the upper and lower media. The surface of the inhomogeneity was assumed smooth and rigid. Two integral equation reformulations of this boundary value problem were considered, but the second was discarded in favour of the first for the reasons mentioned in section 2.2.1.3.

In the second approach, any near-surface inhomogeneities were assumed to induce a surface impedance variation at the plane boundary above the
inhomogeneity. With the condition of local reaction at the plane boundary, the boundary value problem could be stated through the boundary conditions at the plane boundary and in the upper medium. The reformulation of this boundary value problem in terms of an integral equation was straightforward.

It has been seen in these two approaches that Green's functions are required for various source and receiver configurations, and these are discussed in the next chapter.
Chapter 3.

The Green’s functions

It was seen in the previous chapter that Green’s functions and their derivatives for sound propagation in the presence of two media for various source and receiver configurations are required. It is the purpose of this chapter to derive expressions for these, and the chapter begins with a formulation of the Green’s functions in terms of a boundary value problem with subsequent reformulation as integral representations. Although this is quite standard material, it is instructive in that it explains the basis for the various starting points adopted by many of the authors. Irrespective of their manner of formulation, it turns out that the integrals cannot be expressed in terms of known functions, and approximate methods of evaluation have to be employed. In the following two sections approximate expressions for the reflected field and the field transmitted into the porous medium respectively are then derived. A discussion of how ground acoustic characteristics are modelled then follows, with the chapter being concluded by a brief summary.

3.1 Formulation of the Green’s functions

Let U_+ be the upper half-space, characterised by real impedance and wave number, Z_1, k_1, respectively. Let $U_- := \mathbb{R}^3 \setminus U_+$ denote the porous medium characterised by complex impedance and wavenumber, Z_2, k_2 respectively, and $\Gamma := \{(x, y, z) \in \mathbb{R}^3 | z = 0\}$, the boundary between the two half-spaces. It is intended to determine the value of the complex acoustic pressure,
\(G(\mathbf{r}, \mathbf{r}_0) \) at the point \(\mathbf{r} \in \mathbb{R}^3 \), given a monofrequency point source at \(\mathbf{r}_0 \in \mathbb{R}^3 \). The complex acoustic pressure is assumed to satisfy the following boundary value problem:

an inhomogeneous Helmholtz equation for \(\mathbf{r} \in U_+ \),

\[
(\nabla^2 + k_1^2)G(\mathbf{r}, \mathbf{r}_0) = \delta(\mathbf{r} - \mathbf{r}_0),
\]

(3.1)

an inhomogeneous Helmholtz equation for \(\mathbf{r} \in U_- \),

\[
(\nabla^2 + k_2^2)G(\mathbf{r}, \mathbf{r}_0) = \alpha \delta(\mathbf{r} - \mathbf{r}_0),
\]

(3.2)

where \(\alpha = (Z_2 k_2)/(Z_1 k_1) \), and the boundary conditions of continuity of complex acoustic pressure for \(\mathbf{r} \in \Gamma \),

\[
G_+(\mathbf{r}, \mathbf{r}_0) = G_-(\mathbf{r}, \mathbf{r}_0), \quad (3.3)
\]

continuity of normal velocity for \(\mathbf{r} \in \Gamma \),

\[
\frac{\partial G_+(\mathbf{r}, \mathbf{r}_0)}{\partial z} = \frac{\partial G_-(\mathbf{r}, \mathbf{r}_0)}{\partial z}, \quad (3.4)
\]

and finally, the Sommerfeld radiation conditions, that, for \(\mathbf{r} \in U_+ \), uniformly in \(\mathbf{r} \) as \(r := |\mathbf{r}| \to \infty \),

\[
\begin{align*}
\frac{\partial G(\mathbf{r}, \mathbf{r}_0)}{\partial r} - ik_1 G(\mathbf{r}, \mathbf{r}_0) &= \mathcal{O}(r^{-1}), \\
G(\mathbf{r}, \mathbf{r}_0) &= \mathcal{O}(r^{-1}),
\end{align*}
\]

(3.5)

and for \(\mathbf{r} \in U_- \), uniformly in \(\mathbf{r} \) as \(r := |\mathbf{r}| \to \infty \),

\[
\begin{align*}
\frac{\partial G(\mathbf{r}, \mathbf{r}_0)}{\partial r} - ik_2 G(\mathbf{r}, \mathbf{r}_0) &= \mathcal{O}(r^{-1}), \\
G(\mathbf{r}, \mathbf{r}_0) &= \mathcal{O}(r^{-1}),
\end{align*}
\]

(3.6)

The above boundary value problem completely defines \(G(\mathbf{r}, \mathbf{r}_0) \) for all possible configurations of source and receiver.

Due to the cylindrical symmetry of this problem, the above equations can be re-expressed in terms of cylindrical coordinates, and \(G(\mathbf{r}, \mathbf{r}_0) \) can then be expressed as an integral by applying the Hankel transform. For brevity, the reformulation is restricted here to the case when \(\mathbf{r}_0 \in U_+ \). Equations
(3.1) and (3.2) can be written as, upon assuming, without loss of generality, that \(r_0 = (0, 0, z_0) \), and writing \(G(r, z) \) for \(G(r, r_0) \),

\[
\left(\frac{\partial^2}{\partial z^2} + \frac{\partial^2}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r} + k_1^2 \right) G(r, z) = \delta(z) \delta(y) \delta(z - z_0), \tag{3.7}
\]

for \(z > 0 \), and

\[
\left(\frac{\partial^2}{\partial z^2} + \frac{\partial^2}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r} + k_2^2 \right) G(r, z) = 0, \tag{3.8}
\]

for \(z < 0 \), where the Laplacian has been written in cylindrical polar coordinates, there being no \(\theta \) dependence due to the symmetry. Also, equations (3.3) and (3.4) can be written as

\[
G_+(r, 0) = G_-(r, 0), \tag{3.9}
\]

and

\[
\alpha \frac{\partial G_+(r, 0)}{\partial z} = \frac{\partial G_-(r, 0)}{\partial z}. \tag{3.10}
\]

Applying the Hankel transform to equation (3.8) gives

\[
\mathcal{F}\left\{ \frac{\partial^2 G(r, z)}{\partial z^2} + k_2^2 G(r, z) \right\} + \mathcal{F}\left\{ \frac{\partial^2 G(r, z)}{\partial r^2} + \frac{1}{r} \frac{\partial G(r, z)}{\partial r} \right\} = 0, \tag{3.11}
\]

where the Hankel transform is defined as [89]

\[
\hat{f}(K, z) = \mathcal{F}f(r, z) = 2\pi \int_0^\infty r f(r, z) J_0(Kr) dr, \tag{3.12}
\]

and the inverse Hankel transform as,

\[
f(r, z) = \mathcal{F}^{-1}(\hat{f}(K, z)) = \frac{1}{2\pi} \int_0^\infty K \hat{f}(K, z) J_0(Kr) dK. \tag{3.13}
\]

Expanding the second term on the left hand side of equation (3.11) and making use of Bessel's equation which gives that

\[
K^2 r^2 J''_0(Kr) + Kr J'_0(Kr) + K^2 r^2 J_0(Kr) = 0, \tag{3.14}
\]

reduces equation (3.11) to

\[
\frac{\partial^2 \hat{G}(r, z)}{\partial z^2} + (k_2^2 - K^2) \hat{G}(r, z) = 0, \tag{3.15}
\]

37
for \(z < 0 \), and where \(\hat{G} \) is the Hankel transform of \(G \). From the standard solution for differential equations of this form,

\[
\hat{G}(K, z) = A(K)e^{i\nu_2 z} + B(K)e^{-i\nu_2 z},
\]

(3.16)

where \(\nu_2 = (k_1^2 - K^2)^{1/2} \). If \(\nu_2 \) is defined so that \(\text{Im} \nu_2 \geq 0 \) and \(\text{Re} \nu_2 \geq 0 \), the Sommerfeld radiation condition is satisfied only if \(A(K) = 0 \), which gives, for \(z < 0 \),

\[
\hat{G}(K, z) = B(K)e^{-i\nu_2 z}.
\]

(3.17)

By following a similar procedure, \(\hat{G}(K, z) \), for \(z > 0 \), is found to be given by,

\[
\hat{G}(K, z) = A(K)e^{i\nu_1 z} + \frac{e^{i\nu_1 |z-z_0|}}{2i\nu_1},
\]

(3.18)

where \(\nu_1 = (k_1^2 - K^2)^{1/2} \), \(\text{Im} \nu_1 \geq 0 \) and \(\text{Re} \nu_1 \geq 0 \). The functions \(A(K) \) and \(B(K) \) in equations (3.17) and (3.18) are obtained through applying the Hankel transform to the boundary conditions, equations (3.9) and (3.10), on \(\Gamma \). Applying the Hankel transform to these equations gives,

\[
\hat{G}_+(K, 0) = \hat{G}_-(K, 0),
\]

(3.19)

and,

\[
\alpha \frac{\partial \hat{G}_+(K, 0)}{\partial z} = \frac{\partial \hat{G}_-(K, 0)}{\partial z}.
\]

(3.20)

By substituting equations (3.17) and (3.18) into equations (3.19) and (3.20), \(A(K) \) and \(B(K) \) are determined to be

\[
A(K) = \frac{1}{2i} \frac{(\alpha - \nu_2/\nu_1)}{(\nu_2 + \nu_1 \alpha)} e^{i\nu_2 z_0},
\]

(3.21)

and

\[
B(K) = \frac{1}{i(\nu_2 + \nu_1 \alpha)} e^{i\nu_1 z_0}.
\]

(3.22)

Equation (3.18) may now be written as

\[
\hat{G}(K, z) = \frac{1}{2i} \frac{(\alpha - \nu_2/\nu_1)}{(\nu_2 + \nu_1 \alpha)} e^{i\nu_1 (z_0+z)} + \frac{e^{i\nu_1 |z-z_0|}}{2i\nu_1},
\]

(3.23)
and applying the inverse Hankel transform gives

$$G(r,z) = \frac{1}{2\pi} \int_0^\infty K \left\{ \frac{1}{2i} \left(\frac{\alpha - \nu_2/\nu_1}{\nu_2 + \nu_1 \alpha} \right) e^{i\nu_1(z_0 + z)} + \frac{e^{i\nu_1|z-z_0|}}{2i\nu_1} \right\} J_0(Kr) dK;$$

(3.24)

for $z > 0$; also, equation (3.17) may be written

$$\hat{G}(K,z) = \frac{e^{i(\nu_2 z_0 - \nu_2 z)}}{i(\nu_2 + \nu_1 \alpha)};$$

(3.25)

and again, applying the inverse Hankel transform gives

$$G(r,z) = \frac{1}{2\pi} \int_0^\infty K \frac{e^{i(\nu_2 z_0 - \nu_2 z)}}{i(\nu_2 + \nu_1 \alpha)} J_0(Kr) dK,$$

(3.26)

for $z < 0$. Integral representations have thus been formulated for the Green's functions for the problem of sound propagation in two media, where the source is positioned in the upper medium. Approximations to equations (3.24) and (3.26) are now considered in detail.

3.2 The reflected wave field

This section considers the approximate solutions to equation (3.24) for the total field above the plane surface, firstly when it is externally reacting and secondly, when it is locally reacting. The result for a locally reacting boundary may be deduced, under the approximation $|\eta|^2 \gg 1$, from that for a semi-infinite externally reacting half space.

Rewriting equation (3.23) slightly differently and then applying the inverse Hankel transform gives equations that have been obtained by Rudnick [66], and Briquet and Filippi [67], and alternative forms have been used by other authors [69,73,74,77], where they have separated out the reflected components appropriate to either a rigid boundary or a pressure release boundary. The method of subtraction of the pole has been used by several authors to simplify the expressions for the reflected and transmitted waves [69,77]. Attenborough et al [71] have given expressions for the results of this procedure for a porous lower half space. If $k_1 R \gg 1$, (see figure 3.1 for notation) then the results reduce to
Figure 3.1 Geometry for propagation over a plane boundary.

\[G(r, r_0) = - \left(\frac{e^{ik_1 R}}{4\pi R} + R_p \frac{e^{ik_1 R'}}{4\pi R'} + B(1 - R_p)F(w) \frac{e^{ik_1 R'}}{4\pi R'} \right), \quad (3.27) \]

where \(R_p \) is the plane wave reflection coefficient defined by equation (2.29), \(R = |r - r_0| = (R^2 + (z - z_0)^2)^{\frac{1}{2}} \), \(R' = |r - r'_0| = (R'^2 + (z - z_0)^2)^{\frac{1}{2}} \), \(r'_0 \) being the image of \(r_0 \) in the boundary, and \(R^* = ((x - x_0)^2 + (y - y_0)^2)^{\frac{1}{2}} \).

\[B = \frac{B_N}{B_D}, \quad (3.28) \]

where

\[B_N = (\cos \theta + \beta)(1 - n^{-2})^{\frac{1}{2}} \left[(1 - \alpha^{-2})^{\frac{1}{2}} + \alpha^{-1} n(1 - n^{-2})^{\frac{1}{2}} \cos \theta + \sin \theta (1 - \alpha^{-2} n^2)^{\frac{1}{2}} \right]^{\frac{1}{2}} \quad (3.29) \]

and

\[B_D = (\cos \theta + \alpha^{-2}((n^2 - 1)/(1 - \alpha^{-2}))^{\frac{1}{2}}) \times (1 - \sin^2 \theta/n^2)^{\frac{1}{2}} (1 - \alpha^{-2})^{\frac{3}{2}} (2\sin \theta)^{\frac{1}{2}} (1 - \alpha^{-2} n^2)^{\frac{1}{2}}, \quad (3.30) \]

\[F(w) = 1 + i\pi^{\frac{1}{2}} w e^{-w^2} \text{erfc}(-iw), \quad (3.31) \]

\text{erfc} being the complementary error function. The numerical distance \(w \) is defined by

\[w^2 = \frac{ik_1 R'}{2} \left[\cos \theta + \beta(1 - n^{-2})^{\frac{1}{2}}/(1 - \alpha^{-2}) \right]^2. \quad (3.32) \]
Away from grazing incidence, the third term in equation (3.27) (the so-called ground wave term) is negligible [83], and a simple approximation to $G(r, r_0)$ is obtained, namely

$$G(r, r_0) = -\left(\frac{e^{ik_1 R}}{4\pi R} + R_p \frac{e^{ik_2 R'}}{4\pi R'}\right). \quad (3.33)$$

From equations (2.30) and (2.31)

$$R_p = \frac{\alpha \cos\theta - (n^2 - \sin^2\theta)^{\frac{1}{2}}}{\alpha \cos\theta + (n^2 - \sin^2\theta)^{\frac{1}{2}}}. \quad (3.34)$$

where $\cos\theta = (z + z_0)/R'$, $\sin\theta = R^*/R'$. $G(r, r_0)$, given by equation (3.33) along with equation (3.34) for R_p, is calculated by subroutine G11 found in appendix D.

If both source and receiver are in the lower medium ($z, z_0 < 0$) the approximation analogous to (3.33) is

$$G(r, r_0) = -\alpha \left(\frac{e^{ik_2 R}}{4\pi R} + R_p \frac{e^{ik_2 R'}}{4\pi R'}\right). \quad (3.35)$$

and, in this case, R_p is calculated by

$$R_p = \frac{\alpha^{-1} \cos\theta - (n^{-2} - \sin^2\theta)^{\frac{1}{2}}}{\alpha^{-1} \cos\theta + (n^{-2} - \sin^2\theta)^{\frac{1}{2}}}. \quad (3.36)$$

By analogy with the known results for the approximation (3.33), the approximation (3.35) is expected to be valid provided θ is not close to $\pi/2$. $G(r, r_0)$, given by equation (3.35) along with equation (3.36) for R_p, is calculated by subroutine G22 found in appendix D.

For $G(r, r_0)$, defined by equation (3.35) for r_0, $r \in U_-$, the first derivative can be written as

$$\nabla G(r, r_0) = -\frac{\alpha}{4\pi} \left[\nabla \left(\frac{e^{ik_2 R}}{R}\right) + \nabla \left(\frac{R_p e^{ik_2 R'}}{R'}\right) \right]. \quad (3.37)$$

Writing

$$f(\hat{R}) = \frac{e^{ik_2 \hat{R}}}{\hat{R}}, \quad (3.38)$$

41
where \(\hat{R} = R \) or \(R' \),

\[
\nabla f(R) = \frac{df(R)}{dR} \nabla R,
\]

\[
= \left(\frac{ik_2 R - 1}{R^3} \right) e^{ik_2 R(r - r_0)}, \quad (3.39)
\]

and

\[
\nabla (R_p f(R')) = R_p \nabla f(R') + f(R') \nabla R_p,
\]

\[
= R_p \frac{df(R')}{dR'} \nabla R' + f(R') \frac{dR_p}{d\theta} \nabla \theta, \quad (3.40)
\]

\[
\frac{df(R')}{dR'} = \frac{ik_2 R' - 1}{R'^2} e^{ik_2 R'}, \quad (3.41)
\]

\[
\nabla R' = \frac{1}{R}(r - r_0'), \quad (3.42)
\]

\[
\frac{dR_p}{d\theta} = -\frac{2 \sin \theta}{(\cos \theta + \alpha(n^{-2} - \sin^2 \theta)^{\frac{1}{2}})} \left[(n^{-2} - \sin^2 \theta)^{\frac{1}{2}} - \frac{\cos^2 \theta}{(n^{-2} - \sin^2 \theta)^{\frac{1}{2}}} \right], \quad (3.43)
\]

and

\[
\nabla \theta = \frac{1}{R'} \left[-\frac{\cos \theta}{R'}(x - x_0), -\frac{\cos \theta}{R'}(y - y_0), \sin \theta \right]^T. \quad (3.44)
\]

\(\nabla G(r, r_0) \) given by equation (3.37), along with the expression for \(R_p \) given by equation (3.36) can be calculated using subroutine G22DER found in appendix D.

3.2.1 The locally reacting boundary

If \(|n^2| \gg 1\) so that the locally reacting assumption is justified, and if \(|n/\alpha| < 1\), \(|\alpha| \gg 1\), then it is possible to obtain an expression similar to that of (3.48) of reference [90]. Further approximations for \(|n/\alpha| \ll 1\) give

\[
G(r, r_0) \approx \frac{e^{ik_2 R}}{4\pi R} + [R_p + (1 - R_p)F(p_\epsilon)] \frac{e^{ik_2 R'}}{4\pi R'}, \quad (3.45)
\]

where \(F \) is defined as above with \(p_\epsilon \) given by

\[
p_\epsilon^2 = \frac{ik_1 R'}{2}(\cos \theta + \beta \epsilon)^2 \quad (3.46)
\]
replacing \(w \) and

\[
R_p = \frac{\cos \theta - \beta_c}{\cos \theta + \beta_c}
\]

(3.47)

where \(\beta_c = Z_1/Z_2 \). This form of solution is known as the Weyl-van der Pol solution. It was first suggested by Rudnick [66], based on the earlier work of Norton [64,65] and others [91]. \(G(r_0, r) \) can be calculated from equation (3.45) by using subroutine G11WVDP found in appendix D.

Integral representations for the reflected wave field, similar to equation (3.24), may be obtained by applying a Hankel transform to the boundary value problem in the locally reacting case. Various authors have studied the reformulation of the inverse Hankel transform representation into a form where the integrand is more suitable for numerical integration, notably Thomasson [73]. Recently, Chandler-Wilde [88,92] has proposed a representation for grazing incidence which can be evaluated accurately but with low computational cost, provided \(kR \geq 0.5 \), by using numerical integration. This representation, for \(r, r_0 \in \Gamma \), is

\[
G(r, r_0) = -\frac{e^{ikR}}{2\pi R} + P_\beta(r, r_0)
\]

(3.48)

where

\[
P_\beta(r, r_0) = \frac{k\beta}{2\pi} e^{ikR} \int_0^\infty t^{-\frac{1}{2}} e^{-kRt} g(t) dt
\]

\[
+ \frac{k\beta}{4} H_0^{(1)}(kR\sqrt{1-\beta^2}) \text{erfc}(e^{\frac{it}{2}} \sqrt{kR\sqrt{\alpha_+}}),
\]

(3.49)

\[
g(t) = f(t) - \frac{\frac{1}{2}e^{-it} \sqrt{\alpha_+} e^{-ikR\sqrt{1-\beta^2}} H_0^{(1)}(kR\sqrt{1-\beta^2})}{(t - ia_+)}
\]

(3.50)

\[
f(t) = -\frac{\beta e^{-ikR} e^{kRt} H_0^{(1)}(kR(1 + it))(1 + it)}{\sqrt{t - 2i(t - ia_+)(t - ia_-)}},
\]

(3.51)

\[
a_\pm = 1 \mp \sqrt{1 - \beta^2},
\]

(3.52)

and \(\text{Re}(\sqrt{\alpha_+}), \text{Re}(\sqrt{1 - \beta^2}) \geq 0 \). This expression for \(P_\beta \), with the integral in equation (3.49) is computed accurately by Gauss-Laguerre quadrature, and is evaluated by using subroutine PBETA3 [93].
3.3 The transmitted wave field

In this section approximations to the expression (3.26) for the total field beneath the plane surface are considered.

Starting from the inverse Hankel transform given in equation (3.26), Richards et al [5] show, via a deformation of the path of integration to a steepest descent path, that if \(n \) has an appreciable imaginary component, then

\[
G(r, r_0) \approx \exp \left[-ik_1z(n^2 - \sin^2 \theta)\frac{1}{2} \right] G(r_T, r_0), \tag{3.53}
\]

where \(z \) is the depth beneath the plane boundary to the receiver point, and \(r_T \) is the point on \(\Gamma' \) directly above \(r \). From (3.33), approximately,

\[
G(r_T, r_0) = - \left(\frac{e^{ik_1R^*}}{4\pi R^*} + R_p e^{ik_1R^*} \right), \tag{3.54}
\]

where

\[
R^* = \left((x - x_0)^2 + (y - y_0)^2 + z_0^2 \right)^{\frac{1}{2}}, \tag{3.55}
\]

and \(R_p \) is defined as in equation (3.34).

The first derivative of \(G(r, r_0) \) for \(r_0 \in U_+, r \in U_- \) can be written by applying the product rule as,

\[
\nabla G(r, r_0) = \exp[-ik_1z(n^2 - \sin^2 \theta)^{\frac{1}{2}}] \nabla G(r_T, r_0) - ik_1z(n^2 - \sin^2 \theta)^{\frac{1}{2}} \exp[-ik_1z(n^2 - \sin^2 \theta)^{\frac{1}{2}}] \times k G(r_T, r_0), \tag{3.56}
\]

where \(k \) is a unit vector in the \(z \) direction. Then,

\[
\nabla G(r_T, r_0) = \frac{dG(r_T, r_0)}{dR^*} \nabla R^* \tag{3.57}
\]

where

\[
R^* = \left((x - x_0)^2 + (y - y_0)^2 \right)^{\frac{1}{2}}, \tag{3.58}
\]

\[
\nabla R^* = \frac{1}{R^*} [(x - x_0), (y - y_0), 0]^T \tag{3.59}
\]
and

\[
\frac{\partial G(r, r_0)}{\partial R^*} = G(r, r_0) \left(\frac{\sin \theta}{R_\Gamma} (ik_1 R_\Gamma - 1) - \frac{1}{\alpha \cos \theta + (n^2 - \sin^2 \theta)^{\frac{1}{2}}} \right)
\]

\[
\times \left[\frac{\sin \theta}{R_\Gamma} (n^2 - \sin^2 \theta)^{\frac{1}{2}} - \frac{1}{(n^2 - \sin^2 \theta)^{\frac{3}{2}}} \sin \theta \cos \theta \cos \theta \right]
\]

\[
+ \frac{1}{(n^2 - \sin^2 \theta)^{\frac{1}{2}}} ik_1 z \sin \theta \cos \theta \cos \theta .
\] (3.60)

The calculation of \(G(r, r_0)\) and \(\nabla G(r, r_0)\) from equations (3.53) and (3.56) is carried out by subroutines \(G12\) and \(G12DER\) respectively, found in appendix D.

3.4 The ground acoustic characteristics

The Green's functions derived in the previous section can only be calculated with knowledge of the propagation characteristics of the medium concerned. It is the purpose of this section to describe how the acoustical properties of such media may be modelled.

Delany and Bazley [94], by making measurements on many different fibrous sound absorbent materials whose porosities \((\Omega)\), were near unity, and whose specific flow resistivities \((\sigma)\) varied between 2,000 and 80,000 N.s.m\(^{-4}\), were able to find a dependence of both the propagation constant and characteristic impedances of these materials on frequency, i.e.,

\[
k_2 = 1 + 0.0978 \left(\frac{f \rho}{\sigma} \right)^{-0.693} + 0.189 \left(\frac{f}{\sigma} \right)^{-0.618} i,
\] (3.61)

and

\[
Z_c = 1 + 0.0571 \left(\frac{f \rho}{\sigma} \right)^{-0.754} + 0.087 \left(\frac{f \rho}{\sigma} \right)^{-0.732} i.
\] (3.62)

These relationships are semiempirical, in that power laws with \((f/\Omega \sigma)\) were expected from the theory for rigid porous media derived by Zwikker and Kosten [95]. Since \(\Omega \approx 1\), for the fibrous materials under investigation, Delany and Bazley were able to replace the effective flow resistivity by the actual flow resistivity. The range of validity of equations (3.61) and (3.62) was stated originally as \(0.01 < f \rho/\sigma < 1\). In a subsequent paper [96],
Delany and Bazley proposed using equations (3.61) and (3.62) to model outdoor ground surfaces. In applying these equations, Delany and Bazley [7] and subsequent authors did not use the measured flow resistance, but rather a so-called effective flow resistance, σ_e. The effective flow resistivity may be quite different from the actual flow resistivity, and is estimated empirically from acoustical measurements. The effective flow resistivities of outdoor ground surfaces vary from 10,000 N.s.m$^{-4}$ for loosely packed snow to over 25,000,000 N.s.m$^{-4}$ for Asphalt. A typical value of effective flow resistivity for grass covered ground might be 300,000 N.s.m$^{-4}$ [97]. For this value, the criterion $f/\sigma_e > 0.01$ would imply a lower limiting frequency for application of equations (3.61) and (3.62) of 2500 Hz.

The Delany and Bazley model has proved quite successful in describing the variation with frequency of the surface admittance of outdoor ground surfaces: see, e.g., the papers of Chessell [8], Attenborough [98], and Embleton, Piercy and Daigle [97]. However, some surfaces are not modelled adequately by this model, and Attenborough [3] has proposed a microstructural model for ground surfaces. This study has taken the classical approach pioneered by Lord Rayleigh and by Zwikker and Kosten based upon a conceptual model of parallel cylindrical pores running normal to the surface of a rigid porous medium. Subsequent modifications [3] have made possible inclusion of the effects of random pore orientation or deviations of the pore axes from straight lines along their lengths, (i.e. their tortuosity, ρ) and departures of the pore cross-section from that of a circular cylinder. The dependences of the characteristic impedance and propagation constant on frequency after these modifications are given as

$$k_2^2 = \frac{g^2[1 + 2(\omega - 1)(N_{kr}^{1/2}N_{kr}^{1/2})(\lambda^2\sqrt{i})^{-1}T(\lambda^2\sqrt{i})]}{[1 - 2(\lambda^2\sqrt{i})^{-1}T(\lambda^2\sqrt{i})]},$$ \hspace{1cm} (3.63)

and

$$Z_2 = \frac{\omega \rho_2(\omega)}{k_2},$$ \hspace{1cm} (3.64)

where

$$\rho_2(\omega) = \left(\frac{g^2}{\Omega}\right) \rho_0[1 - 2(\lambda^2\sqrt{i})^{-1}T(\lambda^2\sqrt{i})]^{-1},$$ \hspace{1cm} (3.65)
and \(q^2 = \Omega^{-n'} \), \(n' \) being a grain shape factor, \(T(x) = J_1(x)/J_0(x) \), \(J_0 \) and \(J_1 \) being cylindrical Bessel functions of the zeroth and first order respectively, \(\nu (\approx 1.4) \) is the ratio of specific heats in air, \(N_{pr}(\approx 0.72) \) is the Prandtl number, \(\lambda = (1/s_f)(8\rho_0 q^2 \omega /\Omega \sigma)^{1/3} \), \(s_f \) being the pore shape factor ratio. \(k_2 \), \(\rho_2(\omega) \) and \(Z_2 \) can be calculated by using subroutines PC, CD and ZC found in appendix D.

Extreme pore shapes were considered to be those of a circular capillary and of a parallel-sided slit of infinite extent. Given those extremes, \(1 > s_f > 0.6 \). The lower limiting value has been found appropriate for lead shot and sand, where the grains are nearly spherical, whereas values from the mid range to the upper limiting value, together with \(n' = 1 \), model various soils, [9]. The equations (3.63) and (3.64) depend on four physical parameters which characterise the properties of the ground matrix, namely, \(\Omega \), \(n' \), \(s_f \) and \(\sigma \). However, the use of four parameters is rather impractical for ground effect prediction, and Attenborough, [9] has deduced two pairs of simpler expressions, for \(\lambda^2 \ll 1 \). This condition corresponds to low frequency and/or high flow resistivity, and gives

\[
Z_2 \approx \frac{1}{k_2} \left[\frac{4q^2}{3\Omega} + \left(\frac{s_f^2 \sigma}{\omega \rho_0} \right) i \right],
\]
(3.66)

and

\[
k_2 \approx (\gamma \Omega)^{1/3} \left[\left(\frac{4}{3} - \left(\frac{\gamma - 1}{\gamma} \right) N_{pr} \right) \frac{q^2}{\Omega} + \frac{s_f^2 \sigma i}{\omega \rho_0} \right]^{1/3}.
\]
(3.67)

Further approximations can be made for high flow resistivity and low frequency to these expressions, giving

\[
Z_2 = \frac{k_2}{\gamma \Omega} = (2\gamma \Omega)^{-\frac{1}{3}} s_f (\sigma /\omega \rho)^{1/2}(1 + i).
\]
(3.68)

If an effective flow resistivity \(\sigma_e = s_f^3 \sigma /\Omega \) is introduced, equation (3.68) may be written as

\[
Z_2 = (4\pi \nu \rho)^{-\frac{1}{2}} (\sigma_e /f)^{-\frac{1}{2}}(1 + i).
\]
(3.69)
3.5 Summary

The Green's functions for propagation in the presence of a plane boundary have been presented, and table 3.1 is a summary of those derived, along with the names of the subroutines found in appendix D for their calculation.

<table>
<thead>
<tr>
<th>r_0</th>
<th>r</th>
<th>$G(r_0, r)$</th>
<th>$\nabla G(r_0, r)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>U_+</td>
<td>U_+</td>
<td>(3.33) G_{11}</td>
<td>Not required</td>
</tr>
<tr>
<td>U_+</td>
<td>U_-</td>
<td>(3.35) G_{12}</td>
<td>(6.3) G_{12D}</td>
</tr>
<tr>
<td>U_-</td>
<td>U_+</td>
<td>(3.33) G_{12}</td>
<td>(6.3) G_{12D}</td>
</tr>
<tr>
<td>U_-</td>
<td>U_-</td>
<td>(3.35) G_{22}</td>
<td>(3.37) G_{22D}</td>
</tr>
<tr>
<td>Γ</td>
<td>Γ</td>
<td>(3.49) β_{3}</td>
<td>Not required</td>
</tr>
</tbody>
</table>

Table 3.1 The Green's functions and the subroutines for their calculation.

The Green's functions have all involved the plane wave reflection coefficient. This has resulted in simple expressions for the first derivatives of the Green's functions. An integral expression has been considered appropriate for the prediction of propagation from point to point on a locally reacting boundary.

Finally, in this chapter the modelling of ground acoustic characteristics has been considered, with particular emphasis on the four parameter model of Attenborough [3], that will be used extensively later.
Chapter 4

Induced surface impedance models

It was seen in chapter 2 that in the second surface inhomogeneity approach to the theoretical problem the near-surface inhomogeneity was regarded as inducing a variation in the surface impedance directly above it. The purpose of this chapter is to derive expressions for such induced surface impedance variation due to firstly, a rigidly backed layer, and secondly, to an embedded sphere.

4.1 Rigidly backed layer

The simplest form of sub-surface structuring is that of a single layer above a perfectly rigid boundary. The surface impedance induced by such a layer can be deduced by following the analysis of Brekhovskikh [83], where plane waves are incident on a layer of thickness d, at an arbitrary angle of incidence. In the steady state, as a result of multiple reflections at the boundaries of the layer, two waves with different directions of propagation result in the layer. By considering the boundary conditions of continuity of pressure and normal particle velocity, and assuming that $|n^2| > 1$ so that the locally reacting assumption is justified, the surface impedance can be shown to be given by

$$Z = Z_2 \coth(-ik_2d).$$

The surface impedance induced by a rigidly backed layer is calculated by using subroutine ZL, found in appendix D.
Consider now the surface impedance induced by a near-surface rigid sphere. Figure 4.1 shows a rigid sphere labelled S, with surface ∂S, embedded in a porous half-space, characterised by a complex impedance Z_2 and a complex wavenumber, k_2.

The upper half-space, denoted U_+, contains air, and is assumed to be characterised by real impedance and wavenumber, Z_1 and k_1, respectively. The lower porous region is denoted $U_- := \mathbb{R}^3 \setminus (S \cup U_+)$. The boundary between the upper and lower half spaces is denoted by $\Gamma = \{(x, y, z) \in \mathbb{R}^3 | z = -D\}$, the sphere being centred on the origin. As before, it is assumed that $|n^2| \gg 1$ so that the locally reacting assumption is justified.

Consider a plane wave incident on the plane boundary. The plane wave gives rise to a transmitted plane wave that propagates normal to the boundary with complex acoustic pressure $p_t(r)$ given by [84]

$$ p_t(r) = e^{ik_2z}, \quad (4.2) $$

Figure 4.1 Reflection from the plane of a rigid porous half-space containing a rigid sphere.
or, expressed in spherical polar coordinates \((r, \theta, \phi)\) (see figure 4.1),

\[
p_t(r) = e^{ik_2 \cos \theta},
\]

\[
= \sum_{m=0}^{\infty} (2m + 1) i^m j_m(k_2r),
\]

(4.3)

where \(j_m\) denotes the spherical Bessel function of order \(m\) and \(P_m(x)\) denotes the Legendre polynomial of degree \(m\), both as defined in Abramowitz and Stegun [99]. The corresponding velocity is given by

\[
v_t(r) = -\frac{i}{Z_2 k_2} \left[\frac{\partial}{\partial r} + \frac{1}{r} \frac{\partial}{\partial \theta} + \frac{1}{r \sin \theta} \frac{\partial}{\partial \phi} \right] p_t(r),
\]

(4.4)

where \(\hat{r}, \hat{\theta}\) and \(\hat{\phi}\) are the unit vectors in the three axial directions. Due to the symmetry, \(p_t(r)\) is independent of \(\phi\), and so

\[
v_t(r) = -\frac{i}{Z_2 k_2} \sum_{m=0}^{\infty} (2m + 1) i^m \left[\hat{r} P_m(\cos \theta) k_2 j_m'(k_2r) - \hat{\theta} P'_m(\cos \theta) \sin \theta j_m(k_2r)/r \right].
\]

(4.5)

The field scattered from the sphere can be written in the form [84]

\[
p_s(r) = \sum_{m=0}^{\infty} a_m P_m(\cos \theta) h^{(1)}_m(k_2r),
\]

(4.6)

where \(h^{(1)}_m\) denotes the spherical Hankel function of the first kind of order \(m\), and the corresponding velocity is

\[
v_s(r) = -\frac{i}{Z_2 k_2} \sum_{m=0}^{\infty} a_m \left[\hat{r} P_m(\cos \theta) k_2 h^{(1)'}_m(k_2r) - \hat{\theta} P'_m(\cos \theta) \sin \theta h^{(1)}_m(k_2r)/r \right].
\]

(4.7)

The constants \(a_m\) can be determined by considering the boundary condition on the surface of the sphere. Insisting that the normal component of velocity is zero on the surface of the sphere, i.e.,

\[
\hat{r}.(v_t(r) + v_s(r)) = 0,
\]

(4.8)

for \(r \in \partial S\), gives

\[
\sum_{m=0}^{\infty} \left[(2m + 1) i^m P_m(\cos \theta) j_m'(k_2R) + a_m P_m(\cos \theta) h^{(1)'}_m(k_2R) \right] = 0,
\]

(4.9)
for $0 < \theta < \pi$, and thus

$$a_m = -(2m + 1) \frac{j_m^2(k_2 R)}{h_m^{(1)}(k_2 R)},$$ \hspace{1cm} (4.10)$$

for $m = 0, 1, \ldots$. For receiver positions beneath but near to the plane boundary Γ and above the sphere, an approximation to the total field is given by

$$p(r) = p_s(r) + p_t(r) + R_p p_r(r)$$ \hspace{1cm} (4.11)$$

where $p_r(r)$ denotes the wave that would be reflected back from the interaction of the scattered wave with the boundary if the boundary were perfectly rigid. Such an approximation assumes that, for a rigid porous medium, any multiple reflections of the scattered wave between the upper surface of the sphere and the plane boundary are negligible, and, furthermore, that the reflection of the scattered field at the plane boundary can be approximated by using the plane wave reflection coefficient. This latter approximation is expected to be adequate, at least for Θ not too near $\pi/2$ radians, for the reflection of the first term in the expansion of the scattered field, equation (4.6), since this represents a spherical wave, and the plane wave reflection coefficient is anticipated to approximate the spherical wave reflection coefficient accurately away from grazing incidence. At grazing incidence, since k_2 is complex, the scattered field in any case is negligible. Subsequent terms in the series represent combinations of monopole sources (e.g. $m = 1$ is a dipole source), and so the plane wave reflection coefficient is expected to be adequate for the reflection of these terms also.

The induced surface impedance at the point $r \in \Gamma$ is given by

$$Z(r) = \frac{p(r)}{n \cdot v(r)},$$ \hspace{1cm} (4.12)$$

where n is the downward normal to the surface Γ, and for $r \in \Gamma$,

$$p(r) = p_s(r) + p_t(r)(1 + R_p)$$

$$= e^{ik_2 z} + \sum_{m=0}^{\infty} P_m(\cos \theta) a_m h_m^{(1)}(k_2 r)(1 + R_p),$$ \hspace{1cm} (4.13)$$
and, for \(r \in U_- \), but near \(\Gamma \),
\[
n \cdot \mathbf{v}(r) = -\frac{i}{k^2} n \cdot \left[\nabla p_t(r) + \nabla p_s(r) + \nabla (R_p p_r(r)) \right]. \tag{4.14}
\]
Now, since for \(r \in \Gamma \),
\[
n \cdot \nabla p_s(r) = -n \cdot \nabla p_r(r) \tag{4.15}
\]
and
\[
p_s(r) = p_r(r), \tag{4.16}
\]
\[
n \cdot \mathbf{v}(r) = -\frac{i}{k^2} n \cdot \left[\nabla p_t(r) + \nabla p_s(r)(1 - R_p) + p_s(r) \nabla R_p \right], \tag{4.17}
\]
for \(r \in \Gamma \). Here the plane wave reflection coefficient, \(R_p \), is defined as (c.f. equation (3.36))
\[
R_p = \frac{\alpha^{-1} \cos \Theta - (n^{-2} - \sin^2 \Theta)^{1/2}}{\alpha^{-1} \cos \Theta + (n^{-2} - \sin^2 \Theta)^{1/2}}, \tag{4.18}
\]
where \(\Theta \) is as defined in figure 4.1, so that
\[
\nabla R_p = \frac{dR_p}{d\Theta} \nabla \Theta. \tag{4.19}
\]
Also, for \(r \in U_- \),
\[
\Theta = \arctan \left(\frac{r \sin \theta}{2D + r \cos \theta} \right) \tag{4.20}
\]
so that
\[
\nabla \Theta = \frac{\cos^2 \Theta}{(2D + r \cos \theta)^2} \left(2D \sin \theta \hat{r} + (2D \cos \theta + r) \hat{\theta} \right) \tag{4.21}
\]
and on \(\Gamma \), where \(r \cos \theta = -D \),
\[
\nabla \Theta = \frac{2D \sin \theta}{r^2} \hat{r} + \left(\frac{r^2 - 2D^2}{r^3} \right) \hat{\theta} \tag{4.22}
\]
and, since \(n = \cos \theta \hat{r} - \sin \theta \hat{\theta} \),
\[
n \cdot \nabla \Theta = -\frac{\sin \theta}{r}. \tag{4.23}
\]
Thus, for \(r \in \Gamma \),
\[
n \cdot \mathbf{v}(r) = -\frac{i}{k^2} \left\{ ik_1 e^{ik_2} + (1 - R_p) \sum_{m=0}^{\infty} a_m \left[\cos \theta P_m(\cos \theta) k_2 h_{im}^{(1)}(k_2 r) \\
+ P_m'(\cos \theta) \sin^2 \theta h_{im}^{(1)}(k_2 r) / r \right] \\
- \frac{\sin \theta}{r} \frac{dR_p}{d\Theta} \sum_{m=0}^{\infty} a_m P_m(\cos \theta) h_{im}^{(1)}(k_2 r) \right\}. \tag{4.24}
\]

53
$Z(r)$, defined by equation (4.12), can be calculated by using subroutines PLNSCATCOE and ZSPHERE found in appendix D.

Figure 4.2 shows the variation of the surface impedance induced by an embedded rigid sphere with sphere radius, at the point directly above the sphere. The depth (the distance from the closest point of the sphere to the plane boundary) is kept constant as the radius is increased. Also shown is the surface impedance induced by a rigidly backed layer, and the surface impedance for a homogeneous medium. For very small radii, the induced surface impedance in indistinguishable from that for the homogeneous medium. It can be seen that with increasing radius of the sphere there is a gradual convergence of the surface impedance to that for the rigidly backed layer case.

4.3 Summary

Expressions for the induced surface impedance due to two different types of near-surface inhomogeneities have been presented. In the first section, the surface impedance induced by a rigidly backed layer of infinite extent was discussed and presented. The second section considered the surface impedance induced by an embedded finite sized inhomogeneity: a rigid sphere. In both sections plane wave incidence was assumed. In the first section the steady state conditions were considered; in the second section the pressure at the boundary was assumed to be accurately approximated by considering only the initially transmitted wave, the wave scattered from the rigid sphere, and the first reflection at the boundary of this scattered wave, this interaction being approximated by using the plane wave reflection coefficient.

Some results of calculations of the surface impedance induced by a sphere were also presented. It was seen that there was convergence to the surface impedance induced by a rigidly backed layer, as the sphere radius was increased.
Figure 4.2 Variation of the surface impedance induced by an embedded rigid sphere with radius. The medium is characterised by the four parameters, $\sigma = 300,000 \text{N.s.m}^{-4}$, $\Omega = 0.4$, $\sigma_f = 0.75$ and $n' = 1$. Depth, $d = 0.01 \text{m}$. (a) Homogeneous (dashed), (b)radius=0.0125m, (c)radius=0.025m, (d)radius=0.05m, (e)radius=0.1m, and (f)rigidly backed layer.
Chapter 5

Solution of the boundary integral equations

In chapter 2, the mathematical formulation of the theoretical problem of acoustic scattering by a near-surface inhomogeneity was presented. The two treatments of the problem were first stated as boundary value problems, and then subsequently reformulated as boundary integral equations. The Green's functions and the models of induced surface impedance required for these formulations were then presented in chapters 3 and 4. It is the purpose of this chapter to describe the numerical solution of the boundary integral equations. This chapter considers the integral equations from the two approaches separately, and after a general analysis for each approach, concentrates specifically on scatterers which are axisymmetric about a vertical axis in which case it is shown that the coefficient matrix of the linear equations to be solved has a block circulant structure which facilitates its solution. A section on the numerical tests and comparisons of the two approaches then follows with, finally, a brief summary of the chapter.

5.1 The numerical solution

Equations (2.104) and (2.126), restricted to $r \in r_s$, are particular examples of weakly singular Fredholm integral equations of the second kind. These equations are not, in general, amenable to analytic solution and numerical methods must be considered. A numerical solution, by a simple quadra-
ture method as described by Mayers [100], can be obtained as follows. The range of integration is split into \(T \) sub-regions (boundary elements), and the values of the pressure field at the midpoints of these boundary elements are determined by producing and solving a set of linear equations obtained by making approximations for the acoustic field within each element in the integral equation, the number of linear equations being equal to the number of elements into which the integrating surface is split. The values of the pressure field on the integrating surface are then substituted back into the approximated integral equation to obtain values of the pressure field elsewhere.

For large problems, the major part of the computational labour required to calculate the solution is the solution of the linear equations, this stage becoming more labour intensive as the number of equations increases. The available solution techniques can be divided into two classes, ‘direct’ and ‘iterative’ methods. The iterative methods include Gauss-Seidel iteration and multigrid methods [101]. The direct methods can be divided into methods of general application (for example Gaussian elimination) and methods which use the structure of the coefficient matrix. It is this last category of methods of solution that is the most applicable to the sets of linear equations generated for axi-symmetric scattering surfaces.

The numerical solution of the integral equation for scattering by a near-surface rigid inhomogeneity has been confined here to inhomogeneities that are axisymmetric about an axis perpendicular to the plane boundary, and those considered in this study were spheroids. The advantage of choosing this shape was that its ellipticity or flattening could be varied while still, of course, maintaining its basic shape. Thus, the variation of the results for gradually flattening a sphere to the oblate spheroid shape could be obtained. Furthermore, results for oblate spheroids could be compared with other, more standard, results such as those for rigidly backed layers. The numerical solution of the integral equation for scattering by a surface inhomogeneity was confined to a finite circular surface inhomogeneity that was axisymmetric about an axis perpendicular to the plane boundary. The
geometric restriction for both approaches simplifies the numerical implementa-
tion and leads to structured matrices that are block circulant. Standard packages are available for the solution of linear systems with this type of coefficient matrix as will be discussed later.

5.1.1 The first approach

The difficulty in the numerical solution of the integral equation (2.104) is that the kernel function tends to infinity as \(r \) approaches \(r_s \). This difficulty is resolved by applying the following modification of Burton [102]. For \(r \in \partial S \), equation (2.104) is written

\[
\frac{1}{2} p(r, r_0) = \alpha G(r_0, r) + \int_{\partial S} p(r_s, r_0) \frac{\partial G(r_s, r)}{\partial n(r_s)} - p(r, r_0) \frac{\partial G_0(r_s, r)}{\partial n(r_s)} \, ds(r_s)
\]

\[
+ p(r, r_0) \int_{\partial S} \frac{\partial G_0(r_s, r)}{\partial n(r_s)} \, ds(r_s),
\]

(5.1)

where \(G_0(r_s, r) = -\alpha/(4\pi |r_s - r|) \) is the principal singularity of \(G(r_s, r) \). From Gauss' theorem, the last integral can be integrated exactly giving

\[
\int_{\partial S} \frac{\partial G_0(r_s, r)}{\partial n(r_s)} \, ds(r_s) = -\frac{\alpha}{2},
\]

(5.2)

for \(r \in \partial S \), and hence, equation (5.1) can be written as

\[
\alpha p(r, r_0) = \alpha G(r_0, r) + \int_{\partial S} p(r_s, r_0) \frac{\partial G(r_s, r)}{\partial n(r_s)} - p(r, r_0) \frac{\partial G_0(r_s, r)}{\partial n(r_s)} \, ds(r_s).
\]

(5.3)

According to Burton [102], the new integrand, taken as a whole, remains finite as \(r \) approaches \(r_s \). Now, if the surface \(\partial S \) is split into \(T \) boundary elements, \(\partial S_1, \partial S_2, \ldots, \partial S_T \), then from equation (5.3) it follows that

\[
\alpha p(r_{j}, r_0) = \alpha G(r_0, r_{j}) + \sum_{k=1}^{T} I_{jk},
\]

(5.4)

for \(j = 1(1)T \), where \(r_{j} \) is the midpoint of area element \(\partial S_{j} \), and

\[
I_{jk} = \int_{\partial S_{k}} p(r_s, r_0) \frac{\partial G(r_s, r_{j})}{\partial n(r_s)} - p(r_{j}, r_0) \frac{\partial G_0(r_s, r_{j})}{\partial n(r_s)} \, ds(r_s).
\]

(5.5)
For \(j \neq k \), the approximation can be made that
\[
I_{jk} \approx A_k \left(p(r_k, r_0) \frac{\partial G(r_k, r_j)}{\partial n(r_k)} - p(r_j, r_0) \frac{\partial G_0(r_k, r_j)}{\partial n(r_k)} \right),
\] (5.6)
where \(A_k \) is the area of \(\partial S_k \), and, for \(j = k \),
\[
I_{jk} \approx 0.
\] (5.7)

Thus the following linear equations are satisfied approximately by the unknown values \(p(r_j, r_0) \):
\[
\alpha p(r_j, r_0) = \alpha G(r_0, r_j) + \sum_{k=1}^{T} A_k \left(p(r_k, r_0) \frac{\partial G(r_k, r_j)}{\partial n(r_k)} - p(r_j, r_0) \frac{\partial G_0(r_k, r_j)}{\partial n(r_k)} \right),
\] (5.8)
for \(j = 1(1)T \). These approximately satisfied set of \(T \) linear equations for the values of \(p \) at the midpoints \(r_k \) of \(\partial S_k \) can be written in the standard form
\[
\sum_{k=1}^{T} a_{jk} p(r_k, r_0) = \alpha G(r_0, r_j),
\] (5.9)
for \(j = 1(1)T \) and where
\[
a_{jk} = \left[\alpha + \sum_{i=1(i \neq j)}^{T} \frac{\partial G_0(r_i, r_j)}{\partial n(r_i)} A_i \right] \delta_{jk} - (1 - \delta_{jk}) \frac{\partial G(r_k, r_j)}{\partial n(r_k)} A_k,
\] (5.10)
where \(\delta_{jk} \) is the Kronecker delta.

Once values of \(a_{jk} \) are determined, the values of \(p \) at the midpoints of the elements can be calculated. It is then a simple task to calculate values of \(p(r, r_0) \) for \(r \in U_+ \) by simple substitution into
\[
\alpha \kappa(r)p(r, r_0) = \alpha G(r_0, r) + \sum_{j=1}^{T} p(r_j, r_0) \frac{\partial G(r_j, r)}{\partial n(r_j)} A_j
\] (5.11)
which is equation (2.104) with
\[
\int_{\partial S_j} p(r_s, r_0) \frac{\partial G(r_s, r)}{\partial n(r_s)} ds(r_s)
\] (5.12)
approximated by
\[
\approx p(r_j, r_0) \frac{\partial G(r_j, r)}{\partial n(r_j)} A_j.
\] (5.13)
5.1.1.1 The scattering surface

In this section only spheroidal scatterers are considered, and expressions for the area of each of the boundary elements along with expressions for the coordinates of the midpoints of these elements, and the inward normals at these midpoints are derived.

The mesh generation on the surface of the spheroid must be such that the maximum boundary element diameter is to be no greater than a value \(h \), dependent upon the wavelength of the acoustic field. Consider the diagram in figure 5.1, which shows a section through the centre of an oblate spheroid. The oblate spheroid is formed by rotating an ellipse about the \(z \)-axis, and the boundary elements are formed by first dividing the ellipse into elements, each of which subtends the same angle \(\delta \theta \) at the origin. The arc length of ellipse corresponding to a typical element will be \(\delta s \approx \delta \theta ds/d\theta \), where \(\theta \) and \(\delta s \) are the angle and arc length indicated in the figure. Thus, the maximum element length will be, approximately, \(\delta \theta (ds/d\theta)_{\text{max}} \), and to ensure an element length no greater than \(h \), the angle divisions must be no greater than

\[
\delta \theta \leq \frac{h}{(ds/d\theta)_{\text{max}}}.
\]

To determine \(ds/d\theta \) and \((ds/d\theta)_{\text{max}}\), consider the point \(P \). \(ds/d\theta \) is given

Figure 5.1 Section through an oblate spheroid scatterer.
by
\[\frac{ds}{d\theta} = \frac{ds}{dx} \frac{d\theta}{dx}, \tag{5.15} \]

where \((x, z)\) are the coordinates of the point \(P\). From the defining equation for an ellipse,
\[\frac{x^2}{a^2} + \frac{z^2}{b^2} = 1, \tag{5.16} \]
\[\frac{dz}{dx} = -\frac{xb^2}{a^2z}. \tag{5.17} \]

Now,
\[\frac{ds}{dx} = \pm \sqrt{1 + \left(\frac{dz}{dx}\right)^2} = \pm \frac{1}{a^2z^2 + b^2x^2}. \tag{5.18} \]

Also,
\[\theta = \tan^{-1}\left(\frac{z}{x}\right) + n\pi, \tag{5.19} \]

and using equation (5.17) gives
\[\frac{d\theta}{dx} = \frac{b^2}{x(x^2 + z^2)}. \tag{5.20} \]

Thus, since \(ds/d\theta > 0\),
\[\frac{ds}{d\theta} = \frac{(x^2(a^2 - b^2) + b^2a^2)}{a^4b} \sqrt{a^4 + x^2(b^2 - a^2)}. \tag{5.21} \]

With \(A = a^2, B = b^2,\) and \(X = x^2,\) then,
\[\frac{d}{dX} \left(\frac{ds}{d\theta}\right) = \frac{(A - B)[A(2A - B) + 3X(B - A)]}{2A^2b\sqrt{A^2 + X(B - A)}}. \tag{5.22} \]

Clearly, this is continuous in the range \(0 < X < A,\) and
\[\frac{d}{dX} \left(\frac{ds}{d\theta}\right) = 0 \tag{5.23} \]
in this range only possibly at \(X = A(2A - B)/3(A - B).\) Also,
\[\frac{d}{dX} \left(\frac{ds}{d\theta}\right) = \frac{(A - B)(2A - B)}{2A^2b} > 0 \tag{5.24} \]
at \(X = 0\) and
\[\frac{d}{dX} \left(\frac{ds}{d\theta}\right) = \frac{(A - B)(2B - A)}{2ABa} \tag{5.25} \]
Figure 5.2 Element configuration for a sphere, including numbering system for the elements.

at \(X = A \). Now, if \(2B \geq A > B \), then \(ds/d\theta \) is strictly increasing as \(X \) increases from 0 to \(A \), and thus \(ds/d\theta \) achieves its maximum at \(X = A \). If \(A > 2B \) then

\[
\frac{d}{dX} \left(\frac{ds}{d\theta} \right) \begin{cases}
> 0 & \text{for } 0 \leq X \leq \frac{A(2A - B)}{3(A - B)} \\
< 0 & \text{for } A > X > \frac{A(2A - B)}{3(A - B)}
\end{cases},
\]

where \(\frac{A(2A - B)}{3(A - B)} \) lies in the range \([0, A]\), and thus \(ds/d\theta \) achieves its maximum value at \(X = \frac{A(2A - B)}{3(A - B)} \). Thus, if \(2B \geq A > B \) then

\[
\left(\frac{ds}{d\theta} \right)_{\text{max}} = a
\]

and if \(A > 2B \) then

\[
\left(\frac{ds}{d\theta} \right)_{\text{max}} = \frac{2}{3\sqrt{3}} \frac{(a^2 + b^2)^{3/2}}{ab}.
\]

Equation (5.14), along with equations (5.27) and (5.28) and the value of \(h \), can be used to calculate the maximum value of \(\delta \theta \). The spheroid is now divided up into a number \(M \), of latitudinal bands, and a number \(N \), of longitudinal bands, see figure 5.2 for a sphere, \((A = B)\). The minimum number, \(M \), of latitudinal bands running around the \(z \)-axis of the spheroid,
for a given maximum value of \(h \), i.e. in effect the minimum number of arcs of length \(\delta s \) will then be

\[
M = \frac{\pi}{\delta \theta}.
\]

(5.29)

To have elements that have a diameter no bigger than \(h \), the minimum number, \(N \), of longitudinal bands must be

\[
N = 2M.
\]

(5.30)

The area of each boundary element, \(A_j \), can be calculated by determining the total area of the latitudinal band it is in, and dividing by the total number of longitudinal bands, \(N \), i.e.,

\[
A_j = \frac{2\pi}{N} \int_{\delta_1}^{\delta_2} R \sin \theta Rd\theta \approx 2\pi R \sin \left(\frac{\theta_1 + \theta_2}{2} \right) \delta s,
\]

(5.31)

where \(R \) is the distance from the centre of the spheroid to the midpoint of the boundary element. Thus, the areas of the boundary elements in any latitudinal band will be equal. With the numbering system of the boundary elements as in figure 5.2 the coordinates of the midpoint of element \(j \) (the intersection of the \(m \)th latitudinal band and the \(n \)th longitudinal band) are calculated by

\[
x_j = R \sin \theta_m \cos \phi_n, \\
y_j = R \sin \theta_m \sin \phi_n, \\
z_j = R \cos \theta_m,
\]

(5.32)

for \(m = 1(1)M \), \(n = 1(1)N \) and where \((R, \theta_m, \phi_n)\) are the spherical polar coordinates of the midpoint of element \(j \) given by

\[
\theta_m = (\frac{1}{2} + (m - 1))\delta \theta
\]

(5.33)

and

\[
\phi_n = (n - 1)\delta \phi.
\]

(5.34)

Thus, the midpoints of the first longitudinal band are positioned along the \(z = z \) plane, the first boundary element of this band being positioned at \(\theta = \theta_1 - \delta \theta/2 \). Furthermore, the components of the inward normal (i.e. the
normal directed towards the centre of the spheroid) at these midpoints are given by

\[n_x = -(1 + (|\nabla n|)^2)^{-\frac{1}{2}} \cos \phi_n, \]
\[n_y = -(1 + (|\nabla n|)^2)^{-\frac{1}{2}} \sin \phi_n, \]
\[n_z = -|\nabla n|(1 + (|\nabla n|)^2)^{-\frac{1}{2}}, \]

(5.35)

where the magnitude of the gradient of the normal \(\nabla n \) is calculated by

\[|\nabla n| = \frac{z_{m,n} A^2}{B^2(x_{m,n}^2 + y_{m,n}^2)^{\frac{1}{2}}}. \]

(5.36)

Subroutine GEOSPHEROID found in appendix D calculates, for each element, its area, the coordinates of its midpoint, and the components of the unit normal at its midpoint, for the boundary elements of a spheroid, of major axis radius \(A \), and minor axis radius \(B \).

5.1.2 The second approach

As for the previous section, the surface \(S \) is split into \(T \) boundary elements, \(S_1, S_2, \ldots, S_T \), and equation (2.126) can be written

\[p(r, r_0) = G(r_0, r) - \sum_{k=1}^{T} p(r_s, r_0)G(r_s, r)(\beta(r_s) - \beta_0)ds(r_s), \]

(5.37)

for \(r \in \overline{U}_+ \). If the maximum dimension, \(h \), of each boundary element is small enough so that \(p(r, r_0) \) and \(\beta(r) \) are approximately constant over each element, then equation (5.37) can be approximated as

\[p(r, r_0) = G(r_0, r) - ik_1 \sum_{k=1}^{T} p(r_k, r_0)(\beta(r_k) - \beta_0) \int_{S_k} G(r_s, r)ds(r_s). \]

(5.38)

Now, for \(r \neq r_k \),

\[\int_{S_k} G(r_s, r)ds(r_k) \approx A_k G(r_k, r), \]

(5.39)

where \(A_k \) is the area of element \(S_k \). For \(r = r_k \),

\[\int_{S_k} G(r_s, r)ds(r_k) \approx -\frac{1}{2\pi} \int_{S_k} \frac{1}{|r_s - r_k|} ds(r_s). \]

(5.40)

64
since
\[G(r_s, r_k) \approx \frac{1}{2\pi} \frac{1}{|r_s - r_k|} \] (5.41)
for \(r_s \in S_k \). Analytical expressions for the integral (5.40) when \(S_k \) is a polygon have been given by Birtles [103] and Chandler-Wilde [88].

Thus, the following linear equations are satisfied approximately by the unknown values of \(p(r_j, r_0) \), \(j = 1(1)T \):
\[
p(r_j, r_0) = G(r_0, r_j) + \frac{ik_1}{2\pi} p(r_j, r_0)(\beta(r_j) - \beta_c) \int_{S_j} \frac{1}{|r_s - r_j|} ds(r_s)
- ik_1 \sum_{k=1}^{T} A_k p(r_k, r_0) G(r_k, r_j)(\beta(r_k) - \beta_c),
\] (5.42)
for \(j = 1(1)T \). This set of \(T \) linear equations for the values of \(p \) at the midpoints of the elements can be written in the standard form
\[
\sum_{k=1}^{T} a_{jk} p(r_k, r_0) = G(r_0, r_j),
\] (5.43)
for \(j = 1(1)N \) and where
\[
a_{jk} = \begin{bmatrix} 1 - \frac{ik_1}{2\pi} (\beta(r_j) - \beta_c) \int_{S_j} \frac{1}{|r_s - r_j|} ds(r_s) \end{bmatrix} \delta_{jk}
+ ik_1 A_k G(r_k, r_j)(\beta(r_k) - \beta_c)(1 - \delta_{jk}).
\] (5.44)

The integral over \(S_j \) in equation (5.44) is approximated as
\[
\int_{S_j} \frac{ds(r_s)}{|r_s - r_j|} \approx \int_{\tilde{S}_j} \frac{ds(r_s)}{|r_s - r_j|}
= \int_0^{2\pi} \int_0^\tilde{R} \, dr \, d\theta
= 2\pi \tilde{R},
\] (5.45)
where \(\tilde{S}_j \) is the circle centred on \(r_j \) of the same area as \(S_j \), i.e., \(\tilde{S}_j \) has radius \(\tilde{R} = \sqrt{A_j/\pi} \).

Again, as for the previous section, once values of \(a_{jk} \) are determined, the values of \(p \) at the midpoints of the elements can be calculated. It is then a simple task to calculate values of \(p \) for \(r \in U_+ \) by substitution into
\[
p(r, r_0) = G(r_0, r) - ik_1 \sum_{j=1}^{T} p(r_j, r_0) G(r_j, r)(\beta(r_j) - \beta_c) A_j,
\] (5.46)
obtained by making the approximation (5.39) into (5.38).

5.1.2.1 The scattering surface

In this section, only circular surface inhomogeneities are considered, and expressions for the area of each of the boundary elements along with expressions for the coordinates of the midpoints of these elements are derived.

The mesh generation on the circular surface inhomogeneity must be such that the maximum boundary element diameter is to be no greater than a value h, dependent upon the incident acoustic field, values of which shall be considered in chapter 6. Consider the diagram in figure 5.3. The mesh on the circular surface is formed by dividing the surface into circular bands and sectors. In cylindrical coordinates, where the origin is taken to be at the centre of the circular surface, the circular bands are formed as follows. The interval $[0, r_c]$ (r_c is the radius of the circular surface) is split into M
subintervals, I_1, I_2, \ldots, I_M, where

$$I_i = [(i-1)h, ih],$$

(5.47)

for $i = 1(1)M$ and $h = \tau_C / M$. The sectors are formed by dividing the interval $[0, 2\pi]$ into N subintervals J_1, J_2, \ldots, J_N, where

$$J_j = [(j-1)\theta, j\theta],$$

(5.48)

for $j = 1(1)N$ and $\theta = 2\pi / N$. The area of each element is given by

$$A_{i+(j-1)M} = \theta(i - \frac{1}{2})h^2,$$

(5.49)

for $i = 1(1)M$, $j = 1(1)N$. The coordinates of the midpoint of the boundary element j are

$$x_j = R \cos \theta_j,$$

(5.50)

$$y_j = R \sin \theta_j,$$

(5.51)

and

$$z_j = 0.$$

(5.52)

Subroutine GEOCIRCLE found in appendix D calculates values of area and the coordinates of the midpoints for the boundary elements of a circular surface inhomogeneity.

5.1.3 Matrix structure and solution

With the numbering of the boundary elements of the spheroid as in figure 5.2, and that of the circular surface scatterer as in figure 5.3, then the matrices $[a_{jk}]$ for the solution of the two integral equations have the same structure, and are in fact block-circulant [104], i.e., they are of the form,

$$[a_{jk}] =
\begin{pmatrix}
A_1 & A_2 & \ldots & A_T \\
A_T & A_1 & \ldots & A_{T-1} \\
& & & \\
& & & \\
& & & \\
A_2 & A_3 & \ldots & A_1 \\
\end{pmatrix},$$

(5.53)

67
where each entry of the matrix is itself a square matrix (of dimensions $M \times M$). It is easy to see that a necessary and sufficient condition for a matrix of order $T = M \times N$ to be block circulant, with block entries of order M, is that

$$a_{jk} = a_{(j+M) \mod T,(k+M) \mod T},$$

for $j, k = 1(1)T$ and where

$$\text{mod}_T i = \begin{cases} \ i & \text{for } i = 1(1)T \\ i - T & \text{for } i = T + 1, \ldots, T + M \end{cases}.$$ (5.55)

To show that a_{jk} of equation (5.10) satisfies this condition, consider the element $a_{(j+M) \mod T,(k+M) \mod T} (j, k = 1(1)T)$. For brevity, writing $(j + M)$ for $(j + M)_{\text{mod}_T}$, etc., and noting that $\delta_{(j+M),(k+M)} = \delta_{j,k}$, one has

$$a_{(j+M),(k+M)} = \left[\alpha + \sum_{i=1(i\neq(j+M))}^{T} \frac{\partial G_0(r_i,r_{(j+M)})}{\partial n(r_i)} A_i \right] \delta_{j,k}$$

$$- (1 - \delta_{j,k}) \frac{\partial G_0(r_{(k+M)},r_{(j+M)})}{\partial n(r_{(k+M)})} A_{k+M}.$$ (5.56)

Due to the axi-symmetry of the problem, and the ordering adopted for the elements,

$$A_{(i+M)} = A_i,$$ (5.57)

$$\frac{\partial G_0(r_{(i+M)},r_{(j+M)})}{\partial n(r_{(i+M)})} = \frac{\partial G_0(r_i,r_j)}{\partial n(r_i)},$$ (5.58)

for $i, j = 1(1)T$, so that

$$\sum_{i=1(i\neq(j+M))}^{T+M} \frac{\partial G_0(r_i,r_{(j+M)})}{\partial n(r_i)} = \sum_{i=1+M(i\neq(j+M))}^{T+M} \frac{\partial G_0(r_i,r_{(j+M)})}{\partial n(r_i)} A_i$$

$$= \sum_{i=1}^{T} \frac{\partial G_0(r_i,r_j)}{\partial n(r_i)}.$$ (5.59)

Thus,

$$a_{(j+M) \mod T,(k+M) \mod T} = a_{j,k}.$$ (5.60)

A similar argument shows that a_{jk} of equation (5.44) satisfies the condition for the block circulant structure.
The solution of this matrix type can be carried out by using the subroutine CGSLC of the Toeplitz package, from the Argonne National Laboratory [105].

The boundary element methods detailed above are implemented in a set of subroutines in appendix D. For the first approach, subroutines FSURSPH and FRECSPH found in appendix D calculate values of pressure on the surface of a spheroid and at a receiver point in the upper medium, respectively. For the second approach, subroutines FSURCIR and FRECCIR calculate values of pressure on the surface of a circular surface inhomogeneity and at a receiver point in the upper medium, respectively.

5.2 Numerical tests and comparisons

5.2.1 Effect of element sizes

It has been seen that the boundary element methods for the solution of the boundary integral equations require that the scattering surfaces are divided into a number of elements, and that, with correct numbering of these elements, matrices are produced that have a particular useful structure. The order of each matrix is equal to the number of elements on the scattering surface, and it will be seen that the number of elements, in turn, is dependent upon the frequency of the acoustic field being considered. Thus, it is important to establish the element sizes on the scattering surfaces that allow accurate calculations to be made. Element sizes that are too small, although giving accurate results, would result in a large number of matrix elements, involving a large computational cost for solution; on the other hand, elements that are too large would give inaccurate results.

The method used here, to establish reasonable element sizes, is to compare numerical results with classical theory; and here the classical theory is that of scattering of an incident plane wave by a rigid sphere in an infinite homogeneous medium [84], expressions for which have been presented in appendix B. If, in equation (2.104), $k_1 = k_2$ and $Z_1 = Z_2$, then this equation predicts the scattering of an incident spherical wave by a rigid inhomogene-
Figure 5.4 Theoretical source/receiver configuration for comparison of a boundary element method with classical scattering by a rigid sphere. The sphere has a radius of 0.5m, the propagating medium having a wavenumber \(k = (5.0 + 0.05i)/m \).

ity in an infinite homogeneous medium (appendix A gives a full derivation of the boundary integral equation when the rigid inhomogeneity is in an infinite homogeneous medium). This means that if the source is positioned sufficiently far from the inhomogeneity, such that the incident field at the inhomogeneity is effectively plane, then a direct comparison with the results from classical theory can be made. Figure 5.4 shows the source/receiver configuration used for a rigid sphere in an infinite homogeneous porous medium, and table 5.1 shows values of the ratio of the scattered field to the direct field at several points close to a rigid sphere of radius 0.5m in an infinite absorbing medium having a propagation constant of \(k = (5.0 + 0.05i)/m \), calculated by numerically solving the integral equation (A.7). The coordinates of the source, in metres, are (0,0,-1000), where the centre of the sphere is taken as the origin. Also shown in this table is the relative error, \(E_{BC} \) in the scattered field calculated by the boundary element method, i.e.,

\[
E_{BC} = \left| \frac{p^b_k - p_s^i}{p_s^i} \right|
\]

where \(p^b_k \) and \(p_s^i \) are the scattered pressures calculated by the boundary element method and the classical theory respectively. The graph in figure 5.5 shows this error versus element size for the receiver position (0,0,1). It
Table 5.1 Comparison of the values of the ratio of the scattered to the direct pressure field at various receiver positions as calculated by using the boundary element method to those calculated by using classical theory for a rigid sphere in an infinite absorbing medium. The propagation constant for the medium is \(k = (5.0 + 0.05i)/m \); the sphere radius is 0.5m. For the boundary element method, the coordinates of the source, in metres, are (0, 0, -1000), the origin being at the centre of the sphere, see figure 5.4. Also shown is the error, \(E_{BC} \).
can be seen that the graph is not smooth. This is due to the fact that the number of elements in a longitudinal band, M, is calculated by taking the modulus of a real number, giving the stepped feature of the graph.

It can be seen that, as the element sizes are decreased, there is a gradual convergence of values to those calculated by the classical results: i.e., for small enough element sizes, the boundary element method compares favourably with the classical results. Furthermore, element sizes of the order 0.2λ (where $\lambda = 2\pi/|k_d|$) have a relative error of about 1-2 percent, sufficient to give reasonable results.

Now consider the source/receiver configuration of figure 5.6, which shows a sphere of radius 0.125m, embedded at a depth, $d = 0.01$m (the depth being the closest point of the sphere to the plane boundary), within a rigid porous medium characterised by the four parameters $\sigma = 100000\text{N.s.m}^{-4}$, $\Omega = 0.4$, $s_j = 0.75$ and $n' = 1$. At the frequency of 500Hz, the refractive index has a value of $n = 2.5703 + 1.6575i$. Table 5.2 shows the results for the ratio of the scattered field to the direct field p_s/p_d calculated at several points near to the plane boundary above the embedded sphere. Also shown is the relative error E_{BB} in the scattered field calculated by the boundary element method.
<table>
<thead>
<tr>
<th>Receiver position / m</th>
<th>$\frac{h = 1/\lambda}{M = 2, N = 4}$</th>
<th>$\frac{h = 0.5/\lambda}{M = 4, N = 8}$</th>
<th>$\frac{h = 0.25/\lambda}{M = 8, N = 15}$</th>
<th>$\frac{h = 0.125/\lambda}{M = 15, N = 30}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>y</td>
<td>z</td>
<td>p_x/p_d</td>
<td>E_{BB}</td>
</tr>
<tr>
<td>-0.1</td>
<td>0</td>
<td>0.335</td>
<td>-0.0079 - 0.0067i</td>
<td>1.3015</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0.335</td>
<td>-0.0229 + 0.0044i</td>
<td>1.5230</td>
</tr>
<tr>
<td>0.1</td>
<td>0</td>
<td>0.335</td>
<td>-0.0228 + 0.0248i</td>
<td>1.6316</td>
</tr>
<tr>
<td>0.2</td>
<td>0</td>
<td>0.335</td>
<td>-0.0118 + 0.0350i</td>
<td>1.6193</td>
</tr>
<tr>
<td>0</td>
<td>0.1</td>
<td>0.335</td>
<td>-0.0234 + 0.0064i</td>
<td>1.4769</td>
</tr>
<tr>
<td>0</td>
<td>0.2</td>
<td>0.335</td>
<td>-0.0227 + 0.0094i</td>
<td>1.3698</td>
</tr>
</tbody>
</table>

Table 5.2: Variation of the ratio of the scattered to the direct pressure field at various receiver positions with decreasing element size for a rigid sphere embedded within a rigid porous medium. The coordinates, in metres, of the source is (-0.2, 0, 0.335), the origin being at the centre of the sphere; see figure 5.6; the sphere has a radius of 0.125m and is embedded at a depth $d = 0.01$m; the medium is characterised by the four parameters $\sigma = 10000$ N.s.m.$^{-4}$, $\Omega = 0.4$, $s_f = 0.75$ and $n' = 1$, and the frequency is 500Hz. Also shown is the error, E_{BB}.
method, i.e.,

\[E_{BB} = \left| \frac{p_s^f - p_d^f}{p_s^f} \right|, \]

(5.62)

where \(p_s^f \) is an accurate boundary element method calculation of the scattered pressure with a very small element size of \(h = 0.0625\lambda \). (The comparison with this fine mesh boundary element method result is made in the absence of a comparable classical or analytical result.) It can be seen in table 5.2 that the ratio \(p_s/p_d \) gradually converges with decreasing element size. Furthermore, as indicated by the initial test for scattering of plane waves by a sphere in an infinite medium, element sizes with \(h \approx 0.2\lambda \) are adequate in terms of accuracy and computational time. Similar results can be obtained for a disk embedded within a rigid porous medium, giving similar conclusions. The suggestion that an element size of \(h \approx 0.2\lambda \) is adequate has been made previously [88]. This value of \(h \) shall be used in all subsequent calculations.
5.2.2 Validation of the boundary element methods

It was seen in the previous section that the numerical methods converged for decreasing element size. This does not mean necessarily that the methods are giving correct and meaningful results, and it is the purpose of this section to validate these methods.

Table 5.3 and 5.4 show the results of calculating the ratio of the total to the direct pressure field by using the boundary element methods for a sphere (the first approach) and for a disk (the second approach) embedded within a rigid porous medium for various radii of both sphere and disk with a constant depth of \(d = 0.01 \text{m} \) as shown in figure 5.7.

Ratios at two receiver positions were calculated, the first at a position of 0.2m from the plane boundary above the centre of the scatterer, and the second at the midpoint of the first element of the meshes used in both numerical solutions. This means that this second receiver point varies slightly with position according to the radius of the scatterer considered; however, initial tests have shown that this variation is small and can be ignored here.
Table 5.3 Variation of the ratio of the total to direct pressure field with radius of embedded sphere at two receiver positions where the refractive index, $n = 1$, and the relative impedance $\zeta = 1$. Position (a) is at the midpoint of the first element of the sphere; position (b) is at 0.2m above the plane boundary; the source is at 100.0m above the plane boundary - see figure 5.7. The depth of the sphere $d = 0.01m$. For comparison, Approx.1 is a simple calculation for transmission into a rigidly backed layer with plane wave incidence.

<table>
<thead>
<tr>
<th>Radius / m</th>
<th>Position (a)</th>
<th>Position (b)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Two media case</td>
<td>One medium case</td>
</tr>
<tr>
<td>1×10^{-5}</td>
<td>$1.0000 + 0.0000i$</td>
<td>$1.0000 + 0.0000i$</td>
</tr>
<tr>
<td>1×10^{-4}</td>
<td>$1.0000 + 0.0000i$</td>
<td>$1.0000 + 0.0000i$</td>
</tr>
<tr>
<td>1×10^{-3}</td>
<td>$1.0000 + 0.0000i$</td>
<td>$1.0000 + 0.0000i$</td>
</tr>
<tr>
<td>1×10^{-2}</td>
<td>$0.9992 - 0.0002i$</td>
<td>$0.9990 - 0.0009i$</td>
</tr>
<tr>
<td>1×10^{-1}</td>
<td>$1.5099 - 0.4353i$</td>
<td>$1.5099 - 0.4353i$</td>
</tr>
<tr>
<td>2×10^{-1}</td>
<td>$1.7594 - 0.3353i$</td>
<td>$1.7594 - 0.3353i$</td>
</tr>
<tr>
<td>4×10^{-1}</td>
<td>$1.9068 - 0.2315i$</td>
<td>$1.9068 - 0.2315i$</td>
</tr>
<tr>
<td>8×10^{-1}</td>
<td>$1.9670 - 0.1683i$</td>
<td>$1.9620 - 0.1365i$</td>
</tr>
</tbody>
</table>

Approx.1 | 2.0000-0.0000 | 1.6453+0.7640i

With the source positioned at 100.0m from the plane boundary above the centre of the scatterers, comparisons can be made with values of ratios calculated using a simple (plane wave) theory for transmission through a layer [106] (Approx.1 in the tables), and secondly, a theory which considers a boundary integral equation for scattering by an embedded sphere of infinite radius [107], which is summarised in appendix A.2 (Approx.2 in the tables).

Table 5.3 shows the results for the special case where the refractive index $n = 1$ and the relative impedance $\zeta = 1$. For comparison, equivalent results for a sphere in an infinite medium calculated by solving the inte-
gral equation (A.7) are shown. The calculation of pressure fields by this method involves using free-field Green's functions, whereas the method here involves the Green's function for transmission across a plane boundary. This approximation requires that \(|n^2| > 1\), which, of course, is not satisfied. It can be seen that with increasing sphere radius, there is gradual convergence of values to that for the simple plane wave theory.

Table 5.4 shows the results for a sphere and disk embedded within a rigid porous medium, characterised by the four parameters \(\sigma = 100,000\text{N.s.m}^{-4}\), \(\Omega = 0.4\), \(s_f = 0.75\) and \(n^4 = 1\), at the frequency of 500Hz. For position (a), the results for the sphere show a gradual convergence to those for the simple plane wave theory (Approx.1) and to the values for the approximation for an embedded sphere of infinite radius. For position (b), the results for the sphere also show a convergence, but fall well short of Approx.1. For the receiver at position (b), the sphere must have a large radius for the results to approach the approximation. The results for the disk do not show a smooth convergence to those of Approx.1.

5.3 Summary

This chapter has been concerned with the numerical solution of the boundary integral equations derived in chapter 2, by a simple boundary element method. It has been seen that with careful choice of the shape of the scatterers, and with correct numbering of the elements on the scatterers, the resulting linear equations had a coefficient matrix that is *Block-Circulant*. This leads to savings both in computer storage and calculation time.

The scatterer shape chosen for the first approach was a *spheroid*, and for the second, a *circular* surface inhomogeneity. These choices gave scope for testing the theory against classical results. Such tests were presented in section 5.2. The first test, which gave an indication of the size of elements to be used, involved comparing a boundary element method for calculating the field scattered by a sphere in an infinite absorbing medium, with values calculated by classical results. With the source for the boundary element
method positioned sufficiently far from the sphere, such that the incident field at the sphere was effectively plane, such a comparison with the classical results, which involved plane wave incidence, could be made. It was seen that for the different receiver positions, there was convergence of the boundary element method to the classical results. A similar test was then carried out for a sphere embedded within a rigid porous medium and it was confirmed that an element size of $h = 0.2\lambda$ was sufficient for calculations, where $\lambda = \frac{2\pi}{|k_2|}$, and k_2 is the wavenumber of the lower medium.

With the element size determined, section 5.2.2 was concerned with validating the boundary element methods, by a straightforward comparison with some simple plane wave theory approximations and an approximation for an integral equation for an embedded sphere of infinite radius. These limited tests demonstrate that the boundary element methods may be used with some confidence.
<table>
<thead>
<tr>
<th>Radius / m</th>
<th>Position (a)</th>
<th>Position (b)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sphere</td>
<td>Disk</td>
</tr>
<tr>
<td>1×10^{-8}</td>
<td>1.4471 + 0.3186i</td>
<td>-</td>
</tr>
<tr>
<td>1×10^{-4}</td>
<td>1.4447 + 0.3301i</td>
<td>-</td>
</tr>
<tr>
<td>1×10^{-3}</td>
<td>1.4214 + 0.3313i</td>
<td>-</td>
</tr>
<tr>
<td>1×10^{-2}</td>
<td>1.2115 + 0.4523i</td>
<td>-</td>
</tr>
<tr>
<td>1×10^{-1}</td>
<td>1.7600 + 0.0621i</td>
<td>-</td>
</tr>
<tr>
<td>2×10^{-1}</td>
<td>1.7289 + 0.0028i</td>
<td>-</td>
</tr>
<tr>
<td>4×10^{-1}</td>
<td>1.6897 - 0.0152i</td>
<td>-</td>
</tr>
<tr>
<td>8×10^{-1}</td>
<td>1.6684 - 0.0175i</td>
<td>-</td>
</tr>
<tr>
<td>Approx.1</td>
<td>2.0189 - 0.0115i</td>
<td>-</td>
</tr>
<tr>
<td>Approx.2</td>
<td>1.7870 - 0.0180i</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 5.4 Variation of the ratio of the total to direct pressure field with radius of embedded scatterer (sphere and disk) at two receiver positions. Position (a) is at the midpoint of the first element of the scatterer; position (b) is at 0.2m above the plane boundary between air and a rigid porous medium characterised by the four parameters $\sigma = 100,000\text{N.s.m}^{-4}$, $\Omega = 0.4$; $\sigma_f = 0.75$ and $n' = 1$; the source is at 100.0m above the plane boundary - see figure 5.7. Depth, $d = 0.01\text{m}$, frequency=500Hz. For comparison, Approx.1 is a simple calculation for transmission into a rigidly backed layer with plane wave incidence; Approx.2 is an approximation for an embedded sphere of infinite radius.
Chapter 6

Experimental method

In this and the following chapter, a description of the experimental part of this study is given. The actual experiments and their results together with the comparison with theory are left to chapter 7. In this chapter, the equipment, its specification, arrangement, and calibration are described.

6.1 Experimental procedure

The aim of the experiments was to investigate the accuracy of theoretical predictions of sound scattering by oblate spheroids and circular disks embedded within various test media. The choice of the various experimental parameters was such as to allow direct comparison, as far as possible, with the theoretical predictions, whilst being constrained by the physical limits of the sample tray and anechoic chamber.

The experimental procedure used was to measure and then Fourier analyse, the instantaneous difference in sound pressure between two vertically separated microphones at a horizontal distance from a sound source over the surface of interest (see figure 6.1), thus obtaining a level difference spectrum. The level difference ($L.D.$) is defined as

$$L.D. = 20 \log_{10} \left(\frac{\text{Sound pressure at upper receiver}}{\text{Sound pressure at lower receiver}} \right),$$

(6.1)

and is determined, at any particular frequency, by calculating the difference in the sound pressure levels between the two microphones, i.e. the magnitude
Figure 6.1 Source/receivers configuration for the measurement of level difference over a porous medium.

of the transfer function between the two microphones. It is related to the excess attenuation (E.A.) from a point source, by

\[L.D. = E.A.\text{Top receiver} - E.A.\text{Bottom receiver}, \]

excess attenuation being defined as

\[E.A. = 20\log_{10} \left(\frac{\text{Total sound pressure at receiver}}{\text{Direct sound pressure contribution at receiver}} \right). \]

Figure 6.2 shows experimentally measured level difference spectra over a rigid (acoustically hard) surface for the configuration of figure 6.1. Two vertically separated microphones, with the top microphone at a fixed height of \(z_b = 0.2m \) above the rigid surface were placed at a horizontal distance of \(s = 0.4m \) from a source of sound, also at a fixed height of \(z_0 = 0.2m \) above the rigid surface, emitting a continuous broadband signal. It can be seen that increasing the height of the lower microphone results in considerable changes in the spectra.

The observed maxima and minima are the result of interference between the direct and surface reflected path contributions, and so changes in the interference are due to the source or microphone heights. This becomes more clear by first considering excess attenuation spectra, where \(R \) and \(R' \) are as defined in figure 6.3. At certain frequencies, the path length difference \(R - R' \) will be such that there will be more or less complete destructive interference;
Figure 6.2 Variation of experimentally measured level difference spectra with the lower microphone height, for propagation over a rigid surface. Source/receivers configuration as for figure 6.1 with $z_0 = 0.2\text{m}$, $s = 0.4\text{m}$, $z_b = 0.2\text{m}$, and $z_a = (a) \ 0.05\text{m}, (b) \ 0.1\text{m}$ and (c)0.15m.

Figure 6.3 Direct and surface reflected ray paths.
these frequencies, f_n, can be calculated using the expression, valid for a rigid reflecting surface,
\[
\frac{2\pi f_n}{c} (R' - R) = n\pi,
\]
for $n = 1, 2, \ldots, c$ being the wave propagation velocity. If the surface is porous, a phase term has to be added to the left hand side of equation (6.4). Depending on the position of the lower and upper receivers, it is clear that the level difference spectra will also give such minima and maxima.

Figure 6.4 shows what happens to the excess attenuation spectrum when the receiver height is varied. It can be seen from figure 6.3 and equation (6.4), that decreasing the receiver height reduces the path length difference between the direct and reflected paths, thus shifting the minima and maxima to higher frequencies, and this is what is shown in figure 6.4 (b) where decreasing the receiver height, reduces the path length difference. Also shown are the resultant level difference spectra calculated from subtracting each excess attenuation spectrum at the lower position from that at the higher position; these level difference spectra can be compared directly with the experimental results in figure 6.2. For a very low receiver height, the first minimum in the excess attenuation spectrum is at a high frequency. This means that the level difference spectrum that most resembles the excess attenuation spectrum for the top receiver is when the lowest receiver is at its lowest position. This observation has been made previously by Embleton and Piercy [97].

In the theoretical calculations, the source is assumed to be a perfect monopole source of sound, with no variation in directivity, and to emit a white noise spectrum. In contrast to this, the sound source used for the experiments will have some variation both in its directivity and in its frequency range. These effects cancel when measuring level difference but must be considered when measuring excess attenuation.

For the same source/receivers configuration, the level difference spectra will vary for different ground types. Not only will the maxima and minima in the spectra for the absorbing ground shift in frequency, but the magnitudes of the maxima and minima will also vary compared to those for a rigid
Figure 6.4 Variation of theoretical excess attenuation spectra with height of the receiver for propagation over a rigid surface. Source/receiver configuration as in figure 6.1. (a) $z_0 = 0.2\text{m}$, $s = 0.4\text{m}$ and $z = 0.2\text{m}$; (b) $z_0 = 0.2\text{m}$, $s = 0.4\text{m}$ and $z = (1)0.05\text{m}, (2)0.1\text{m}$ and (3)0.15m; (c) the resultant level difference spectra $z_0 = 0.2\text{m}$, $s = 0.4\text{m}$, $z_0 = 0.2\text{m}$ and $z_0 = (1)0.05\text{m}, (2)0.1\text{m}$ and (3)0.15m.
surface. It will be seen in the following chapter that for given source/receiver configurations, the level difference spectra above the surfaces of the three different propagating media considered, vary quite considerably.

It has been argued that the level difference spectrum displays a series of maxima and minima, the frequency positions of which are dependent upon the source/receiver configurations and ground parameters. Further, it is the maxima and minima of the spectra that are most sensitive to variation in the ground parameters. For the purposes of the present study the first minimum was to occur at approximately 1kHz.

This imposed the first constraint on the source/receiver configuration. The next constraint was size. The size of the sample tray was designed so that it fitted snugly and centrally in the anechoic chamber, the plan dimensions of the sample tray being 1.8 x 1.2m², with a depth of 0.3m. The maximum usable area, however, was much reduced to avoid spurious reflections from the tray edges. Thus, the scatterers had to have a horizontal dimension of much less than 1.2m and a vertical dimension of much less than 0.3m. With these constraints in mind, a source/receiver configuration of $z_0 = 0.2m$, $s = 0.4m$, $z_b = 0.2m$, and $z_a = 0.05m$ was chosen for the present study. Such a configuration has been used in the examples of this section.

6.2 Experimental apparatus

6.2.1 The sample tray and gantry

All experiments were performed in the Faculty of Technology anechoic chamber at The Open University. Figure 6.5 shows a floor plan of the anechoic chamber including the position of the sample tray. Figure 6.6 shows the experimental arrangement of source, microphones, sample tray and gantry arrangement within the anechoic chamber. Within the anechoic chamber was positioned a sample tray 1.8 x 1.2m², the depth being 0.3m. On two rails running the length of the tray was mounted a gantry. The gantry comprised two trolleys, one moving the length of the tray, and a second, mounted on the first, running the width of the tray. From this second
Figure 6.5 Floor plan of the Faculty of Technology anechoic chamber. Plan shows the outline of the sample tray.

trolley, a vertical shaft supported the speaker and from the first trolley, a vertical shaft supporting two microphones. This arrangement allowed the source and microphones considerable freedom for movement.

With the exception of the vertical motion, the position of the source and receivers was controlled by stepping motors instructed by computer. This allowed measurements to be made at numerous locations swiftly and accurately. The relative linear accuracy of the source/receiver position was 0.005m. Absolute accuracy was ensured by linear scales, positioned adjacent to the rails and by a mechanical stop. All supports for the source and microphones were designed so as to minimise reflective surfaces, whilst maintaining a rigid structure. Before any experiments with the propagating media and scatterers were performed, measurements were carried out to check that the structure did not give spurious reflections.

The author was fortunate enough to inherit the main sections of the gantry system. Supports for the microphones and speaker were designed to the author's specification. Full details of the gantry and the anechoic
Figure 6.6 Photograph of the sample tray and gantry arrangement.
chamber may be found in [108].

6.2.2 The transmission and reception system

A schematic diagram of the transmission and reception system used for this study is shown in figure 6.7.

![Schematic diagram of the transmission and reception system.](image)

Figure 6.7 Schematic diagram of the transmission and reception system.

6.2.2.1 The transmission system

For the measurement of level difference, the sound source had to emit an axisymmetric sound field, with a broad-band signal sufficiently above background and electronic noise.

For the purpose of this study, the white noise from a Brüel and Kjær type 1405 noise generator was used to generate this signal. This generator was able to produce a white noise output over the frequency range 20Hz to 100kHz, which was more than sufficient. The output from this generator was then passed to a Brüel and Kjær type 5612 spectrum shaper set with a
bandpass of 100Hz to 10kHz. Amplification of this signal was then provided directly by a 75 W, 0-40dB variable gain Brüel and Kjær power amplifier, having a flat transfer function over the frequency range 10Hz to 20kHz, which was again, more than sufficient. Finally, the sound source used, to which the amplified signal was passed, was a 40W Tannoy P4 driver unit with the exponential horn removed and replaced by an acoustically-damped hollow brass tube, as shown in figure 6.8. The tube consisted of a main shaft with an internal diameter 1.7cm, external diameter 1.9cm. For comparison of measured and theoretical level difference spectra, it is required that the field emitted by the source is spherical or omnidirectional. In practice, such perfect omnidirectional sources do not exist. The brass tube used here produced an axisymmetric field, and this property is used to minimise the distortion in the measured level difference due to departure from perfect sphericity. Figure 6.9 shows the direct and reflected rays arriving at the two microphones in propagating over a homogeneous surface from the tube source. The angle the axis of symmetry subtended to the vertical, ϕ, was chosen so that γ_1 and γ_2 were approximately equal. For the configurations used, this angle was approximately 67.5 degrees.

6.2.2.2 The reception system

For reception of signals in the frequency range 100Hz to 10kHz, Brüel and Kjær 4165 0.5 inch measuring microphones were used. The size refers to the
nominal diaphragm diameter. This choice was made because the diaphragm size was small compared with the wavelength of the received sound wave (34.3 mm at 10kHz) to ensure omni-directional reception and that changes in the sound pressure field are small over the diaphragm area, but large enough to ensure good sensitivity. The frequency response is quoted as ±2 dB over 2.6Hz to 20kHz, more than adequate. The microphones were used in conjunction with Brüel and Kjær 2619 microphone preamplifiers having a frequency range 2Hz to 200 kHz.

The preamplifiers were connected to a Brüel and Kjær 2807 microphone power supply, which provided the necessary polarization voltage to the microphones. The amplified signals were then passed to the Ono Sokki 920 dual channel FFT analyser, which, at the frequency range 100Hz to 10kHz used in this study, samples the input voltage at 25.6 kHz. After reading in 1024 samples (i.e. after about 0.04 seconds at this sampling rate), there is a pause in data collection while the fast fourier transform is calculated. The continuous nature of the analysed signal required the use of the Hanning window. A 400 line power spectrum is then calculated: i.e., the voltages in adjacent 25Hz bands are calculated from 0 to 10kHz. The transfer function is subsequently calculated from the two signals. For the experiments performed in this study, 64 consecutive transfer function spectra were averaged, to eliminate the effects of noise, such as source spectrum variations, receiver noise, etc.
The complete reception system was calibrated by using a Brüel and Kjær 4230 calibrator, providing a 1kHz tone at a sound pressure level of 94dB.

6.3 The scatterers

The scatterers were designed and made to the author’s specification. Two types of scatterers were made to enable direct comparison with the theory for scattering by embedded oblate spheroids, and with that for scattering by disks.

Figure 6.10 shows an example of the hemi oblate spheroids constructed by the Engineering Mechanics Discipline workshop, from laminated wood. The photograph in figure 6.11 shows the laminated wood construction. All the hemi oblate spheroids used had a fixed major radius of 12.5 cm with the minor radius varying from 2.5cm to 12.5cm in 2.5cm increments. The tolerance was quoted as 0.25cm either side of the 'true' shape.

The second type of scatterer was constructed from 1.25mm thick mild steel sheets cut into circular disks of radii 5cm to 12.5cm in 2.5cm increments. A photograph of a typical circular disk used is shown in figure 6.12.
Figure 6.11 Photograph of a typical hemi oblate spheroid used in this study.

Figure 6.12 Photograph of an example mild steel circular disk used in this study.
6.4 The propagating media

Three different propagating media were used in this study, the physical properties of which are shown in table 6.1. The flow resistivity and porosity of each medium was measured by using the methods described by Hess [13], and the results for these measurements are shown in table 6.1, along with the assumed values of grain shape factor and pore shape factor ratio, for predictions using the four parameter model of Attenborough [3].

Table 6.1 Measured and assumed constants of the propagating media. $\sigma =$ flow resistivity, $\Omega =$ porosity, $n' =$ grain shape factor, $s_f =$ pore shape factor ratio $\dagger =$ predicted.

<table>
<thead>
<tr>
<th></th>
<th>Gravel</th>
<th>Foam</th>
<th>Fibreglass</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ</td>
<td>9568.0</td>
<td>4090.0</td>
<td>28660.0</td>
</tr>
<tr>
<td>Ω</td>
<td>0.4</td>
<td>0.9 \dagger</td>
<td>0.8 \dagger</td>
</tr>
<tr>
<td>n'</td>
<td>0.5 \dagger</td>
<td>1.0 \dagger</td>
<td>1.0 \dagger</td>
</tr>
<tr>
<td>s_f</td>
<td>1.0 \dagger</td>
<td>1.0 \dagger</td>
<td>1.0 \dagger</td>
</tr>
</tbody>
</table>

The gravel used was supplied by Erith Building Supplies, Bletchley, Milton Keynes, and was a pea-gravel of nominal grain diameter 3/8 inch. This was found to be acoustically heterogeneous, a continual problem during the experiments being its uneven settling. To provide as uniform and consistent a gravel bed as possible, before all measurements were performed and each time the gravel was disturbed as a result of burying the scatterers, the gravel in the vicinity of the scatterers was loosened with a fork. Although tedious, this ensured that the gravel gave consistent results for each set of measurements. The gravel was contained within and completely filled the sample tray.

The Fibreglass used in this study consisted of $1.2 \times 0.9 \text{m}^2$, 0.05m thick
Pilkington S300 Crown slabs. To give as homogeneous a propagating medium as possible, twelve slabs were placed adjacent to each other on two sheets of Perspex on top of the sample tray, within the anechoic chamber, as shown in figure 6.13. The slabs were sufficiently uniform in shape that they could be placed adjacent to each other. Section 6.3 described the circular disks used; these were designed such that they could be inserted between the layers of fibreglass with ease, eliminating the necessity to modify the slabs to accommodate the disks. To bury the disks to a fraction of a slab thickness, grooves were cut into the slabs using a sharp knife, and the disks carefully inserted into these.

The polyurethane foam used in this study consisted of two 0.98 x 0.67 m², 0.2m deep slabs, which were sufficiently uniform in shape that they could be placed on the Perspex sheets on the top of the sample tray.

Again the circular disks were used in conjunction with the foam as the scatterers. Here though, two semicircular shapes of radius 12.5 cm were cut out of the two adjacent slabs. The two semi-circular shapes were then cut into slices, the circular disks then being inserted between these foam slices.
Figure 6.14 Side elevation and plan view of the polyurethane foam slabs.
Chapter 7

Results

In this chapter, the experimental measurements of the field scattered by the scatterers embedded within the various media described in the previous chapter, are presented. The measurements were designed to test the validity of the theory in the light of the various approximations made.

Prior to these measurements, a series of numerical tests were conducted on the models, to assess their validity under various limits, in particular that firstly, the prediction of excess attenuation spectra above oblate spheroids and disks in rigid porous media, with large values of radii converge to known results for a rigidly backed layer, and that for small values of radii, the predictions converge to those for the homogeneous case; and secondly, the prediction of excess attenuation spectra above oblate spheroids and disks in rigid porous media converges to that for the homogeneous case as the depth of the upper scatterer surface is increased. These test are considered in section 7.1. This section is then followed by a description of experimental results with the chapter being concluded by a summary.

7.1 Theoretical results

It has been shown in chapter 5 has shown that when the source is taken to large distances above the plane boundary, the ratio of scattered to direct pressure field is observed to converge to simple results given by plane wave theory. The purpose of the work described in this section was to determine
the influence of the near-surface scatterers when the source and receiver are close to the plane boundary, and figure 7.1 shows the source/receiver configuration that is going to be considered throughout this section. The source and receiver are at heights z_0 and z_b respectively above the plane boundary, separated by a distance, s. An oblate spheroid is embedded within the rigid porous medium, its centre directly below the origin, at a depth D beneath the plane boundary. Also shown is the depth d which represents the closest point of the scatterer surface to the plane boundary. A rigid disk is also shown in the diagram. For all results, except figures 7.15, 7.16 and 7.17, the centre of the scatterer is directly below the point midway between the source and the receiver.

By using the dependence of boundary properties given by the four parameter model, (equations (3.63),(3.64) and (3.65)), it has been shown [13] that the most important parameter in these equations is the flow resistivity, σ. In these initial tests of the models, the medium was defined as having porosity $\Omega = 0.4$, flow resistivity, $\sigma = 10,000 \text{N.s.m}^{-4}$, grain shape factor, $n' = 1$ and pore shape factor ratio, $s_p = 0.75$. Attenborough [98] gives a value of $\sigma = 100,000 \text{N.s.m}^{-4}$ as typical of soils. This value, however, is a too highly attenuating medium for the present study; the scattered field is too weak to be detected.

Firstly consider the variation of the magnitude of the ratio of the scattered field to the total field with source/receiver separation, at a frequency of 1kHz, defined by

$$\text{Magnitude} = 20 \log_{10} \left| \frac{P_{\text{scat}}}{P_{\text{dir}}} \right|,$$

as shown in figure 7.2. It is found that when the separation s is small, the ratio has a very small value, but as the separation is increased this ratio increases, eventually tailing off with further increase in separation. This is straightforward to interpret. For small separations, the field at the receiver is dominated by the direct field, swamping any other contributions. With increasing separation, the direct field diminishes at a rate of 6dB per doubling of distance and other contributions including that from the scatterer become more important. With source and receiver heights of $z_0 = z_b = 0.2 \text{m}$, the
Figure 7.1 Theoretical source/receiver configuration for the prediction of excess attenuation.

Figure 7.2 Variation of the theoretical ratio of the scattered field to the direct field at 1kHz with source/receiver separation above an oblate spheroid embedded within a rigid porous medium. The oblate spheroid (major axis radius=0.125m, minor axis radius=0.025m) is embedded at a depth $d = 0.01$m. See figure 7.1. The medium is characterised by the four parameters, $\sigma = 10,000\text{N.s.m}^{-4}$, $\Omega = 0.4$, $s_f = 0.75$ and $n' = 1$. (a) Source/receiver height $z_0 = z_b = 0.4$m, (b) source/receiver height $z_0 = z_b = 0.2$m, and (c) source/receiver height $z_0 = z_b = 0.1$m.
greatest contributions occur when the source/receiver separation $s = 0.4$ m. This probably corresponds to the geometry at which direct and ground reflected components interfere destructively at the particular frequency 1000 Hz. Consequently, this source/receiver configuration has been chosen for a series of numerical tests to determine the influence of near-surface inhomogeneities below a porous ground surface on the sound propagation from point source to receiver.

Consider first the case of propagation over a rigidly backed layer. Figure 7.3 shows the variation of excess attenuation spectra as the layer depth is varied, where the flow resistivity has a value of $10,000 \text{N.s.m}^{-4}$. It can be seen that with increasing layer depth, from 0.01 m to 0.16 m, the frequency of the first minimum decreases and becomes more shallow. It is also observed that the second minimum becomes less pronounced but increases in frequency. Eventually, with increasing depth, the excess attenuation spectrum above the rigidly backed layer converges to the spectrum for the homogeneous case. In contrast to this, figure 7.4 shows similar results but for a medium in which the flow resistivity has been increased to a value of $100,000 \text{N.s.m}^{-4}$.

Figure 7.3 Variation of theoretical excess attenuation spectra with layer depth for a low flow resistive rigidly backed layer. The source/receiver height $z_0 = z_b = 0.2$ m and the source/receiver separation $s = 0.4$ m see figure 7.1. The medium is characterised by the four parameters, $\sigma = 10,000 \text{N.s.m}^{-4}$, $\Omega = 0.4$, $s_f = 0.75$ and $n' = 1$. (a) Homogeneous (dashed), (b) layer depth $d = 0.01$ m, (c) layer depth $d = 0.08$ m, and (d) layer depth $d = 0.16$ m.

the flow resistivity has been increased to a value of $100,000 \text{N.s.m}^{-4}$. The
higher attenuation associated with this higher flow resistivity, means that
the excess attenuation spectrum above a layer depth of 0.16m or greater
is almost indistinguishable from that of the homogeneous case (and is not
shown in the diagram). The greatest depth shown is $d = 0.04m$. The same
trend as for the lower flow resistivity case occurs, but much more rapidly.

![Diagram](image)

Figure 7.4 Variation of theoretical excess attenuation spectra with layer
depth for a high flow resistive rigidly backed layer. The source/receiver
height $z_0 = z_b = 0.2m$ and the source/receiver separation $s = 0.4m$
see figure 7.1. The medium is characterised by the four parameters,
$\sigma = 100,000N.s.m^{-4}$, $\Omega = 0.4$, $s_f = 0.75$ and $n' = 1$. (a) Homogeneous
(dashed), (b) layer depth $d = 0.01m$, (c) layer depth $d = 0.02m$, and (d) layer
depth $d = 0.04m$.

Under certain conditions, the excess attenuation spectra for propagation
above a rigid porous medium in which is embedded an oblate spheroid show
similar results to those for the rigidly backed layer. Figure 7.5 shows the
variation of excess attenuation spectra as the major axis radius of the oblate
spheroid is increased, from 0.05m to 0.2m, while keeping the minor axis
radius constant at 0.05m and the depth d constant at 0.01m. This, in effect,
is flattening the oblate spheroid. Also shown are the spectra for propagation
above a homogeneous medium and above a rigidly backed layer, with the
layer depth, $d = 0.01m$. When the major axis radius has its smallest value
and the scatterer is spherical, the excess attenuation spectrum is almost
indistinguishable from that of a homogeneous medium. However, as the
major axis radius of the oblate spheroid is increased, it can be seen that the first and subsequent minima in the excess attenuation spectra become deeper and move towards to those predicted for propagation above a rigidly backed layer.

Figure 7.5 Variation of theoretical excess attenuation spectra with major axis radius for an oblate spheroid embedded within a rigid porous medium. The source/receiver height $z_0 = z_j = 0.2m$ and the source/receiver separation $s = 0.4m$ see figure 7.1. The medium is characterised by the four parameters, $\sigma = 10,000N.s.m^{-4}$, $\Omega = 0.4$, $\sigma_f = 0.75$ and $\eta' = 1$. Minor axis radius=0.05m. (a) Homogeneous (dashed), (b) major axis radius=0.05m (spherical), (c) major axis radius=0.1m, (d) major axis radius=0.15m, (e) major axis radius=0.2m and (f) rigidly backed layer. Depth $d = 0.01m$.

Figure 7.6 shows how the excess attenuation spectra vary as the oblate spheroid is flattened: i.e., the minor axis radius is reduced from 0.1m to 0.025m, while keeping the major axis radius constant at 0.125m, and the depth constant at $d = 0.01m$. This represents a different situation from the previous one. The major axis radius is kept constant, and so any effects in the resultant spectrum will be due purely to the sphericity of the scatterer rather than to change in cross-sectional aspect. At large values of the minor axis radius, where the oblate spheroid is least flattened (near-spherical), the excess attenuation spectra differ only slightly from those in the homogeneous case. Decreasing this radius does bring about a deepening of the first minimum, but only to a limited extent; the second minimum seems unaffected. An increase in the major axis radius, with the value of the smallest minor
axis radius, would result in spectra being observed as in figure 7.5.

Figure 7.6 Variation of theoretical excess attenuation spectra with minor axis radius for an oblate spheroid embedded within a rigid porous medium. The source/receiver height $z_0 = z_b = 0.2$ m and the source/receiver separation $s = 0.4$ m see figure 7.1. The medium is is characterised by the four parameters, $\sigma = 10,000$ N.s.m$^{-4}$, $\Omega = 0.4$, $s_f = 0.75$ and $n' = 1$. Major axis radius $= 0.125$ m. (a) Homogeneous (dashed), (b) minor axis radius $= 0.1$ m, (c) minor axis radius $= 0.05$ m, (d) minor axis radius $= 0.025$ m, and (e) rigidly backed layer. Depth $d = 0.01$ m.

Figure 7.7 shows the variation of theoretical excess attenuation spectra for an oblate spheroid of major axis radius 0.125 m, and minor axis radius 0.025 m, with depth, d. A similar trend in the excess attenuation spectra is observed to that for the rigidly backed layer case in figure 7.3. It can be seen that, as the depth, d, is varied, from 0.01 m to 0.16 m, the frequency of the first minimum decreases and becomes more shallow. It is also observed that the second minimum becomes more shallow and increases in frequency. At a depth, d, of 0.16 m, the excess attenuation spectrum varies only slightly from the spectrum of the homogeneous case.

If now the oblate spheroid is replaced with a circular disk, and it is assumed that $|n^2| \gg 1$ so that the locally reacting assumption is justified, then similar graphs of excess attenuation spectra can be produced for comparison. Figure 7.8 shows how the excess attenuation spectra vary as the radius of the circular disk is increased from 0.05 m to 0.15 m, while keeping the depth of the disk constant at $d = 0.01$ m. At small values of radius, the
Figure 7.7 Variation of theoretical excess attenuation with depth for an oblate spheroid embedded within a rigid porous medium. The source/receiver height $z_0 = z_b = 0.2m$ and the source/receiver separation $s = 0.4m$ see figure 7.1. The medium is characterised by the four parameters, $\sigma = 10,000 N.s.m^{-4}$, $\Omega = 0.4$, $s_f = 0.75$ and $n' = 1$. Major axis radius $= 0.125m$, and minor axis radius $= 0.025m$. (a) Homogeneous (dashed), (b) depth $d=0.01m$, (c) depth $d=0.02m$, and (d) depth $d=0.04m$.

excess attenuation spectrum differs only slightly from that for propagation over a homogeneous medium. With increasing radius, however, the first minimum becomes deeper and similar in size to that for the rigidly backed layer case. The subsequent minima, however, become deeper. With increased depths, these minima become shallower with eventual convergence to those for excess attenuation over a rigidly backed layer.

Figure 7.9 shows the variation of theoretical excess attenuation for a circular disk of radius 0.125m, with depth, d. A similar trend in the excess attenuation spectra is observed to that for results for a rigidly backed layer in figure 7.3. It can be seen, however, that with increasing depth, from 0.01m to 0.16m, the frequency of the first minimum decreases and becomes deeper before it becomes more shallow. It is also observed that the second minimum becomes more shallow and increases in frequency. At the depth $d=0.16m$, the excess attenuation spectrum varies only slightly from the excess attenuation spectrum for the homogeneous medium.
Figure 7.8 Variation of theoretical excess attenuation spectra with radius of a circular disk embedded within a rigid porous medium. The source/receiver height $z_0 = z_b = 0.2m$ and the source/receiver separation $s = 0.4m$ see figure 7.1. The medium is characterised by the four parameters, $\sigma = 10,000 N.s.m^{-4}$, $\Omega = 0.4$, $s_f = 0.75$ and $n' = 1$. (a) Homogeneous (dashed), (b) radius=0.05m, (c) radius=0.1m, (d) radius=0.15m, and (e) rigidly backed layer. Depth, $d=0.01m$.

Figure 7.9 Variation of theoretical excess attenuation spectra with depth for a circular disk embedded within a rigid porous medium. The source/receiver height $z_0 = z_b = 0.2m$ and the source/receiver separation $s = 0.4m$ see figure 7.1. The medium is characterised by the four parameters, $\sigma = 10,000 N.s.m^{-4}$, $\Omega = 0.4$, $s_f = 0.75$ and $n' = 1$. Major axis radius=0.125m, and minor axis radius=0.025m. (a) Homogeneous (dashed), (b) depth $d=0.01m$, (c) depth $d=0.08m$, and (d) depth $d=0.16m$.
7.2 Experimental results

By using the experimental equipment and procedure described in chapter 6, level difference spectra were measured over the pea-gravel, Fibreglass and polyurethane foam containing the different test scatterers. The source / receiver configuration of figure 6.1 was used to measure the level difference spectra, where $z_0 = 0.2m$, $z_2 = 0.05m$, $z_3 = 0.2m$ and $s = 0.4m$.

Figure 7.10 shows both the experimental and predicted level difference spectra for the homogeneous media, the predictions being calculated by using equation (6.1), sound pressures being calculated using equation (3.33) for the low flow resistivity and high porosity polyurethane foam, and by equation (3.45) for the pea-gravel and Fibreglass. It can be seen that the three media display quite different spectra, with the polyurethane foam showing weak interference minima, with more defined minima for the pea-gravel. This variation of the spectra according to the type of medium being considered has been used as the basis for studies of soil types [13]. These spectra can now be compared with spectra measured over media containing the various scatterers.

Predictions have shown that the presence of oblate spheroids results in deepening of the first minimum of the excess attenuation spectra and that the more flattened the oblate spheroid becomes the deeper the minimum becomes. Figure 7.11 shows how experimental and predicted level difference spectra vary as an oblate spheroid of major axis radius 0.125m, is flattened: i.e., the minor axis radius is reduced from 0.05m to 0.025m while keeping the depth constant at $d=0.025m$. It can be seen that the experimental results show that the first minimum becomes deeper with decreasing minor axis radius, but overall the variations in the spectra associated with the oblate spheroids are not predicted.

The comparison of predicted and experimental level difference spectra is much better in figure 7.12 which shows the variation of spectra with radius of an embedded metal disk. Three different disk radii are considered, all at a layer depth of 0.015m within the gravel. The spectra display quite marked maxima and minima, in contrast to those observed in figure 7.11. Indeed, a
Figure 7.10 Experimental and predicted level difference spectra measured over pea-gravel, Fibreglass and polyurethane foam. The source height $z_0 = 0.2\text{m}$, the receiver heights are $z_b = 0.2\text{m}$ and $z_a = 0.05\text{m}$, and the source/receiver separation $s = 0.4\text{m}$, see figure 6.1. Solid line - predicted, dashed line - experimental. (a) Gravel, (b) Fibreglass, (c) polyurethane foam.
Figure 7.11 Variation of experimental and predicted level difference spectra with minor axis radius of an oblate spheroid embedded in gravel. The source height $z_0 = 0.2$ m, the receiver heights are $z_b = 0.2$ m and $z_a = 0.05$ m, and the source/receiver separation $s = 0.4$ m, see figure 6.1. Solid line - predicted, dashed line - experimental; major axis radius = 0.125 m; depth $d = 0.015$ m. (a) Minor axis radius=0.05 m, (b) minor axis radius=0.025 m.
difference is observable between the homogeneous case and the case with a
disk radius of 0.15m. Figure 7.13 shows similar results for Fibreglass. Here,
however, with the higher value of flow resistivity, the changes in the spectra
compared to that of the homogeneous case are less marked and only results
for disk radii of 0.25m and 0.2m are presented. Figure 7.14 shows similar
results for polyurethane foam. The very low flow resistivity and porosity
associated with this medium implies considerable extended reaction, and
hence, due to the basic conditions set out in the boundary value problem,
no predictions of these spectra will be valid. However, it is observed that
the general trend of the spectra with decreasing disk radii is similar to that
for the pea-gravel and Fibreglass.

The previous figures have shown that the largest changes in the level
difference spectra occur when, for a given depth, the radius of the circular
disk is large, or, for the case of oblate spheroids, when the major axis radius
is large, and the minor axis radius is small. Figure 7.15 shows the variation
of level difference spectra with position above an embedded oblate spheroid
of major axis radius 0.125m, and minor axis radius 0.025m. As the point of
specular reflection (for the upper microphone) moves progressively further
away from the centre of the oblate spheroid, the minima become less deep.
Figure 7.16 shows similar results above a circular disk of radius 0.125m
embedded at a depth of 0.015m in gravel. The variations in the maxima
and minima are adequately predicted by the theory. Finally, figure 7.17
shows similar results above a circular disk of radius 0.125m embedded at a
depth, \(d=0.025\)m in polyurethane foam.

7.3 Summary and discussion

The theoretical and experimental results of this study have been presented in
this chapter. Considered first were the theoretical predictions in the form of
excess attenuation spectra. These results showed that there was reasonable
convergence of the methods to those for a rigidly backed layer and for a
homogeneous medium, for varying circular disk and oblate spheroid sizes
Figure 7.12 Variation of experimental and predicted level difference spectra with radius of a circular disk embedded in gravel. The source height \(z_0 = 0.2 \text{m} \), the receiver heights are \(z_b = 0.2 \text{m} \) and \(z_a = 0.05 \text{m} \), and the source/receiver separation \(s = 0.4 \text{m} \), see figure 6.1. Solid line - predicted, dashed line - experimental; depth \(d=0.015 \text{m} \). (a) Radius=0.25m, (b) radius=0.20m, and (c) radius=0.15m.
Figure 7.13 Variation of experimental and predicted level difference spectra with radius of a disk embedded in Fibreglass. The source height $z_0 = 0.2\,\text{m}$, the receiver heights are $z_b = 0.2\,\text{m}$ and $z_a = 0.05\,\text{m}$, and the source/receiver separation $s = 0.4\,\text{m}$, see figure 6.1. Solid line - predicted, dashed line - experimental; depth $d=0.025\,\text{m}$. (a) Radius=0.25m and (b) radius=0.20m.

and shapes. With the confidence in the theory gained by these tests, the theory was then compared with experimental data. Measurements were conducted with oblate spheroids and disks embedded in gravel and disks in Fibreglass and polyurethane foam, with theory being compared with all results apart from those for the polyurethane foam.

It was surprising that there was such good agreement of experimental results with the predictions of the theory for the case of disk embedded within the gravel. The low value of flow resistivity of the gravel meant that the gravel was at the limit of the locally reacting condition. Agreement with predictions and experimental results for the oblate spheroids embedded within the gravel was less good. Several reasons are proposed for this. Firstly, the approximations for the transmission Green’s functions used in the boundary element method were at the limit of their validity for the low flow resistivity of the gravel, which would result in slightly inaccurate predictions; the second reason is an experimental one: i.e., the measurements
Figure 7.14 Variation of experimental level difference spectra with radius of a circular disk embedded in polyurethane foam. The source height $z_0 = 0.2m$, the receiver heights are $z_b = 0.2m$ and $z_a = 0.05m$, and the source/receiver separation $s = 0.4m$, see figure 6.1. Depth, $d = 0.025m$. (a) Radius=0.25m, (b) radius=0.20m and (c) radius=0.15m.
Figure 7.15 Variation of experimental and predicted level difference spectra with position above an oblate spheroid in gravel. Major axis radius=0.125m, minor axis radius=0.025m, depth $d=0.015$m. The source height $z_0=0.2$m, the receiver heights are $z_b=0.2$m and $z_a=0.05$m, and the source/receiver separation $s=0.4$m, see figure 6.1. Solid line - predicted, dashed line - experimental. The point midway between source and receivers is varied above the oblate spheroid as: (a) $y=0.0$m, (b) $y=0.05$m, (c) $y=0.1$m and (d) $y=0.2$m.
Figure 7.16 Variation of experimental and predicted level difference spectra with position above a disk in gravel. Radius = 0.125 m, depth \(d = 0.015 \) m. The source height \(z_0 = 0.2 \) m, the receiver heights are \(z_b = 0.2 \) m and \(z_a = 0.05 \) m, and the source/receiver separation \(s = 0.4 \) m, see figure 6.1. Solid line - predicted, dashed line - experimental. The point midway between source and receivers is varied above the disk as: (a) \(y = 0.0 \) m, (b) \(y = 0.05 \) m, (c) \(y = 0.1 \) m and (d) \(y = 0.2 \) m.
Figure 7.17 Variation of experimental level difference spectra with position above a disk in polyurethane foam. Radius = 0.125 m, depth $d = 0.025$ m. The source height $z_0 = 0.2$ m, the receiver heights are $z_b = 0.2$ m and $z_a = 0.05$ m, and the source/receiver separation $s = 0.4$ m, see figure 6.1. The point midway between source and receivers is varied above the disk as: (a) $y = 0.0$ m, (b) $y = 0.05$ m, (c) $y = 0.1$ m and (d) $y = 0.2$ m.
were constrained practically by the dimensions of the tray containing the gravel, resulting in possible stray reflections at its base and sides so that the gravel was not behaving as a semi-infinite medium. This seems more likely in the case of the measurements over the oblate spheroids, where their influence on the reflected field is much weaker than that of the disks, making the measurements more susceptible to stray reflections. A final reason is that the oblate spheroids were made of wood, and were possibly not exhibiting the required rigid surface that was being modelled.

It is proposed that the poor agreement of the predictions with the results of the disks in Fibreglass was due to the anisotropic nature of the medium. With the thickness of Fibreglass medium used (~30cm) it was assumed that the medium was behaving as semi-infinite. The layered nature of the medium, where it was made up of six separate sheets placed on top of each other, may have contributed to an unusual behaviour.

With the low flow resistivity of the polyurethane foam and its flexible frame, no reasonable theoretical predictions could be made. However, similar trends in the experimental results to those of the gravel and Fibreglass were observed.
Chapter 8

Discussions and conclusions

The various theoretical and experimental results were described in the previous chapter, and a discussion of their particular significance was given. In this concluding chapter, a review of these results, together with a discussion of the limitations and future extensions of the mathematical model and experimental investigation, are presented, and the chapter is completed with some general conclusions.

8.1 Review of present study

The aim of this study was twofold. Firstly, it was to provide a theoretical description of the influence of near-surface inhomogeneities on the reflection of acoustic fields at the surface of a porous medium. Secondly, it was to compare quantitatively these theoretical predictions with measured acoustic fields across the surfaces of porous media containing embedded inhomogeneities so that the practical usefulness of the theory could be tested.

The theoretical development of the problem was straightforward, starting with its mathematical formulation in chapter 2. Two separate approaches were considered. The first approach, that of considering a scatterer within the rigid porous medium, was first stated in terms of a boundary value problem. The development here assumed that the scatterer was rigid: i.e., that the Neumann boundary condition applied on its surface. Two reformulations of this boundary value problem in terms of integral equations via
Green's second theorem were then presented, both reformulations requiring the Green's function solutions to much simpler problems; in the first, the problem involved the complicated calculation of Green's functions for propagation in the presence of a plane boundary separating two semi-infinite homogeneous media; in the second, the simpler calculation of free-field Green's functions sufficed. The resultant integral equation for the first reformulation was conceptually simple, involving one integral term solely over the surface of the scatterer. In contrast, the second reformulation involved a set of coupled integral equations with an integral having an infinite region of integration. Due to the difficulty of solving such a set of equations, the first integral equation was chosen for solution.

In the second approach to the theoretical problem, scattering by a small finite region in the plane boundary having a surface impedance different to that of the surrounding area was considered. The boundary was assumed to be locally reacting, and, as such, the details of the sound propagating in the lower medium could be ignored, and the sound propagating in the upper medium could be determined by the boundary's surface impedance. The reformulation of the boundary value problem in terms of an integral equation was similar to that of the first approach, requiring the Green's function solution of the much simpler problem of sound propagation in the upper medium only. The resultant integral equation involved a simple integral over the scattering surface.

The numerical solution of the integral equations requires Green's functions and their first derivatives for various source and receiver configurations and in chapter 3 simple expressions were derived for these. For the first approach, with the source and receiver configurations considered, approximations to the integral representations of the Green's functions involved just two terms, a direct component and a plane wave reflected component. With higher order terms ignored, the first derivatives of these Green's functions were simple. In the approximation to the transmitted Green's function a simple expression combining the incident field at a point directly above the receiver point with an exponential term was used. This approximation
required that the imaginary component of the refractive index was appreciable. For the second approach, where the boundary was assumed to be locally reacting, the Green's function for propagation from one point to another in the upper medium was given by the Weyl-Van der Pol equation. For point to point propagation on the plane boundary, the equation of Chandler-Wilde [88,92] was used.

In a sense, the second approach involved consideration of a more general problem than the first in that the surface impedance within the finite region could take any form. The simplest situation that could have been considered was that of sound propagation over a finite region where the surface impedance within the region was modelled as homogeneous but different from the surrounding area. The impedance types considered in this study were, firstly, that due to a finite rigidly backed layer, i.e., in effect, a disk embedded within the porous medium and, secondly, that induced by an embedded rigid sphere. The expressions for these impedance types were considered in chapter 4. The derivation for the expressions for the induced surface impedance due to an embedded sphere were based on a number of assumptions: (1) that the incident waves on the plane boundary were the source of plane waves being transmitted normally in the lower medium; (2) that only one interaction with the spherical scatterer occurred (i.e. that there was negligible multiple scattering); and (3) that the reflection of the scattered wave at the plane boundary was adequately predicted by using the plane wave reflection coefficient.

Other impedance variations could have been considered such as that induced by a spheroid (which would have involved a spheroidal coordinate system). However, these expressions would have required further derivation, and were beyond the scope of this study.

Chapter 5 was concerned with the numerical solution of the integral equations from both approaches, by using a simple boundary element method. The solution method was straightforward: firstly, the values of complex pressure were determined on the scattering surface by setting the receiver point to be on the surface of the scatterer at the midpoint of each boundary.
element in turn. This resulted in a set of simultaneous linear equations, efficient solution of which could only be carried out if the scattering surfaces were axisymmetric about the vertical axis through their centres. When this condition applies, the resultant matrices are block-circulant, a structure for which standard routines are available for solution. With these values of pressure on the surfaces of the integrating surfaces, the complex pressure at points away from the scatterers can be calculated by substitution back into the original equations.

A particular difficulty involved in the solution of the integral equations from is that the kernel function of the integral tended to infinity as the receiver point approached the source points on the surface of the scatterer. In the case of the first approach a simple modification of the original integral equation is required which results in a slightly more complex integral equation, but the block-circulant structure of the matrices is maintained.

In both approaches the scattering surfaces were divided into a number of boundary elements, and expressions for the normals, positions of the midpoints, and areas of the elements were derived. For the first approach, the expressions have been derived for scattering surfaces which are spheroids, which means that the basic shape of the scatterer can be varied from an oblate spheroid to a sphere without requiring extra subroutines. For the second approach, the scattering region, to satisfy axi-symmetry, was circular. Some numerical tests and comparisons with classical results of the numerical solutions of the boundary integral equations were then presented in chapter 5. These limited tests showed that the boundary element methods could be used with some confidence.

The experimental method for measuring level difference spectra over the scatterers embedded within three different media was presented in chapter 6, describing in detail the experimental procedure and apparatus, the scatterers and media.

Both the theoretical and experimental results of this study were presented in chapter 7. The tests of the models in the theoretical results section used a porous medium which was defined as having a porosity of $\Omega = 0.4$,

119
flow resistivity, \(\sigma = 10,000 \text{N.s.m}^{-4} \), grain shape factor, \(n' = 1 \), and pore shape factor ratio, \(s_p = 0.75 \), this set of parameters chosen so that the medium was not too highly attenuating. The tests were carried out by calculating the excess attenuation spectra above the scatterers. A set of three tests were conducted on oblate spheroids embedded in the medium: the first involved keeping the depth and minor axis radius constant and varying the major axis radius; the second involved keeping the depth and major axis radius constant and varying the minor axis radius; and the final test involved keeping both the major and minor axis radii constant and varying the depth. A set of two tests were conducted on the circular disks embedded in the medium: the first involved keeping the depth constant and varying the radius; and the second test involved keeping the radius constant but varying the depth. In all these tests, the spectra were compared with spectra for the homogeneous medium and for a rigidly backed medium. These tests gave confidence that the models were working properly.

A set of simple experiments were then conducted and the results were presented for comparison with the mathematical models. The experiments were designed to test the models in a similar manner to those of the theoretical results section and involved measuring the level difference spectra above the scatterers in the different media. Two sets of measurements were carried out on oblate spheroids: the first involved keeping the depth constant and varying the minor axis radius of an oblate spheroid embedded in gravel; the second involved measurements at various points above an oblate spheroid embedded in gravel. Comparisons were made with the theoretical model. Two sets of measurements were carried out on disks: the first involved keeping the depth constant and varying the radius in gravel, Fibreglass and polyurethane foam; the second involved measurements at various points above a disk embedded in gravel and polyurethane foam. Unfortunately, comparisons with models were not possible with the polyurethane foam. This chapter was concluded with a discussion of the main points to be drawn from these results.
8.2 Limitations and future work

The major limitation of the surface inhomogeneity approach theory presented here is that it has not been possible to make any predictions when the medium is externally reacting. The initial boundary conditions of the boundary value problem involved the Robin boundary condition, thus imposing the condition of local reaction straight away. This is an omission of some importance for, as might be expected, the greatest contribution of the scattered field occurs when the medium has a low flow resistivity, and hence is externally reacting.

However, an experimental investigation of the scattering from disks embedded in polyurethane foam was carried out, showing that the influence of the scatterer was quite dramatic and has a similar form to that observed in gravel.

The restriction on the lower frequency of interest to that of 500Hz has meant that the considerations have been made purely of rigid porous media, i.e. that the reflection of sound from a rigid porous half space is governed by the slow wave in the interconnected pores. No consideration of the seismic contributions has been considered.

Essential to the calculation of the boundary integral equation methods developed is the ability to calculate, accurately and efficiently, the propagation of sound from a point source above and across a plane boundary. With the simple expressions used for these Green's functions, involving only plane wave reflection coefficients and a refractive index with an appreciable imaginary part (in the case of transmission), a certain amount of inaccuracy in the boundary integral equations methods will arise, but this has not been assessed in the study.

This study has not been concerned with the prediction of acoustic fields in the lower medium in the presence of a near-surface scatterer. The study has been concerned purely with the influence of near-surface scatterers on the reflection of sound from the plane boundary. However, the boundary element method lends itself just as easily to the analysis of fields in the lower medium as it does to the upper medium. It has not been pursued
for the obvious reason that experimental comparison with the theoretical predictions would prove difficult.

With these limitations of the study in mind, the following suggestions for future work seem to be most appropriate:

1. further development of expressions for the Green's functions and their first derivatives for the propagation in the presence of an externally reacting medium and penetrable scatterers;
2. extension of the theory to predicting the influence of near-surface inhomogeneities on the reflection of acoustic fields from poroelastic media;
3. further experimental investigation of the influence of near-surface and surface inhomogeneities on the reflection of acoustic fields from porous media, with a natural progression to measurements of seismic as well as acoustic influences.

8.3 Conclusions

The aim of this study was both to investigate theoretically and experimentally the influence of near-surface inhomogeneities on the reflection of acoustic fields at the surface of a porous medium. The majority of the study has been devoted to the development of the boundary integral equation method for the theoretical investigation. The boundary integral equation method has been shown by many authors to be very effective for the calculation of acoustic fields over terrains of variable height and surface impedance. There is no doubt that application of the method to the problem of this study is appropriate. That there is an influence on the reflection of acoustic fields at the surface of a porous medium by a near-surface inhomogeneity is arguable intuitively. However, this study has shown both theoretically and experimentally that this influence is highly dependent on the medium characteristics and the shape and size of the scatterer. In particular, it has been shown that a near-surface embedded inhomogeneity with a spherical shape has a negligible influence on the level difference spectrum unless its radius is
large. Furthermore, it has been shown that the more flat the oblate spheroid, the greater the influence on the level difference spectrum for a given cross sectional area of the spheroid.

The study can have wider implications. The theory for the calculation of scattering by a variable impedance inhomogeneity can be applied more generally to problems of outdoor sound propagation over inhomogeneous impedance ground (and in fact propagation over variable impedance finite and infinite strips, with application to determining the noise from roads near grassland has been previously considered [88,50,51]). Finally, the use of this theory in non-destructive testing can only be hinted at.

The results of this study should help to understand the behaviour of acoustic fields above inhomogeneous media containing near-surface scatterers, and to provide expressions for their prediction under certain restrictions. However, there is considerable scope, through a consideration of more accurate Green's functions, for providing a more accurate picture of the theoretical problem. With the high dependence of the scattered field on the medium properties, and the scatterer shape, it remains to be seen whether a successful application will be found.
Bibliography

Appendix A

Formulation of a boundary integral equation for scattering by a sphere in an infinite homogeneous medium

A sphere, labelled S, with a rigid surface ∂S, is embedded in an infinite porous medium, characterised by a complex wavenumber, k_1. The complex acoustic pressure is assumed to satisfy the following boundary value problem:

an inhomogeneous Helmholtz equation,

$$ (\nabla^2 + k_1^2) p(r, r_0) = \delta(r - r_0); \quad (A.1) $$

the Neumann boundary condition for $r \in \partial S$, for a rigid scatterer,

$$ \frac{\partial p(r, r_0)}{\partial n(r)} = 0; \quad (A.2) $$

and Sommerfeld's radiation conditions,

$$ \frac{\delta p(r, r_0)}{\delta r} - ik_1 p(r, r_0) = o(r^{-\frac{1}{2}}), \quad p(r, r_0) = O(r^{-\frac{1}{2}}), \quad (A.3) $$

uniformly in r as $r := |r| \to \infty$. In the above, $n(r)$ denotes the normal to the surface ∂S at point r.

To formulate the integral equation, let the Green's function $G(r, r_0)$, satisfy the following boundary value problem, for each $r_0 \in \mathbb{R}^3 \setminus \Gamma$:

an inhomogeneous Helmholtz equation,

$$ (\nabla^2 + k_1^2) G(r, r_0) = \delta(r - r_0); \quad (A.4) $$

and Sommerfeld's radiation conditions,

$$ \frac{\delta G(r, r_0)}{\delta r} - ik_1 G(r, r_0) = o(r^{-\frac{1}{2}}), \quad G(r, r_0) = O(r^{-\frac{1}{2}}), \quad (A.5) $$

uniformly in r as $r := |r| \to \infty$.

Note that in the case when no obstacle is present,

$$ p(r, r_0) = G(r, r_0), \quad (A.6) $$
for \(r, r_0 \in \mathbb{R}^3 \).

Now consider region \(V \) consisting of that part of \(U \) contained within a large sphere of surface \(\Sigma \) and radius \(R \), centred on the origin, but excluding small spheres, \(\sigma_r \) and \(\sigma_{r_0} \), of radii \(\epsilon \), centred on \(r \) and \(r_0 \). The interiors of the spheres \(\sigma_r \) and \(\sigma_{r_0} \) are excluded so that the conditions of Green's second theorem are satisfied by \(p \) and \(G \) in the region \(V \). Applying Green's second theorem to the region \(V \), and noting that \(p(r, r_0) \) and \(G(r, r) \) satisfy Helmholtz equation, the following equation is obtained for \(r, r_0 \in \mathbb{R}^3 \),

\[
p(r, r_0) = G(r_0, r) + \int_{\partial S} p(r_s, r_0) \frac{\partial G(r_s, r)}{\partial n(r_s)} - G(r_s, r) \frac{\partial p(r_s, r_0)}{\partial n(r_s)} \, ds(r_s), \quad (A.7)
\]

for \(r, r_0 \in U_a \).

The numerical solution of equation \((A.7)\) is carried out using subroutines GEOSPHERE, FSURSPHIM and FRECSPHIM found in appendix D.
Appendix B

Analytical expression for the scattered field by a rigid sphere

Plane waves are travelling to along the the polar axis are incident on a rigid sphere centred on the origin. The incident acoustic pressure is given by,

\[p_i = \sum_{m=0}^{\infty} (2m + 1) s^m P_m(\cos \theta) j_m(kr), \]

(B.1)

where \(j_m \) denotes the spherical Bessel function of the first kind of order \(m \), defined in terms of a Bessel function of fractional order by,

\[j_n(z) = \left(\frac{\pi}{2z} \right)^{\frac{1}{2}} j_{n+\frac{1}{2}}(z), \]

(B.2)

and \(P_m(\sigma) \) is the Legendre polynomial of degree \(m \), defined for \(m = 0, 1 \), by \(P_0(\sigma) = 1 \) and \(P_1(\sigma) = \sigma \) and for \(m > 1 \) by the recurrence relation,

\[(n + 1)P_{n+1}(\sigma) = (2n + 1)\sigma P_n(\sigma) - nP_{n-1}(\sigma), \]

(B.3)

for \(n = 1, 2 \). It is assumed that the scattered wave has the form,

\[p_s = \sum_{m=0}^{\infty} a_m P_m(\cos \theta) h^{(1)}_m(kr), \]

(B.4)

where the spherical Hankel functions of the first kind, \(h^{(1)}_m \), are defined by,

\[h^{(1)}_m(z) = \left(\frac{\pi}{2z} \right)^{\frac{1}{2}} H^{(1)}_{m+\frac{1}{2}}(z). \]

(B.5)

Insisting that the normal velocity is zero on the surface of the sphere leads to expression for the coefficients \(a_m \),

\[a_m = -(2m + 1) s^m \frac{j'_m(kR)}{h^{(1)}_m(kR)}. \]

(B.6)

\(a_m \) and \(p_s \) given by equations (B.6) and (B.4) are calculated using subroutine PLNSCATCOE and complex function PLNSCATFLD found in appendix D.
Appendix C

Boundary integral equation formulation for sound propagation over a half-space containing an embedded sphere of infinite radius

A sphere, labelled S, with rigid surface ∂S, is embedded in a rigid porous (lower) half-space, with the upper-half space containing air. The boundary value problem of equations (2.34 to 2.40) which give the associated boundary integral equation (2.104), define this problem if the integrating surface is replaced by a sphere. With this modification, if the radius is now allowed to tend to infinity while keeping the depth, d, constant, and r and r_0 directly above r^*_*, the highest point on the surface ∂S, the integral equation becomes,

$$\alpha \kappa(r)p(r, r_0) = \alpha G(r_0, r) - \int_{\partial S} p(r_s, r_0) \frac{\partial G(r_s, r)}{\partial z_s} dA(r_s) \quad (C.1)$$

where ∂S is now a plane at a depth d beneath the ground surface Γ and S is the region below this plane; $\kappa(r) := 1$, for $r \in \mathbb{R}^3 \setminus S$, $1/2$ for $r \in \partial S$. Introducing polar coordinates in the surface ∂S, with the origin of the coordinates at r^*_* and R defined as $|r_s - r^*_*|$, this integral equation can be written,

$$\alpha \kappa(r)p(r, r_0) = \alpha G(r_0, r) - 2\pi \int_0^\infty p(r_s, r_0) \frac{\partial G(r_s, r)}{\partial z_s} RdR \quad (C.2)$$

Now, letting r_0 get further and further away from Γ, (i.e. letting $z_0 \to +\infty$), the pressure $p(r_s, r_0)$, assumes an almost constant value p_c in a larger and larger region surrounding the point r^*_*. Putting $r = r^*_*$ in equation (C.1) gives a value for p_c as,

$$p_c = \alpha G(r_0, r^*_*) \left[\frac{\alpha}{2} + 2\pi \int_0^\infty \frac{\partial G(r_s, r^*_*)}{\partial z_s} RdR \right]^{-1}. \quad (C.3)$$

The pressure at a point r above r^*_* in the upper half-space, is then given by,

$$\alpha p(r, r_0) = \alpha G(r_0, r_+) - p_c 2\pi \int_0^\infty \frac{\partial G(r_s, r_+)}{\partial z_s} RdR. \quad (C.4)$$
The integral in equation (C.3) can now be calculated numerically by standard techniques. The integral in equation (C.4) is a little more tricky to calculate, the problem being that the integrand tends to zero very slowly as R increases, being of the order $O(R^{-1})$. With reference to the notes of Chandler-Wilde [107], this problem is overcome by analysing the asymptotic behaviour of the integrand.

Letting $f(R) = -2\pi R \theta G(r_*, r) / \theta z$, and replacing G by the approximations (3.53), $f(R)$ can be written,

$$f(R) = -\frac{ik_1 \alpha \cos \theta \sqrt{n^2 - \sin^2 \theta}}{r(\alpha \cos \theta + \sqrt{n^2 - \sin^2 \theta})} e^{ik_1(r + d\sqrt{n^2 - \sin^2 \theta})}, \quad (C.5)$$

where $r = |\mathbf{r}_T - \mathbf{r}|$, and $\theta = \cos^{-1}(z/r)$, \mathbf{r}_T being the point on the boundary Γ directly above r_*. Now $R \cos \theta = z$ and if $n \neq 1$, then,

$$\sqrt{n^2 - \sin^2 \theta} = \sqrt{n^2 - 1(1 + O(r^{-2}))}, \quad (C.6)$$

as $R \to \infty$, and also,

$$\alpha \cos \theta + \sqrt{n^2 - \sin^2 \theta} = \sqrt{n^2 - 1 + O(r^{-1})}. \quad (C.7)$$

Thus, making use of equations (C.6) and (C.7), equation (C.5) can be written,

$$f(r_*) = g(r_*) + O(r^{-2}), \quad (C.8)$$

where,

$$g(r_*) = -\left[\frac{4\pi k_1 \alpha r}{r} e^{ik_1 d\sqrt{n^2 - 1}} \right] e^{ikr}. \quad (C.9)$$

Equation (C.4) may now be written,

$$\alpha \theta(r, r_0) = \alpha \theta(r_0, r) + p \left[\int_0^\infty g(R) dR + \int_0^\infty f(R) - g(R) dR \right], \quad (C.10)$$

where $f(r_*) - g(r_*) = O(r^{-2})$ as $r_* \to \infty$. $g(r_*)$ behaves as $O(r^{-1})$ but is straightforward to integrate:

$$\int_0^\infty g(R) dR = \frac{\pi k_1 \alpha r}{2} e^{ik_1 d\sqrt{n^2 - 1}} H_0^{(1)}(k_1 z), \quad (C.11)$$

Equation (C.4) has now thus been reduced to a form more amenable to numerical integration.
Appendix D

Listings of FORTRAN 77 subroutines referred to in the text

This appendix lists all of the FORTRAN 77 subroutines and functions that are mentioned in the text. Documentation is included for each.
D.1 Complex function CCOTH

CCOTH calculates the hyperbolic cotangent of a complex number. There are no subprograms referenced.

```fortran
COMPLEX FUNCTION CCOTH(Z)
COMPLEX Z
C CALCULATES THE HYPERBOLIC COTANGENT OF A COMPLEX NUMBER
C IF THE REAL PART OF Z IS
C LARGE THEN CCOTH(Z) IS EQUAL TO 1 + IO
C ON ENTRY:
C Z COMPLEX
THE COMPLEX ARGUMENT
C INTERNAL VARIABLES
C REAL RZ2,AZ2,C1
COMPLEX I
C
I=CMPLX(0.0,1.0)
IF (REAL(Z) .GT. 44.3) THEN
CCOTH=(1.0,0.0)
RETURN
ELSE
RZ2=2.*REAL(Z)
AZ2=2.*AIMAG(Z)
C1=COSH(RZ2)-COS(AZ2)
CCOTH=(SINH(RZ2)-I*SIN(AZ2))/C1
END IF
RETURN
END
```
D.2 Subroutine CD

CD calculates value of complex density using equation (3.65). Reference to other subprograms are:

- CMPBJ: a subroutine from Sastry [109].

```fortran
SUBROUTINE CD(F, IPR, SFR, SIGMA, POROS, CDEIS)
COMPLEX*8 CDENS
REAL*4 F, IPR, SFR, SIGMA, POROS
C
CD CALCULATES A SINGLE VALUE OF COMPLEX DENSITY
C USING THE FOUR PARAMETER MODEL.
C
C ON ENTRY
C
F REAL
F FREQUENCY
C
NPR REAL
GAIN SHAPE FACTOR
C
SFR PORE SHAPE FACTOR RATIO
C
SIGMA REAL
FLOW RESISTIVITY
C
POROS REAL
POROSITY
C
C ON EXIT
C
CDENS REAL
COMPLEX DENSITY
C
THIS VERSION DATED 7TH DECEMBER, 1989.
C
C ROUTINE CMPBJ IS CALLED
C
C INTERNAL VARIABLES
C
COMPLEX*8 I, YP, TP, JO, J1
INTEGER*2 M1
REAL*4 LAMBDAP, Q, PI, CF, GAMMA, PRANDTL, RHOF, AE, OMEGA
C
Q=SQRT(POROS**2-NPR)
PI=4.0*ATAN(1.0)
I=CMPLX(0.0,1.0)
CF=343.0
GAMMA=1.4
PRANDTL=0.76
RHOF=1.2
AE=SQRT(0.0*(Q**2)/(POROS*SIGMA))
OMEGA=2.0*PI*F
LAMBDAP=(AE/SFR)*((OMEGA*RHOF)**0.5)
YP=LAMBDAP*(I**0.5)
M1=0
CALL CMPBJ(YP, M1, JO)
```

142
CALL CNFBJ(YP, R1, J1)
TP=J1/JO
CDBES=Q++2+REN/(1.0-1.0/YP)+TP-POD=0)
RETURN
END
D.3 Complex function FFG

FFG calculates the free field Green's function. There are no subprograms referenced.

```
COMPLEX FUNCTION FFG(X,K)
    COMPLEX*8 X
    REAL*4  I
    C
    C FFG CALCULATES THE FREE-FIELD GREEN'S FUNCTION GIVEN THE MAGNITUDE
    C OF THE VECTOR BETWEEN THE TWO POINTS, AND THE COMPLEX PROPAGATION
    C CONSTANT.
    C
    C ON ENTRY:
    C
    C  X  REAL
    C    MAGNITUDE OF THE VECTOR BETWEEN THE TWO POINTS
    C  K  COMPLEX
    C    COMPLEX PROPAGATION CONSTANT
    C
    COMPLEX*8 I
    REAL*4 PI
    C
    I=CMPLX(0.0,1.0)
    PI=3.141592653
    FFG=-CEXP(I*K*X)/(4.0*PI*PI)
    RETURN
END
```
D.4 Subroutine FRECCIR

FRECCIR calculates values of acoustic pressure at the receiver point in the upper medium using equation (5.46). Reference to other subprograms are:

- G11WVDP: see section D.14.

SUBROUTINE FRECCIR(RCOORD,SCCOORD,COORD,K1,K2,AREA,PRKRO,M,N,
& SCATT,GROR,PRRO,Z,2C)
PARAMETER(NMAX=200,NMAX1=100,NMAX1=2*100,NMAX=NMAX1+NMAX)
COMPLEX*8 PRKRO(NMAX),PRRO,Z(NMAX),2C,GROR,SCATT,K2
INTEGER*2 M,N
REAL*4 K1,RC00R(3),SC00R(3),C00R(3,IHHAX),AREA(IMMAX)
C
C FRECCIR CALCULATES THE VALUES OF THE PRESSURE FIELD
C AT THE RECEIVER POSITION IN THE UPPER MEDIUM.
C
C ENTRY
C
C RCOORD REAL(3)
C ARRAY CONTAINING THE COORDINATES OF THE RECEIVER.
C RCOORD IS UNCHANGED ON EXIT.
C
C SCCOORD REAL(3)
C ARRAY CONTAINING THE COORDINATES OF THE POINT SOURCE.
C SCCOORD IS UNCHANGED ON EXIT.
C
C COORD REAL(3,N*MAX)
C ARRAY CONTAINING THE COORDINATES OF THE MIDPOINTS OF
C THE BOUNDARY ELEMENTS.
C COORD IS UNCHANGED ON EXIT.
C
C K1 REAL
C PROPAGATION CONSTANT OF THE UPPER MEDIUM.
C N.B. TIME DEPENDENCE EXP(-T*W*T) ASSUMED.
C K1 IS UNCHANGED ON EXIT.
C
C AREA REAL(N*MAX)
C VALUES OF THE AREA OF EACH BOUNDARY ELEMENT.
C AREA IS UNCHANGED ON EXIT.
C
C PRKRO COMPLEX(N*MAX)
C ARRAY CONTAINING THE VALUES OF THE PRESSURE FIELD AT
C THE MIDPOINTS OF THE ELEMENTS.
C PRKRO IS UNCHANGED ON EXIT.
C
C M INTEGER
C THE CIRCULAR REGION IS DIVIDED INTO M SECTORS.
C M IS UNCHANGED ON EXIT.
C
C M INTEGER
C THE CIRCULAR REGION IS DIVIDED INTO M ANNULI.
C M IS UNCHANGED ON EXIT.
C
C Z(M*MAX) COMPLEX
C INDUCED SURFACE IMPEDANCE AT THE MIDPOINTS OF THE BOUNDARY
C ELEMENTS.
C Z IS UNCHANGED ON EXIT.

145
C ZC COMPLEX
C CHARACTERISTIC IMPEDANCE OF THE SURROUNDING AREA.
ZC IS UNCHANGED ON EXIT.
C
C ON EXIT
C
C SCATT COMPLEX
C THE SCATTERED FIELD.
C
C GROR COMPLEX
C THE GREEN'S FUNCTION FOR A HOMOGENEOUS HALF SPACE.
C
C PRRO COMPLEX
C THE CALCULATED PRESSURE VALUE.
C
C THIS VERSION DATED 7TH DECEMBER, 1989.
C
C ROUTINE G11WDP IS CALLED.
C
C INTERNAL VARIABLES
C
C COMPLEX*8 GRKR,I,RI
INTEGER*2 N N
REAL*4 AKCOOR(K),DEPTH
C
C N=MM
I=(0.0,1.0)
RI=X2/X1
DEPTH=0.0
CALL G11WDP(RCOORD,SCCOORD,K1,RI,ZC,GROR,DEPTH)
SCATT=CMPLX(0.0,0.0)
DO 010 K=1,N
AKCOOR(1)=COORD(1,K)
AKCOOR(2)=COORD(2,K)
AKCOOR(3)=COORD(3,K)
CALL G11WDP(AKCOOR,COORD,K1,RI,ZC,GROR,DEPTH)
SCATT=SCATT+PRRO(K)*GROR*AREA(X)*(1.0/Z(I)-1.0/ZC)
010 CONTINUE
SCATT=I*X1*SCATT
PRRO=GROR-SCATT
RETURN
END
D.5 Subroutine FRECSPH

FRECSPH calculates values of acoustic pressure at the receiver point in the upper medium using equation (5.11). Reference to other subprograms are:

- G11: see section D.10;
- G12DER: see section D.12.

```plaintext
SUBROUTINE FRECSPH(L,RCODR,SCODR,COORD,NORM,PROP,AREA,PRKRO,M,N,SCATT,GROR,PRBO,ZETA,R,DEPTH)
PARAMETER(MMAX=200,MMAX=100,MMAX=MMAX+MMAX,MMAX=MMAX+MMAX)
INTEGER=M,ML
REAL+4 RCOORD(3),SCoord(3),COORD(3,MMAX),AREA(OMAX)
REAL+4 NORM(3,MMAX),DEPTH
COMPLEX+8 GROR,PROP,PRKRO(MMAX),PRRO,ZETA,R,SCATT

C FRECSPH CALCULATES THE VALUES OF THE PRESSURE FIELD AT THE
C RECEIVER POSITION.

C ON ENTRY
C
C RCOORD REAL(3)
C ARRAY CONTAINING THE COORDINATES OF THE RECEIVER.
C RCOORD IS UNCHANGED ON EXIT
C
C SCORD REAL(3)
C ARRAY CONTAINING THE COORDINATES OF THE POINT SOURCE.
C SCORD IS UNCHANGED ON EXIT
C
C COOD REAL(3,MMAX)
C ARRAY CONTAINING THE COORDINATES OF THE CENTROIDS
C OF THE AREA ELEMENTS.
C COORD IS UNCHANGED ON EXIT
C
C NORM REAL(3,MMAX)
C ARRAY CONTAINING THE NORMAL VECTORS AT THE CENTROIDS
C NORM IS UNCHANGED ON EXIT
C
C PROP COMPLEX
C PROPAGATION CONSTANT.
C N.B. TIME DEPENDENCE EXP(-I*W*T) ASSumed.
C PROP IS UNCHANGED ON EXIT.
C
C AREA REAL(M+M)
C ARRAY CONTAINING THE VALUES OF THE AREA OF EACH AREA ELEMENT
C ON THE SPHERE.
C AREA IS UNCHANGED ON EXIT
C
C PRKRO COMPLEX(M+M)
C ARRAY CONTAINING THE VALUES OF THE PRESSURE FIELD ON THE
C SURFACE OF THE SPHERE.
C PRKRO IS UNCHANGED ON EXIT
C
C M INTEGER
C THE SURFACE OF THE SPHERE IS DIVIDED INTO M LONGITUDINAL
C BANDS.
C M IS UNCHANGED ON EXIT
```

147
M INTEGER
THE SURFACE OF THE SPHERE IS DIVIDED INTO M LATITUDE
BANDS.
M IS UNCHANGED ON EXIT

ZETA COMPLEX
THE IMPEDANCE OF THE MEDIUM.
ZETA IS UNCHANGED ON EXIT

RI COMPLEX
THE REFRACTIVE INDEX AT THE SURFACE GAMMA.
RI IS UNCHANGED ON EXIT

DEPTH REAL
THE DISTANCE FROM THE CENTRE OF THE OBSTACLE TO
THE BOUNDARY GAMMA.
DEPTH IS UNCHANGED ON EXIT

ON EXIT

SCATT COMPLEX
THE CALCULATED SCATTERED FIELD.

GROR COMPLEX
THE GREEN'S FUNCTION FOR A HOMOGENEOUS HALF SPACE.

PRRO COMPLEX
THE CALCULATED PRESSURE VALUE.

THIS VERSION DATED 3RD DECEMBER, 1989.

SUBROUTINES G11 AND G12DER ARE CALLED.

INTERNAL VARIABLES
REAL*4 AKCOORD(3),AKNORM(3),K1
INTEGER*4 NW,K
COMPLEX*8 IDG,ALPHA,GG,GX,GZ

K1=REAL(PROP/RI)
ALPHA=ZETA*RI
NW=N+M
CALL G11(RCOORD,SCOODR,K1,RI,ZETA,GG,DEPTH)
GROR=GG
SCATT=CMPLX(0.0,0.0)
DO 10 K=1,NW
AKCOORD(1)=COORD(1,K)
AKCOORD(2)=COORD(2,K)
AKCOORD(3)=COORD(3,K)
AKNORM(1)=NORM(1,K)
AKNORM(2)=NORM(2,K)
AKNORM(3)=NORM(3,K)
CALL G12DER(AKCOORD,RCOOORD,K1,RI,ZETA,GG,GX,GY,GZ,DEPTH)
IDG=AKNORM(1)+GI+AKNORM(2)+GY+AKNORM(3)+GZ
SCATT=SCATT+PRRO(K)*IDG*AREA(K)
10 CONTINUE
SCATT=SCATT/ALPHA
PRRO=GROR*SCATT

148
RETURN
END
D.6 Subroutine FRECSPHIM

FRECSPHIM calculates values of acoustic pressure at the receiver point in the infinite medium for the numerical solution of equation (A.7). Reference to other subprograms are:

- FFG: see section D.3;
- NDFG: see section D.20;
- RMAG: see section D.24.

```
SUBROUTINE FRECSPHIM(RCOORD, SCORD, CORD, NORM, PROP, AREA, PRKRO, N, M, SCATT, GROB, PRRO)
PARAMETER(MMAX=200, NMIX=100, NMIX=NMIX+NMIX, NMIX=NMIX+NMIX)
INTEGER*2 N, M
REAL*4 RCOORD(3), SCORD(3), CORD(3, NMIX), AREA(NMAX)
REAL*4 IORM(3, NMIX)
COMPLEX*8 PROP, PRKRO(NMAX), PRRO, SCATT
```

FRECSPHIM calculates the values of the pressure field at the receiver position.

ON ENTRY

- RCOORD REAL(NMAX): array containing the receiver Cartesian coordinates.
 - RCOORD is unchanged on exit.
- SCORD REAL(3): array containing the source Cartesian coordinates.
 - SCORD is unchanged on exit.
- CORD REAL(NMAX): array containing the coordinates of the centroids.
 - CORD is unchanged on exit.
- NORM REAL(NMAX): array containing the normal vectors at the centroids.
 - NORM is unchanged on exit.
- PROP COMPLEX: propagation constant.
 - N.B. time dependence EXP(-iωt) assumed.
 - PROP is unchanged on exit.
- AREA REAL(NMAX): array containing the area of each element.
 - AREA is unchanged on exit.
- PRKRO COMPLEX(N*NMIX): array containing the values of the pressure field on the surface of the sphere.
 - PRKRO is unchanged on exit.
- N INTEGER: the surface of the obstacle is divided into N longitudinal bars.

150
M IS UNCHANGED ON EXIT.

INTEGER
THE SURFACE OF THE OBSTACLE IS DIVIDED INTO M LATITUINAL
BANDS.
M IS UNCHANGED ON EXIT.

ON EXIT

SCATT COMPLEX
THE CALCULATED SCATTERED FIELD.

GROR COMPLEX
THE CALCULATED FREE FIELD.

PRRO COMPLEX
THE CALCULATED PRESSURE VALUE.

THIS VERSION DATED 11th MAY, 1989.

ROUTINES FFG, IDFG AND RMAG ARE CALLED.

FUNCTION TYPE DECLARATION

REAL*4 RMAG, AKCOORD(3), AKNORM(3)
COMPLEX*8 FFG, IDFG

INTERNAL VARIABLES

REAL*4 X
INTEGER*2 MM, K
COMPLEX*8 GROR, IDFG

MM=M*M
X=RMAC(RCOORD, RCOORD)
GROR=FFG(X, PROP)
PRRO=CMPLX(0.0, 0.0)
DO 10 K=1, MM
AKCOORD(1)=COORD(1, K)
AKCOORD(2)=COORD(2, K)
AKCOORD(3)=COORD(3, K)
AKNORM(1)=NORM(1, K)
AKNORM(2)=NORM(2, K)
AKNORM(3)=NORM(3, K)
I=RMAG(AKCOORD, RCOORD)
IDFG=IDFG(X, PROP, AKCOORD, RCOORD, AKNORM)
PRRO=PRRO+PRKRO(K)*IDFG*AREA(K)

CONTINUE
SCATT=PRRO
PRRO=GROR+SCATT
RETURN
END

151
D.7 Subroutine FSURCIR

FSURCIR calculates values of pressure at the midpoints of the boundary elements of a circular surface inhomogeneity, using the theory of section 5.1.2. Reference to other subprograms are:

- CGSLC: a subroutine from Argonne National Laboratory's Toeplitz package [105];
- G11WVDP: see section D.14;
- PBETA3: a subroutine from the PROPLIB package [93];
- RMAG: see section D.24.

```plaintext
SUBROUTINE FSURCIR(K1,K2,N,M,G,AREA,SCOOB,COORD,Z,ZC)
PARAMETER(NHAI=200,NMAX=100,MMAX=NMAX*MMAX,HMAX=HMAX+HMAX)
COMPLEX*8 Z(NMAX),ZC,G(NMAX),K2
INTEGER*2 N,M
REAL*4 SCO00,COORD(3,0),AREA(NMAX),K1
C FSURCIR CALCULATES THE PRESSURE VALUES AT THE MIDPOINTS
C OF THE BOUNDARY ELEMENTS OF A CIRCULAR SURFACE INHOMOGENEITY.
C ON ENTRY
C K1 REAL
C PROPAGATION CONSTANT OF THE LOWER MEDIUM.
C N.B. TIME DEPENDENCE EXP(-I*W*T) ASSUMED.
C K1 IS UNCHANGED ON EXIT.
C K2 COMPLEX
C PROPAGATION CONSTANT OF THE UPPER MEDIUM.
C N.B. TIME DEPENDENCE EXP(-I*W*T) ASSUMED.
C K2 IS UNCHANGED ON EXIT.
M INTEGER
C THE CIRCULAR PATCH IS DIVIDED INTO M SECTORS.
C M IS UNCHANGED ON EXIT.
M INTEGER
C THE CIRCULAR PATCH IS DIVIDED INTO M ANNULI.
C M IS UNCHANGED ON EXIT.
AREA REAL(N*M)
C ARRAY CONTAINING VALUES OF THE AREA OF THE
C N*M BOUNDARY ELEMENTS.
C AREA IS UNCHANGED ON EXIT.
SCOOB REAL(3)
C THE CARTESIAN COORDINATES OF THE SOURCE
C WITH THE ORIGIN AT THE CENTRE OF THE CIRCULAR
C INHOMOGENEITY.
C SCOOB IS UNCHANGED ON EXIT.
COORD REAL(3)
C THE CARTESIAN COORDINATES OF THE MIDPOINTS
```

152
OF THE BOUNDARY ELEMENTS.
COUR IS UNCHANGED ON EXIT.

Z COMPLEX(M*2)
THE INDUCED SURFACE IMPEDANCE WITHIN THE
CIRCULAR PATCH.
Z IS UNCHANGED ON EXIT.

ZC COMPLEX
THE CHARACTERISTIC IMPEDANCE OF THE SURROUNDING AREA.
ZC IS UNCHANGED ON EXIT.

G COMPLEX(MSTEP)
A VECTOR CONTAINING THE CALCULATED PRESSURE VALUES
AT THE MIDPOINTS OF THE BOUNDARY ELEMENTS.

THIS VERSION DATED 7TH DECEMBER, 1989.

ROUTINES COSLC,G11WDP, PBETA3 AND RMAE ARE CALLED.

FUNCTION TYPE DECLARATION

REAL*4 RMAE
COMPLEX*8 PBETA3

INTERNAL VARIABLES

COMPLEX*8 AJK,R(MAX(MAXI,2*MAXI)),A(MAXI,MAXI),GRKRJ,I,K,GO
INTEGER*2 K, J, MM, JJ, NM
REAL*4 AKC00R(3), AKC00R(3), X, PI, DEPTH

IF(N.GT.MAXI OR M.GT.MAXI) THEN
WRITE(6,500)
500 FORMAT(' ERROR= MAXIMUM ARRAY SIZE EXCEEDED')
STOP
ENDIF

PI=4.0*ATAN(1.0)
I=CMPLX(0.0,1.0)
DO 010 K=1,NM
DO 020 J=1,M
AJC00R(1)=CDOR(1,J)
AJC00R(2)=CDOR(2,J)
AJC00R(3)=CDOR(3,J)
AKC00R(1)=CDOR(1,K)
AKC00R(2)=CDOR(2,K)
AKC00R(3)=CDOR(3,K)
IF(J.EQ.K) THEN
AJK=1.0-I*K1*SQRT(AREA(K)/PI)*(1.0/Z(K)-1.0/ZC)
ELSE
Z=RMAE(AKC00R, AJC00R)
GRKRJ=PBETA3(I,K1,1.0/ZC)
GRKRJ=GRKRJ*EXP(I*K1*X)/(2.0*PI*X)
AJK=I+K1*GRKRJ*(1.0/Z(K)-1.0/ZC)*AREA(K)
ENDIF
JJ=J+(K-(INT(K-1)/M))*(M-1)*M
KK=INT(K-1)/M+1
A(JJ,KK)=AJK

153
CONTINUE
RI=R2/K1
DEPTH=0.0
CALL G11WDP(AKCOORD,SCOOB,R1,RI,ZC,GG,DEPTH)
G(K)=GG
CONTINUE
MMM=M
CALL CSSLO(A,G,R,MMM,N,MMMAX)
RETURN
END
D.8 Subroutine FSURSPH

FSURSPH calculates values of pressure at the midpoints of the boundary elements of a spheroid, using the theory of section 5.1.1. Reference to other subprograms are:

- CGSLC: a subroutine from Argonne National Laboratory's Toeplitz package [105];
- G12: see section D.11;
- G22DER: see section D.13;
- GDER: see section D.15.

```fortran
SUBROUTINE FSURSPH(PROP, M, G, AREA, SCOOR, COOR, NORM, ZETA, AI, 
&                       DEPTH)
REAL*4 DEPTH
INTEGER*4 M, N
COMPLEX*8 PROP, ZETA, AI
C FSURSPH CALCULATES PRESSURE VALUES ON THE SURFACE
C OF A RIGID OBSTACLE, IN A RIGID POROUS MEDIUM.
C
C ON ENTRY
C
C PROP COMPLEX
C PROPAGATION CONSTANT OF THE LOWER MEDIUM.
C N.B. TIME DEPENDENCE EXP(-I*W*T) ASSUMED.
C PROP IS UNCHANGED ON EXIT.
C
C M INTEGER
C THE SURFACE OF THE OBSTACLE IS DIVIDED INTO M LONGITUDINAL
C BANDS.
C M IS UNCHANGED ON EXIT.
C
C N INTEGER
C THE SURFACE OF THE OBSTACLE IS DIVIDED INTO N LATITUDINAL
C BANDS.
C N IS UNCHANGED ON EXIT.
C
C AREA REAL(MMAX)
C THE SURFACE OF THE OBSTACLE IS DIVIDED INTO M*N
C BOUNDARY ELEMENTS.
C AREA IS UNCHANGED ON EXIT.
C
C SCOOR REAL(3)
C ARRAY CONTAINING THE SOURCE COORDINATES.
C SCOOR IS UNCHANGED ON EXIT.
C
C COOR REAL(MMAX)
C ARRAY CONTAINING THE COORDINATES OF THE CENTROIDS.
C COOR IS UNCHANGED ON EXIT.
C
C NORM REAL(MMAX)
C ARRAY CONTAINING THE NORMAL VECTORS TO THE SURFACE AT THE
C CENTROIDS.
```

155
NORM IS UNCHANGED ON EXIT.

ZETA COMPLEX
THE IMPEDANCE OF THE MEDIUM.
ZETA IS UNCHANGED ON EXIT.

RI COMPLEX
THE REFRACTIVE INDEX AT THE SURFACE.
RI IS UNCHANGED ON EXIT.

DEPTH REAL
THE DISTANCE FROM THE SURFACE GAMMA TO THE CENTRE OF THE
OBSTACLE.
DEPTH IS UNCHANGED ON EXIT.

ON EXIT

G COMPLEX(NSTEP)
A VECTOR CONTAINING THE CALCULATED PRESSURE VALUES.

THIS VERSION DATED 3RD DECEMBER, 1989.

ROUTINES GDER,G22DER,G12 ARE CALLED.
THE TOEPLITZ ROUTINE COSLC IS ALSO CALLED.

INTERNAL VARIABLES

PARAMETER(MMAX=200,NMAX=100,NMMAX=MMAX,NMMAX=MMAX,NMMAX=MMAX,NMAX=MMAX,MMAX=MMAX)
REAL=4 SCCOR(3),COOR(3,NMAX)
REAL=4 NORM(3,NMAX),AREA(NMAX),NORM(3)
REAL=4 AJCCTR(3),ACCTR(3),X,ACCTR(3),AIMOR(3),K1
INTEGER=4 J,MM,NN,JK,JJ,JM
COMPLEX=8 AJK,AMAX(NMAX,MMAX-MMAX),NDG,GX,GY,GZ

IF(M.GT.NMAX OR M.GT.NMMAX)THEN
WRITE(*,500)
500 FORMAT(’ERROR: MAXIMUM ARRAY SIZE EXCEEDED’) STOP
ENDIF

K1=REAL(PROP/RI)
ALPHA=ZETA*K1
NM=MNN+M
ND=NM+M
DO 010 K=1,NM
DO 020 J=1,NM
AJCCTR(1)=COOR(1,J)
AJCCTR(2)=COOR(2,J)
AJCCTR(3)=COOR(3,J)
AKNOR(1)=NORM(1,K)
AKNOR(2)=NORM(2,K)
AKNOR(3)=NORM(3,K)
IF(J.EQ.K)THEN
AJK=(1.0,0.0)
DO 600 I=1,MM
IF(I.EQ.J) THEN

156
AICOR1 = COOR1,1
AICOR2 = COOR2,1
AICOR3 = COOR3,1
AINORM1 = NORM1,1
AINORM2 = NORM2,1
AINORM3 = NORM3,1
CALL ODER(AICOR, AICOR, GO, GY, GZ)
IDO = AINORM1,2 * GZ + AINORM2,2 * GY + AINORM3,2 * GZ
AJK = AJK + AREA(I) * IDO
ENDIF

AJK = AJK * ALPHA
ELSE
CALL G2DER(AKCOOR, AKCOOR, K1, RI, ZETA, GO, GY, GZ, DEPTH)
IDO = AKNORM1,2 * GZ + AKNORM2,2 * GY + AKNORM3,2 * GZ
AJK = AJK - IDO * AREA(K)
ENDIF
JJ = J + ((K - INT((K-1)/M))*M)-1)*M
KK = INT((K-1)/M) + 1
A(JJ, KK) = AJK
END

CONTINUE
CALL G12(AKCOOR, SCODR, K1, RI, ZETA, GO, DEPTH)
G(K) = GO
G(K) = ALPHA * G(K)
END

CONTINUE
MM = M
CALL CGSLC(A, G, B, MM, N, MMAX)
RETURN
END
D.9 Subroutine FSURSPHIM

FSURSPHIM calculates values of pressure at the midpoints of the boundary elements of a sphere, for the numerical solution of equation (A.7). Reference to other subprograms are:

- CGSLC: a subroutine from Argonne National Laboratory's Toeplitz package [105];
- FFG: see section D.3;
- NDFG: see section D.20;
- RMAG: see section D.24.

```
SUBROUTINE FSURSPHIM(PROP, N, M, AREA, SCOO, COOR, NORM)
COMPLEX*8 PROP
INTEGER*2 N, M

FSURSPHIM CALCULATES PRESSURE VALUES ON THE SURFACE
OF A RIGID OBSTACLE, IN A RIGID POROUS MEDIUM.

ON ENTRY

PROP COMPLEX
PROPAGATION CONSTANT.
N.B. TIME DEPENDENCE EXP(-I*W*T) ASSUMED.
PROP IS UNCHANGED ON EXIT.

M INTEGER
THE SURFACE OF THE OBSTACLE IS DIVIDED INTO M LONGITUDINAL
BANDS.
M IS UNCHANGED ON EXIT.

M INTEGER
THE SURFACE OF THE OBSTACLE IS DIVIDED INTO M LATITUDINAL
BANDS.
M IS UNCHANGED ON EXIT.

AREA REAL(N/MAX)
ARRAY CONTAINING THE AREA OF EACH ELEMENT.
AREA IS UNCHANGED ON EXIT.

SCOO REAL (3)
ARRAY CONTAINING THE SOURCE COORDINATES.
SCOO IS UNCHANGED ON EXIT.

COOR REAL(N/MAX)
ARRAY CONTAINING THE COORDINATES OF THE CENTROIDS.
COOR IS UNCHANGED ON EXIT.

NORM REAL(N/MAX)
ARRAY CONTAINING THE NORMAL VECTORS AT THE CENTROIDS.
NORM IS UNCHANGED ON EXIT.

ON EXIT

158
```
COMPLEX(WMAX)
A VECTOR CONTAINING THE CALCULATED PRESSURE VALUES.

THIS VERSION DATED 17th FEBRUARY, 1989.

ROUTINES FFG, HDFG AND RMAG ARE CALLED.
THE TOEPLITZ ROUTINE COSLC IS ALSO CALLED.

FUNCTION TYPE DECLARATION

REAL*4 RMAG
COMPLEX*8 FFG, HDFG

INTERNAL VARIABLES

PARAMETER(WMAX=200, NUMAX=100, WMMAX=WMAX+MMAX, MMAX=WMAX+MMAX)
COMPLEX*8 G(WMAX+MMAX)
REAL*4 AJCOOR(3), AKCOOR(3), X, AJCODR(3)
REAL*4 SCODR(3), CODR(3, WMMAX), AKNORM(3), SKNORM(3)
REAL*4 NORM(3, WMAX), AREA(WMAX)
INTEGER*2 J, NW, M, JK, JJ, WNN
COMPLEX*8 A(WMMAX, WMAX), HDFG, AJK(WMAX, WMAX)
IF(WMAX.GT.WMAX OR M.GT.WMAX) THEN
WRITE(6,500)
500 FORMAT('ERROR* MAXIMUM ARRAY SIZE EXCEEDED')
STOP
ENDIF
WNN=M=M
MM=N=N
DO 010 K=1, NW
DO 020 J=1, M
AJCOOR(1)=COOR(1, J)
AJCOOR(2)=COOR(2, J)
AJCOOR(3)=COOR(3, J)
AKCOOR(1)=CODR(1, K)
AKCOOR(2)=CODR(2, K)
AKCOOR(3)=CODR(3, K)
AKNORM(1)=NORM(1, K)
AKNORM(2)=NORM(2, K)
AKNORM(3)=NORM(3, K)
IF(J.EQ.K) THEN
AJK=(1.0, 0.0)
DO 600 I=1, M
IF(I.NE.J) THEN
AICODR(1)=COOR(1, J)
AICODR(2)=COOR(2, J)
AICODR(3)=COOR(3, J)
AKNORM(1)=NORM(1, J)
AKNORM(2)=NORM(2, J)
AKNORM(3)=NORM(3, J)
X=RMAG(AICODR, AJCODR)
HDFG=HDFG(X, (0.0, 0.0), AICODR, AJCODR, AKNORM)
AJK=AJK+AREA(1)*HDFG
ENDIF
600 CONTINUE
ELSE
X=RMAG(AICODR, AJCODR)
HDFG=HDFG(X, PROP, AJCODR, AJCODR, AKNORM)
AJK=-HDFG*AREA(K)
ENDIF

159
D.10 Subroutine G11

G11 calculates the acoustic pressure at a receiver point in the upper medium due to a point source on the same side of the boundary, using equation (3.33). There are no subprograms referenced.

```
SUBROUTINE G11(X2,X1,K1,K,ZETA,G,DEPTH)
C
C  THIS SUBROUTINE CALCULATES AN APPROXIMATION FOR THE ACOUSTIC
C  PRESSURE ON ONE SIDE OF AN INTERFACE DUE TO A POINT SOURCE ON
C  THE SAME SIDE OF THE INTERFACE. CARTESIAN COORDINATES (X,Y,Z)
C  ARE USED, THE INTERFACE HAS THE EQUATION Z=DEPTH, AND THE MEDIUM
C  OCCUPYING Z > DEPTH IS CALLED MEDIUM 1, THE MEDIUM OCCUPYING
C  Z < DEPTH IS CALLED MEDIUM 2. BOTH SOURCE AND RECEIVER ARE ASSUMED
C  TO BE IN MEDIUM 2.
C
C  LET K1, K2 DENOTE PROPAGATION CONSTANTS IN THE TWO MEDIUMS, AND
C  LET Z1, Z2 DENOTE THE IMPEDANCES OF THE TWO MEDIUMS. NOTE THAT THE
C  INCIDENT WAVE IS ASSUMED TO BE
C
C  -EXP(I*K1*R)/(4*PI*R),
C
C  WHERE R IS THE DISTANCE FROM THE SOURCE, AND
C  I = SQRT(-1).
C
C  ON INPUT
C
C  X2(I), REAL(3)
C  I=1,2,3 ARE THE X,Y,Z CARTESIAN COORDINATES OF EITHER THE SOURCE
C  OR THE RECEIVER.
C  X2 IS UNCHANGED ON EXIT.
C
C  X1(I), REAL(3)
C  I=1,2,3 ARE THE X,Y,Z CARTESIAN COORDINATES OF EITHER THE SOURCE
C  OR THE RECEIVER. (EITHER X1 CONTAINS THE SOURCE COORDINATES
C  AND X2 THE RECEIVER COORDINATES OR VICE VERSA.)
C  X1 IS UNCHANGED ON EXIT.
C
C  K1 REAL
C  IS THE PROPAGATION CONSTANT OF MEDIUM 1.
C  K1 IS UNCHANGED ON EXIT.
C
C  N COMPLEX
C  N = K2/K1 IS THE REFRACTIVE INDEX.
C  N IS UNCHANGED ON EXIT.
C
C  ZETA COMPLEX
C  ZETA = Z2/Z1 IS THE IMPEDANCE RATIO.
C  ZETA IS UNCHANGED ON EXIT.
C
C  DEPTH REAL
C  IS THE Z-COORDINATE OF THE BOUNDARY BETWEEN MEDIA 1 AND 2.
C  DEPTH IS UNCHANGED ON EXIT.
C
C  ON OUTPUT
C
C  G COMPLEX
C  IS THE ACOUSTIC PRESSURE AT THE RECEIVER.
```
REAL X1(3),X2(3),K1,DEPTH
COMPLEX W,ZETA,G

COMPLEX ALPHA,Q,AC,RP
COMPLEX FR,FRDASH

C

PI = 4.0*ATAN(1.0)
ALPHA = W+ZETA
ID = X2(1)-X1(1)
YD = X2(2)-X1(2)
Z1 = X1(3)-DEPTH
Z2 = X2(3)-DEPTH
ZD = X2-Z1
ZSUM = Z2+Z1
RSTS = ID*ID+YD*YD
RST = SQRT(RSTS)
K = SQRT(RSTS+ZD*ZD)
RDASH = SQRT(RSTS+ZSUM*ZSUM)
S = RST/RDASH
C = ZSUM/RDASH
Q = CSQRT(W+Q+S+S)
AC = ALPHA+C
RP = (AC-Q)/(AC+Q)
FR = CEXP(COMPLX(0.0,K1*R))/R
FRDASH = CEXP(COMPLX(0.0,K1*RDASH))/RDASH
G = (-1.0/(4.0*PI))*FR+RP*FRDASH
RETURN
END
D.11 Subroutine G12

G12 calculates the acoustic pressure transmitted across the plane boundary from a point source on the other side of the boundary, using equation (3.53). There are no subprograms referenced.

SUBROUTINE G12(X2,X1,K1,I,ZETA,G,DEPTH)
C
C THIS SUBROUTINE CALCULATES AN APPROXIMATION FOR THE ACOUSTIC
C PRESSURE TRANSMITTED ACROSS AN INTERFACE FROM A POINT SOURCE ON
C THE OTHER SIDE OF THE INTERFACE. CARTESIAN COORDINATES (X,Y,Z)
C ARE USED, THE INTERFACE HAS THE EQUATION Z=DEPTH, AND THE MEDIUM
C OCCUPying Z > 0 IS CALLED MEDIUM 1, THE MEDIUM OCCUPying Z < 0
C IS CALLED MEDIUM 2.
C
C LET K1, K2 DENOTE PROPAGATION CONSTANTS IN THE TWO MEDIUMS, AND
C LET Z1, Z2 DENOTE THE IMPEDANCES OF THE TWO MEDIUMS. NOTE THAT THE
C INCIDENT WAVE IS ASSUMED TO BE
C
C -C*EXP(I*X*R)/(4*PI*R),
C
C WHERE X = X1 (X2) IF THE SOURCE IS IN MEDIUM 1 (2),
C C = 1 (ALPHA) IF THE SOURCE IS IN MEDIUM 1 (2),
C R IS THE DISTANCE FROM THE SOURCE, AND
C I = SQRT(-1).
C
C ON INPUT
C
C X2(I), REAL(3)
C I=1,2,3 ARE THE X,Y,Z CARTESIAN COORDINATES OF WHICHEVER OF SOURCE/
C RECEIVER IS IN MEDIUM 2.
C X2 IS UNCHANGED ON EXIT
C
C X1(I), REAL(3)
C I=1,2,3 ARE THE X,Y,Z CARTESIAN COORDINATES OF WHICHEVER OF SOURCE/
C RECEIVER IS IN MEDIUM 1.
C X1 IS UNCHANGED ON EXIT
C
C K1 REAL
C IS THE PROPAGATION CONSTANT OF MEDIUM 1.
C K1 IS UNCHANGED ON EXIT
C
C N COMPLEX
C N = K2/K1 IS THE REFRACTIVE INDEX.
C N IS UNCHANGED ON EXIT
C
C ZETA COMPLEX
C ZETA = Z2/Z1 IS THE IMPEDANCE RATIO.
C ZETA IS UNCHANGED ON EXIT
C
C DEPTH REAL
C IS THE Z-COORDINATE OF THE BOUNDARY BETWEEN MEDIA 1 AND 2.
C DEPTH IS UNCHANGED ON EXIT
C
C ON OUTPUT
C
C G COMPLEX
C IS THE ACOUSTIC PRESSURE AT THE RECEIVER.
REAL X1(3), X2(3), X1
COMPLEX X, ZETA, G

COMPLEX ALPHA, Q, P

PI = 4.0*ATAN(1.0)
ALPHA = X*ZETA
ID = X2(1)-X1(1)
YD = X2(2)-X1(2)
Z1 = X1(3)-DEPTH
Z2 = X2(3)-DEPTH
RST = SQRT(ID*ID+YD*YD)
R = SQRT(RST*RST+Z1*Z1)
S = RST/R
C = Z1/R
Q = CSQRT(X*Z-S*S)
P = ALPHA*C+Q
Q = (-C/(2.0*PI*R))*ALPHA*CEXP(COMPLEX(0.0, X1)+(R-Z2*Q))/P
RETURN
END
D.12 Subroutine G12DER

G12DER calculates the components of the gradient of acoustic pressure transmitted across the plane boundary from a point source on the other side of the boundary, using equation (3.56). There are no subprograms referenced.

```
SUBROUTINE G12DER(X2,X1,K1,I,ZBTA,G,GI,GY,GZ,DEPTH)
REAL DEPTH,X1(3),X2(3),K1
COMPLEX H,ZETA,G,GZ,GY,G
C
C THIS SUBROUTINE CALCULATES AN APPROXIMATION FOR THE COMPONENTS OF THE
C GRADIENT OF THE ACOUTIC
C PRESSURE TRANSMITTED ACROSS AN INTERFACE FROM A POINT SOURCE ON
C THE OTHER SIDE OF THE INTERFACE. CARTESIAN COORDINATES (X,Y,Z)
C ARE USED, THE INTERFACE HAS THE EQUATION Z=DEPTH, AND THE MEDIUM
C OCCUPYING Z > 0 IS CALLED MEDIUM 1, THE MEDIUM OCCUPYING Z < 0
C IS CALLED MEDIUM 2. THE SPATIAL DERIVATIVES OF THE APPROXIMATION
C ARE ALSO CALCULATED.
C
C LET K1, K2 DENOTE PROPAGATION CONSTANTS IN THE TWO MEDIUMS, AND
C LET Z1, Z2 DENOTE THE IMPEDANCES OF THE TWO MEDIUMS. NOTE THAT THE
C INCIDENT WAVE IS ASSUMED TO BE
C
C -C*EXP(I*K*R)/(4*PI*R),
C
C WHERE R = K1 (K2) IF THE SOURCE IS IN MEDIUM 1 (2),
C C = 1 (ALPHA) IF THE SOURCE IS IN MEDIUM 1 (2),
C R IS THE DISTANCE FROM THE SOURCE, AND
C I = SQRT(-1).
C
C ON INPUT
C
C X2(1), REAL(3)
C I=1,2,3 ARE THE X,Y,Z CARTESIAN COORDINATES OF WHICHEVER OF SOURCE/
C RECEIVER IS IN MEDIUM 2.
C X2 IS UNCHANGED ON EXIT.
C
C X1(1), REAL(3)
C I=1,2,3 ARE THE X,Y,Z CARTESIAN COORDINATES OF WHICHEVER OF SOURCE/
C RECEIVER IS IN MEDIUM 1.
C X1 IS UNCHANGED ON EXIT.
C
C K1 REAL
C IS THE PROPAGATION CONSTANT OF MEDIUM 1.
C K1 IS UNCHANGED ON EXIT.
C
C N COMPLEX
C N = K2/K1 IS THE REFRACTIVE INDEX.
C N IS UNCHANGED ON EXIT.
C
C ZETA COMPLEX
C ZETA = Z2/Z1 IS THE IMPEDANCE RATIO.
C ZETA IS UNCHANGED ON EXIT.
C
C DEPTH REAL
C IS THE Z-COORDINATE OF THE BOUNDARY BETWEEN MEDIUM 1 AND 2.
C DEPTH IS UNCHANGED ON EXIT.
```

165
COMPLEX OUTPUT

COMPLEX IS THE ACOUSTIC PRESSURE AT THE RECEIVER.

GX, GY, GZ COMPLEX ARE THE DERIVATIVES OF G WITH RESPECT TO X2(1), X2(2), X2(3).

INTERNAL VARIABLES

COMPLEX ALPHA, Q, P, DQDTH, DQDRST

PI = 4.0*ATAN(1.0)
ALPHA = R*ZETA
XD = X2(1) - X1(1)
YD = X2(2) - X1(2)
Z1 = X1(3) - DEPTH
Z2 = X2(3) - DEPTH
RST = SQRT(XD*XD + YD*YD)
R = SQRT(RST*RST + Z1*Z1)
S = RST/R
C = Z1/R
S1 = S/R
C1 = C/R
Q = CSQRT(R*R - S*S)
P = ALPHA*C + Q
G = (-C/(2.0*PI*R))*ALPHA*CEIP(CMPLX(0.0, K1)*(R-Z2*Q))/P
DQDTH = -S*C/Q
DQDRST = G*(CMPLX(-S1, S1*Z1*R) - (S1*Q+C1*DQDTH)/P + CMPLX(0.0, Z2*C1)*DQDTH)

IF(RST.GT.0.0) THEN
 GX = DQDRST*(XD/RST)
 GY = DQDRST*(YD/RST)
ELSE
 GX = (0.0, 0.0)
 GY = (0.0, 0.0)
ENDIF

GZ = CMPLX(0.0, -X1)*Q*G
RETURN

END
D.13 Subroutine G22DER

G22DER calculates the components of the gradient of the acoustic pressure at a receiver point in the lower medium due to a point source on the same side as the medium, using equation (3.37). There are no subprograms referenced.

SUBROUTINE G22DER(X2,X1,K1,ZETA,G,GX,GY,GZ,DEPTH)
REAL X1(3),X2(3),K1
COMPLEX I,ZETA,G,GX,GY,GZ
C
C THIS SUBROUTINE CALCULATES AN APPROXIMATION FOR THE GRADIENT OF
C THE ACOUSTIC PRESSURE ON ONE SIDE OF AN INTERFACE.
C DUE TO A POINT SOURCE ON THE SAME SIDE OF THE INTERFACE.
C CARTESIAN COORDINATES (X,Y,Z)
C ARE USED, THE INTERFACE HAS THE EQUATION Z=DEPTH, AND THE MEDIUM
C OCCUPYING Z > DEPTH IS CALLED MEDIUM 1, THE MEDIUM OCCUPYING
C Z < DEPTH IS CALLED MEDIUM 2. THE SPATIAL DERIVATIVES OF THE
C APPROXIMATION ARE ALSO CALCULATED. NOTE THAT BOTH SOURCE AND
C RECEIVER ARE ASSUMED TO LIE IN MEDIUM 2.
C
C LET K1, K2 DENOTE PROPAGATION CONSTANTS IN THE TWO MEDIUMS, AND
C LET Z1, Z2 DENOTE THE IMPEDANCES OF THE TWO MEDIUMS. NOTE THAT THE
C INCIDENT WAVE IS ASSUMED TO BE
C
C -ALPHA*EXP(I*I2*R)/(4*PI*R),
C
C WHERE R IS THE DISTANCE FROM THE SOURCE, AND
C I = SQRT(-1).
C
C ON INPUT
C
C X2(I), REAL (3)
C I=1,2,3 ARE THE X,Y,Z CARTESIAN COORDINATES OF EITHER THE SOURCE
C OR THE RECEIVER.
C X2 IS UNCHANGED ON EXIT
C
C X1(I), REAL (3)
C I=1,2,3 ARE THE X,Y,Z CARTESIAN COORDINATES OF EITHER THE SOURCE
C OR THE RECEIVER. (EITHER X1 CONTAINS THE SOURCE COORDINATES
C AND X2 THE RECEIVER COORDINATES OR VICE VERSA.)
C X1 IS UNCHANGED ON EXIT
C
C K1 REAL
C IS THE PROPAGATION CONSTANT OF MEDIUM 1.
C K1 IS UNCHANGED ON EXIT
C
C K COMPLEX
C K = K2/K1 IS THE REFRACTIVE INDEX.
C K IS UNCHANGED ON EXIT
C
C ZETA COMPLEX
C ZETA = Z2/Z1 IS THE IMPEDANCE RATIO.
C ZETA IS UNCHANGED ON EXIT
C
C DEPTH REAL
C IS THE Z-COORDINATE OF THE BOUNDARY BETWEEN MEDIA 1 AND 2.
C DEPTH IS UNCHANGED ON EXIT
C
C ON OUTPUT

C G COMPLEX
IS THE ACOUSTIC PRESSURE AT THE RECEIVER.

C GI,GY,GZ COMPLEX
ARE THE DERIVATIVES OF G WITH RESPECT TO X2(1),X2(2),X2(3).

COMPLEX ALPHA,NINV,K2,Q,AQ,P,RP,CON,IRX2,IRDASH2,EXP1,EXP2
COMPLEX FR,FRDASH,GR,GRDASH,DRPDTH,A

PI = 4.0*ATAN(1.0)
ALPHA = N*ZETA
NINV = (1.0,0.0)/N
K2 = X1+Y
XD = X2(1)-X1(1)
YD = X2(2)-X1(2)
ZI = X1(3)-DEPTH
ZD = X2(3)-DEPTH
ZS = Z2-Z1
RSTS = XD*XD+YD*YD
RST = SQRT(RSTS)
R = SQRT(RSTS+ZD*ZD)
RDASH = SQRT(RSTS+ZSUM*ZSUM)
S = RST/RDASH
C = -ZSUM/RDASH
Q = CSQRT(NINV+NINV-S+S)
AQ = ALPHA+Q
P = C+AQ
RP = (C-AQ)/P
CON = (-1.0/(4.0*PI))*ALPHA
IRX2 = CMPLX(0.0,R)*K2
IRDASH2 = CMPLX(0.0,RDASH)*K2
EXP1 = CEXP(IRX2)
EXP2 = CEXP(IRDASH2)
FR = EXP1/R
FRDASH = EXP2/RDASH
G = CON*(FR + RP*FRDASH)
GR = (IRX2-(1.0,0.0))*FR/(R*R)
GRDASH = (IRDASH2-(1.0,0.0))*FRDASH/(RDASH*RDASH)
DRPDTH = -(S+S)*ALPHA*(Q-(C+C)/Q)/(P*P)
IF(RST.GT.0.0) THEN
 A = CON*(GR + RP*GRDASH - (C/(RST*R))*FRDASH*DRPDTH)
ELSE
 A = CON*(GR + RP*GRDASH)
ENDIF
GI = A*XD
GY = A*YD
GZ = CON*(GR+ZD+RP*GRDASH+ZSUM + (S/RDASH)*FRDASH*RDASH)
RETURN
END
D.14 Subroutine G11WVDP

G11WVDP calculates values of pressure at a receiver point due to a point source above an impedance boundary, using the equation (3.45). The subprogram that is referenced is:

- W: see section D.27.

SUBROUTINE G11WVDP(X2,X1,K1,W,ZETA,D,DEPTH)
THIS SUBROUTINE CALCULATES AN APPROXIMATION FOR THE ACOUSTIC PRESSURE ON ONE SIDE OF AN INTERFACE DUE TO A POINT SOURCE ON THE SAME SIDE OF THE INTERFACE.
C CARTESIAN COORDINATES (X,Y,Z)
C
C LET K1, K2 DENOTE PROPAGATION CONSTANTS IN THE TWO MEDIA, AND
C LET Z1, Z2 DENOTE THE IMPEDANCES OF THE TWO MEDIA. NOTE THAT THE INCIDENT WAVE IS ASSUMED TO BE
C -EXP(I*K1*R)/(4*PI*R),
C WHERE R IS THE DISTANCE FROM THE SOURCE, AND I = SQRT(-1).
C
C ON INPUT
C
C X2(I), REAL(3) X2 ARE THE X,Y,Z CARTESIAN COORDINATES OF EITHER THE SOURCE OR THE RECEIVER.
C X2 IS UNCHANGED ON EXIT.
C
C X1(I), REAL(3) X1 ARE THE X,Y,Z CARTESIAN COORDINATES OF EITHER THE SOURCE OR THE RECEIVER. (EITHER X1 CONTAINS THE SOURCE COORDINATES AND X2 THE RECEIVER COORDINATES OR VICE VERSA.)
C X1 IS UNCHANGED ON EXIT.
C
C K1 REAL
C K1 IS THE PROPAGATION CONSTANT OF MEDIUM 1.
C K1 IS UNCHANGED ON EXIT.
C
C W COMPLEX
C W = K2/K1 IS THE REFRACTIVE INDEX.
C W IS UNCHANGED ON EXIT.
C
C ZETA COMPLEX
C ZETA = Z2/Z1 IS THE IMPEDANCE RATIO.
C ZETA IS UNCHANGED ON EXIT.
C
C DEPTH REAL
C IS THE Z-COORDINATE OF THE BOUNDARY BETWEEN MEDIUM 1 AND 2.
C DEPTH IS UNCHANGED ON EXIT.
C
C ON OUTPUT
COMPLEX
IS THE ACOUSTIC PRESSURE AT THE RECEIVER.

THIS VERSION DATED 3RD DECEMBER, 1989

ROUTINE W IS CALLED

REAL X1(3), X2(3), X1, DEPTH
COMPLEX W, ZETA, G, I, RP, BETA, PE, PE2, WIZ, F

BETA=1.0/ZETA
I=CMPLX(0.0, 1.0)
PI=4.0*ATAN(1.0)
XD=X2(1)-X1(1)
YD=X2(2)-X1(2)
Z1=X1(3)-DEPTH
Z2=X2(3)-DEPTH
ZD=Z2-Z1
ZSUM=Z2+Z1
RSTS=XD*XD+YD*YD
RST=SQRT(RSTS)
R=SQR1(RSTS+ZD*ZD)
RDASH=SQRT(RSTS+ZSUM*ZSUM)

CTR=ZSUM/RDASH
RP=(CTR-BETA)/(CTR+BETA)
G=CEXP(I*K1*R)/(4.0*PI*R)-RP*CEXP(I*K1*RDASH)/(4.0*PI*RDASH)
PE=CSQRT(I*K1*RDASH/2.0)*(CTR+BETA)

F=1.0+I*SQRT(PI)*PE*WIZ
G=G-(1.0-RP)*F*CEXP(I*K1*RDASH)/(4.0*PI*RDASH)
RETURN
END
D.15 Subroutine GDER

GDER calculates the magnitude of the principal singularity of equation (5.1) and also the components of its gradient. There are no subprograms referenced.

```plaintext
SUBROUTINE GDER(X2, XI, 0, GX, GY, GZ)
REAL XI(3), X2(3)
COMPLEX G, GX, GY, GZ

C GDER CALCULATES THE MAGNITUDE AND THE COMPONENTS OF THE GRADIENT
C OF THE PRINCIPAL SINGULARITY, EXCLUDING THE FACTOR ALPHA.
C
C ON ENTRY
C
C X2(3) REAL
C CARTESIAN COORDINATES OF THE RECEIVER POINT
C XI IS UNCHANGED ON EXIT.
C
C XI(3) REAL
C CARTESIAN COORDINATES OF THE SOURCE POINT
C XI IS UNCHANGED ON EXIT.
C
C ON EXIT
C
C G COMPLEX
C THE MAGNITUDE OF THE PRINCIPAL SINGULARITY
C
C GX COMPLEX
C THE X COMPONENT OF THE GRADIENT OF THE
C PRINCIPAL SINGULARITY
C
C GY COMPLEX
C THE Y COMPONENT OF THE GRADIENT OF THE
C PRINCIPAL SINGULARITY
C
C GZ COMPLEX
C THE Z COMPONENT OF THE GRADIENT OF THE
C PRINCIPAL SINGULARITY
C
C INTERNAL VARIABLES
C
REAL CON, R, RINV, XD, YD, ZD,
C
CON = -7.9677471565E-02
C CON = -1/(4*PI)
XD = XI(1) - X2(1)
YD = XI(2) - X2(2)
ZD = XI(3) - X2(3)
R = SQRT(XD*XD + YD*YD + ZD*ZD)
RINV = 1.0/R
G = CON*RINV
CON = CON*RINV*YD
GX = CON*XD
GY = CON*YD
GZ = CON*ZD
RETURN
END
```

171
D.16 Subroutine GEOCIRCLE

GEOCIRCLE calculates values of area and the coordinates of the midpoints of the boundary elements of a circular surface inhomogeneity using the theory of section 5.1.2. There are no subprograms referenced.

```fortran
SUBROUTINE GEOCIRCLE(RAD,M,N,A,COORD)
PARAMETER(NMAX=200,NMAX=100,NMAX*MMAX=MMAX)
REAL*4 RAD,A(MMAX),COORD(M,NMAX)
INTEGER*2 M,N
C GEOCIRCLE CALCULATES THE AREA OF ELEMENT J FOR A CIRCLE, THE COORDINATES OF THE MIDPOINTS.
C ON ENTRY
C
RAD REAL
  THE RADIUS OF THE CIRCLE.
RAD ISUNCHANGED ON EXIT.
M INTEGER
  THE CIRCULAR PATCH IS DIVIDED INTO M ANULI.
M IS UNCHANGED ON EXIT.
N INTEGER
  THE CIRCULAR PATCH IS DIVIDED INTO N SECTORS.
  N IS UNCHANGED ON EXIT.
C ON EXIT
A REAL
  THE AREA OF ELEMENT J.
COORD REAL
  THE CARTESIAN COORDINATES OF THE MIDPOINT OF ELEMENT J.
C INTERNAL VARIABLES
C
REAL*4 PI,THET,RFRAC
INTEGER*2 I1,I2,J
PI=3.141592653
RFRAC=RAD/N
THET=2.0*PI/N
DO 030 I1=1,N
  DO 040 I2=1,M
    J=(I1-1)*M+I2
    COORD(1,J)=(I2-0.5)*RFRAC*COS((I1-0.5)*THET)
    COORD(2,J)=(I2-0.5)*RFRAC*SIN((I1-0.5)*THET)
    COORD(3,J)=0.0
    A(J)=0.5*THET*(((I2*RFRAC)**2-((I2-1)*RFRAC)**2)
040 CONTINUE
030 CONTINUE
RETURN
END
```

172
D.17 Subroutine GEOSPHERE

GEOSPHERE calculates values of area, the coordinates of the midpoints and the normals of the boundary elements of a sphere for the numerical solution of equation (A.7). There are no subprograms referenced.

SUBROUTINE GEOSPHERE(RAD,M,J,A,COORD,NORM)
PARAMETER(MMAX=200,NNMAX=100,NNMAX=NNMAX+NNMAX)
REAL+4 RAD,A(MMAX),COORD(3,NNMAX),NORM(3,NNMAX)
INTEGER+2 M,J

C GEOSPHERE CALCULATES THE AREA OF ELEMENT J FOR A SPHERE, THE
C COORDINATES OF THE MIDPOINTS AND THE NORMAL VECTORS TO THE MIDPOINTS.
C ON ENTRY
C
C RAD REAL
C THE RADIUS OF THE SPHERE.
C RAD IS UNCHANGED ON EXIT.
C
C M INTEGER
C THE SURFACE OF THE SPHERE IS DIVIDED INTO M LATITUDINAL
C BANDS.
C M IS UNCHANGED ON EXIT.
C
C N INTEGER
C THE SURFACE OF THE SPHERE IS DIVIDED INTO N LONGITUDINAL
C BANDS.
C N IS UNCHANGED ON EXIT.
C ON EXIT
C
C A REAL
C THE AREA OF ELEMENT J. ONLY THE FIRST M ELEMENTS ARE
C CALCULATED.
C
C COORD REAL
C THE CARTESIAN COORDINATES OF THE MIDPOINT OF ELEMENT J
C
C NORM REAL
C THE NORMAL VECTOR AT THE MIDPOINT OF ELEMENT J DIRECTED
C INTO THE SPHERE. ONLY THE FIRST M ELEMENTS ARE CALCULATED.
C INTERNAL VARIABLES
C
REAL+4 CD2(MMAX),PI,THET,ANG,A1,A2
INTEGER+2 I1,I2,J

PI=3.141592653
ANG=2.0*PI/M
THET=PI/M
DO 030 I1=1,M
DO 040 I2=1,N
J=(I1-1)*M+I2
ANG=0.5*FLOAT(I2-I1)*THET
ANG=FLOAT(I1-1)*ANG
COORD(1,J)=RAD*SIN(A1)*COS(A2)
COORD(2,J)=RAD*SIN(A1)*SIN(A2)

173
IF(I1.EQ.1)THEN
 A1=2*PI/RAD/RAD
 A2=COS(FLOAT(I2-1)*THET)-COS(FLOAT(I2)*THET)
 A(J)=A1*A2/2
 COZ(J)=RAD*COS((0.5+FLOAT(I2-1))*THET)
ELSE
 A(J)=A(I2)
 COZ(J)=COZ(I2)
ENDIF
CDOR(3,J)=COZ(J)
NORM(1,J)=-CDOR(1,J)/RAD
NORM(2,J)=-CDOR(2,J)/RAD
NORM(3,J)=-CDOR(3,J)/RAD
040 CONTINUE
030 CONTINUE
RETURN
END
D.18 Subroutine GEOSPHEROID

GEOSPHEROID calculates values of area, the coordinates of the midpoints and the normals of the boundary elements of a spheroid using the theory of section 5.1.1.1. There are no subprograms referenced.

SUBROUTINE GEOSPHEROID(A,B,M,H,AREA,COORD,NORM,TESTRAD)
PARAMETER(NMAX=200,MMAX=500,NMAX=NMAX+1)
REAL+4 A,B,AREA(NMAX),COORD(3,MMAX),NORM(3,MMAX)
INTEGER+4 M,N
C
C GEOSPHEROID CALCULATES THE AREA OF ELEMENT J FOR AN OBLATE SPHEROID,
C THE COORDINATES OF THE MIDPOINTS AND THE NORMAL VECTORS TO THE MIDPOINTS.
C
C ON ENTRY
C
C A REAL
C THE MAJOR AXIS OF THE OBLATE SPHEROID.
C A IS UNCHANGED ON EXIT.
C
C B REAL
C THE MINOR AXIS OF THE OBLATE SPHEROID.
C A IS UNCHANGED ON EXIT.
C
C M INTEGER
C THE SURFACE OF THE SPHEROID IS DIVIDED INTO M LATITUDINAL
C BANDS.
C M IS UNCHANGED ON EXIT.
C
C N INTEGER
C THE SURFACE OF THE SPHEROID IS DIVIDED INTO N LONGITUDINAL
C BANDS.
C N IS UNCHANGED ON EXIT.
C
C ON EXIT
C
C AREA REAL
C THE AREA OF ELEMENT J. ONLY THE FIRST M ELEMENTS ARE
C CALCULATED.
C
C NORM REAL
C THE NORMAL VECTOR AT THE MIDPOINT OF ELEMENT J DIRECTED
C INTO THE SPHERE. ONLY THE FIRST N ELEMENTS ARE CALCULATED.
C
C COORD REAL
C THE CARTESIAN COORDINATES OF THE MIDPOINT OF ELEMENT J
C
C INTERNAL VARIABLES
C
REAL+4 CDZ(NMAX),PI,THET,AN2,AN2,AN2,NTH(NMAX),ARC
REAL+4 ALN2,RAD(NMAX),XHAT,ZHAT,DXDASH,COORD(3),COORD2(3)
REAL+4 RAD1,RAD2
INTEGER+4 I1,I2,J
C
REAL+4 RNAG
PI=3.141592653
AN2=2.0*PI/N

175
THET=PI/M
AM2=1.0/((A*A)
BM2=1.0/((B*B)
DO 030 I1=1,M
DO 040 I2=1,N
J=(I1-1)*M+I2
ALBIG=(FLOAT(I1-1))*AMG
IF(I1.EQ.1) THEN
THBIG(I2)=(0.5+FLOAT(I2-1))*THET
RAD(I2)=1.0/SQRT(AM2+T(HBIG(I2))*2+)
BM2+COS(T(HBIG(I2))*2+)
RAD=1.0/SQRT(AM2+SIN((FLOAT(I2-1))*THET)*2+)
BM2+COS((FLOAT(I2-1))*THET)*2+)
BM2+COS((FLOAT(I2))*THET)*2+)
COOR1(J)=RAD*SIN((FLOAT(I2-1))*THET)
COOR2(J)=0.0
COOR3(J)=RAD*COS((FLOAT(I2))*THET)
ARC=MA8(COOR2,C0OR1)
AREA(I2)=2*PI*RAD(I2)+SIH(T(HBIG(I2))*AMG/M
CO0R(I2)=RAD(I2)*SIH(T(HBIG(I2))
ELSE
AREA(I2)=AREA(I1)
CO0R(I2)=CO0R(I1)
ENDIF
COOR1(J)=RAD(I2)*SIN(T(HBIG(I2)))*COS(ALBIG)
COOR2(J)=RAD(I2)*SIN(T(HBIG(I2)))*SIN(ALBIG)
COOR3(J)=COOR2(J)
XDASH=SQR(C0OR(1,J)**2+C0OR(2,J)**2)
IF ((XDASH+XDASH)/(A+A) GT.1.0) THEN
AA=0.0
ELSE
AA=SQR((1.0-(XDASH+XDASH))/(A+A))*(A+A)/(B+XDASH)
ENDIF
XHAT=SQR((1.0/(1.0+AA*AA))
ZHAT=SQR((AA*AA/(AA*AA)-1.0))
IF (COOR(1,J).GT.0.0) XHAT=XHAT
IF (COOR(3,J).GT.0.0) ZHAT=ZHAT
NORM(1,J)=XHAT+ABS(COS(ALBIG))
NORM(2,J)=XHAT+ABS(SIN(ALBIG))
IF (COOR(1,J).LT.0.0) AND (COOR(2,J).LT.0.0))
& NORM(2,J)=NORM(2,J)
& NORM(3,J)=NORM(2,J)
& NORM(2,J)=NORM(2,J)
& NORM(3,J)=ZHAT
040 CONTINUE
030 CONTINUE
RETURN
END
D.19 Subroutine LEGNDR

LEGNDR calculates values of the Legendre polynomial and its derivative. There are no subprograms referenced.

```fortran
SUBROUTINE LEGNDR(I,N,P,PDER)
  INTEGER N
  REAL X, P(N+1), PDER(N+1)

  C THIS SUBROUTINE CALCULATES P(I,X) AND ITS DERIVATIVE,
  C FOR I = 0, 1, ..., N, WHERE P(I,X) DENOTES THE LEGENDRE POLYNOMIAL
  C OF DEGREE I AND ARGUMENT X, AS DEFINED IN CHAPTER 22 OF [1].
  C THE METHOD OF CALCULATION USED IS FORWARD RECURRING, WHICH IS
  C STABLE IF X LIES BETWEEN -1 AND 1.
  C ON ENTRY:
  C X REAL
  C X SHOULD LIE IN THE RANGE -1.0 .LE. X .LE. 1.
  C N INTEGER
  C N IS THE ORDER OF THE LARGEST DEGREE LEGENDRE POLYNOMIAL
  C WHICH IS TO BE CALCULATED.  N MUST BE A POSITIVE INTEGER.
  C X, N ARE UNCHANGED ON EXIT.
  C ON EXIT:
  C P REAL(N+1)
  C P(I+1) IS EQUAL TO P(I,X), FOR I = 0, 1, ..., N.
  C PDER REAL(N+1)
  C THE DERIVATIVE OF P
  C THIS VERSION DATED 9TH JANUARY 1990
  C REFERENCE:
  C [1] M ABRAMOWITZ AND I A STEGUM, 'HANDBOOK OF MATHEMATICAL FUNCTIONS'
  C NEW YORK: DOVER.
  C HOW CARRY OUT THE FORWARD RECURRANCE TO CALCULATE P.
  C
  P(1) = 1.0
  P(2) = X
  PDER(1)=0.0
  PDER(2)=1.0
  DO 10 I = 2, N
    C THE FOLLOWING EQUATION, USED TO CARRY OUT THE FORWARD
    C RECURRANCE, IS A REARRANGEMENT OF EQN. (8.5.3) IN [1].
    C
    P(I+1) = ((I+I-1)*X*P(I) - (I-1)*P(I-1))/I
    IF(X.EQ.1.0) THEN
      PDER(I+1)=I*(X*P(I+1)-P(I))/I
      ELSEIF(X.EQ.-1.0) THEN
      PDER(I+1)=(-1)**(I+1)*I*(I+1.0)/2.0
      ELSE
      PDER(I+1)=I*(X*P(I+1)-P(I))/(X*X-1.0)
    END IF
  10 CONTINUE
```

177
ENDIF
10 CONTINUE
END
D.20 Complex function NDFG

NDFG calculates the normal derivative of the free field Green's function. There are no subprograms referenced.

```
COMPLEX FUNCTION NDFG(X, K, BCOORD, ACOORD, NORM)
COMPLEX*8 K
REAL*4 PI, MGI, MGJ, HOK, BCOORD(3), ACOORD(3), NORM(3)
C
C NDFG calculates the normal component of the first derivative of the
C free-field Green's function given the magnitude of the vector
C between the two points and the complex propagation constant.
C
C ON ENTRY:
C
C X REAL
C MAGNITUDE OF THE VECTOR BETWEEN THE TWO POINTS
C K COMPLEX
C COMPLEX PROPAGATION CONSTANT
C
C COMPLEX*8, DF
REAL*4 PI, MGI, MGJ, HOK
C
I = CMPLX(0.0, 1.0)
PI = 3.141592653
DF = (1.0 - (I*K*X)) * CEXP(I*K*X) / (4.0*PI*I*I)
MGI = (BCORD(1) - ACOORD(1)) * NORM(1)
MGJ = (BCORD(2) - ACOORD(2)) * NORM(2)
MGK = (BCORD(3) - ACOORD(3)) * NORM(3)
NDFG = DF * ((MGI + MGJ + MGK) / X)
RETURN
END
```
D.21 Subroutine PC

PC calculates value of complex propagation constant for the lower medium using equation (3.63). Reference to other subprograms are:

- CMPBJ: a subroutine from Sastry [109].

```fortran
SUBROUTINE PC(F, NPR, SFR, SIGMA, POROS, PROPC)
REAL*4 F, NPR, SFR, SIGMA, POROS
COMPLEX*8 PROPC
C
PC CALCULATES A SINGLE VALUE OF COMPLEX PROPAGATION CONSTANT
C
ON ENTRY
C
F REAL
FREQUENCY
C
NPR REAL
GRAIN SHAPE FACTOR
C
SFR REAL
PORE SHAPE FACTOR RATIO. N.B. THIS IS DOUBLE
THE VALUE USED IN THE OLD PREDICTION ROUTINES.
C
SIGMA REAL
FLOW RESISTIVITY
C
POROS REAL
POROSITY
C
ON EXIT
C
PROPC REAL
UN-NORMALISED PROPAGATION CONSTANT
C
ROUTINE CMPBJ IS CALLED
C
THIS VERSION DATED 8TH JANUARY, 1990.
C
INTERNAL VARIABLES
C
REAL*4 LAMBDAP, PI, CF, GAMMA, PRANDTL, Q, SQRTP, RHOF, AE, OMEGA
COMPLEX*8 I, Y, T, IP, TP, ZKEB, JO, J1
INTEGER*2 I1
C
PI=4.0*ATAN(1.0)
I=CMPLX(0.0,1.0)
CF=343.0
GAMMA=1.4
PRANDTL=0.76
Q=SQRTP(POROS**2-NPR)
SQRTP=SQRTP(PRANDTL)
RHOF=1.2
AE=SQRTP(8.0*(Q**2)/(POROS*SIGMA))
OMEGA=2.0*PI*F
LAMBDAP=(AE/SFR)*((OMEGA*RHOF)**0.5)
Y=SQRTP*LAMBDAP*(I**0.5)
I1=0
```

180
CALL CMPBJ(Y, N1, JO)
N1=1
CALL CMPBJ(Y, N1, J1)
T=J1/JO
YP=LANBDAP*(I**0.5)
N1=0
CALL CMPBJ(TP, N1, JO)
N1=1
CALL CMPBJ(YP, N1, J1)
TP=J1/JO
PROPC=((1.0+2.0*(((GAMMA-1.0)/Y)*T)/(1.0-(2.0/YP)*TP)
& *(Q*OMEGA/CF)**2)**0.5
RETURN
END
D.22 Subroutine PLNSCATCOE

PLNSCATCOE calculates values of the complex coefficients using equation (B.6). Reference to other subprograms are:

- SPHBE: see section D.25;
- SPHHNK: see section D.26.

```
SUBROUTINE PLNSCATCOE(X,A,N)
COMPLEX X,A(N+1)

C PLNSCATCOE CALCULATES THE COEFFICIENTS FOR CALCULATION
C OF THE SCATTERED FIELD BY A RIGID SPHERE IN AN INFINITE
C HOMOGENEOUS MEDIUM.
C
C ON ENTRY:
C
X COMPLEX
X THE ARGUMENT X*R
X IS UNCHANGED ON EXIT.
C
N INTEGER
N IS THE ORDER OF THE LARGEST ORDER AND MUST BE
A POSITIVE INTEGER.
N IS UNCHANGED ON EXIT.
C
C ON EXIT:
C
A COMPLEX
A THE COEFFICIENTS AN.
C
ROUTINES SPHBES AND SPHHNK ARE CALLED.
C
INTERNAL VARIABLES
C
COMPLEX IM,H(1000),HDER(1000),J(1000),JDER(1000)
INTEGER L,M

N=10
CALL SPHBES(X,N,H,J,JDER)
CALL SPHHNK(X,N,H,HDER)
IM = (0.0,1.0)
A(1)=JDER(1)/HDER(1)
A(2)=(0.0,-3.0)*JDER(2)/HDER(2)
DO 010 L=3,N+1
M=L-1
IM=CMPLX(-AIMAG(IM),REAL(IM))
A(L)=(M+1)*IM+JDER(L)/HDER(L)
010 CONTINUE
END
```
D.23 Complex function PLNSCATFLD

PLNSCATFLD calculates value of pressure field using equation (B.4). Reference to other subprograms are:

- LEGNDR: see section D.19;
- SPHNNK: see section D.26.

```fortran
COMPLEX FUNCTION PLNSCATFLD(Z,THETA,A,N)
INTEGER N
COMPLEX A(N+1),Z
REAL THETA
C PLNSCATFLD CALCULATES THE SCATTERED FIELD AT THE RECEIVER BY A
C RIGID SPHERE IN AN INFINITE HOMOGENEOUS MEDIUM.
C
C ON ENTRY:
C
C Z   COMPLEX
C VALUE OF K*R.
C Z IS UNCHANGED ON EXIT.
C
C THETA REAL
C ANGLE OF THE RECEIVER POINT.
C THETA IS UNCHANGED ON EXIT.
C
C A   COMPLEX
C THE ARRAY CONTAINING THE COEFFICIENTS CALCULATED BY
C SUBROUTINE PLNSCATCOE.
C A IS UNCHANGED ON EXIT.
C
C N   INTEGER
C N IS THE ORDER OF THE LARGEST ORDER.
C N MUST BE A POSITIVE INTEGER.
C N IS UNCHANGED ON EXIT.
C
C ROUTINES LEGNDR AND SPHNNK ARE CALLED.
C
C INTERNAL VARIABLES
C
COMPLEX H(1000),HDER(1000),SUM
REAL X,P(1000)
C
X = COS(THETA)
CALL LEGNDR(X,N,P)
CALL SPHNNK(Z,N,P,HDER)
SUM=(0.0,0.0)
DO 010 M = 1,N+1
   SUM=SUM+A(M)*P(M)*H(M)
010 CONTINUE
PLNSCATFLD=SUM
END
```
D.24 Function RMAG

RMAG calculates the distance between two points, both in cartesian coordinates. There are no subprograms referenced.

```fortran
FUNCTION RMAG(RA,RB)
REAL*4 RA(3),RB(3)

C     RMAG CALCULATES THE MAGNITUDE OF THE VECTOR (RB - RA)
C ON ENTRY
C
C RA(3) REAL
C     CARTESIAN COORDINATES OF THE FIRST VECTOR
C
C RB(3) REAL
C     CARTESIAN COORDINATES OF THE SECOND VECTOR
C
REAL*4 R1,R2,R3

R1=(RB(1)-RA(1))**2
R2=(RB(2)-RA(2))**2
R3=(RB(3)-RA(3))**2
RMAG=SQRT(R1+R2+R3)
RETURN
END
```
D.25 Subroutine SPHBES

SPHBES calculates values of the spherical Bessel function and its derivative. There are no subprograms referenced.

```fortran
SUBROUTINE SPHBES(Z, M, M, BES, BESDER)
INTEGER M, M
COMPLEX Z, BES(M+1), BESDER(M+1)
C THIS SUBROUTINE CALCULATES AN APPROXIMATION TO J(I,Z) AND JD(I,Z),
C FOR I = 0,1,...,M, WHERE J(I,Z) DENOTES THE SPHERICAL BESSEL
C FUNCTION OF THE FIRST KIND OF ORDER I AND ARGUMENT Z, AS DEFINED
C IN 10.1.1 OF [1], AND JD(I,Z) DENOTES ITS FIRST DERIVATIVE
C WITH RESPECT TO Z. THE METHOD OF CALCULATION OF J(I,Z) IS BACKWARD
C RECURRENCE. THE RECURRENCE IS STARTED FROM I = 12 := ABS(Z)+M+10,
C USING THE STANDARD LARGE ORDER APPROXIMATION FOR J(12,Z) AND
C J(12-1,Z) (11, EQUATION (9.3.1)).
C
C ON ENTRY:
C Z COMPLEX
Z SHOULD LIE IN THE HALF-PLANE RE Z .GE. 0., AND THE ALGORITHM
WILL CALCULATE MORE ACCURATELY THE NEARER Z IS TO THE REAL AXIS.
C M INTEGER
M IS THE ORDER OF THE LARGEST ORDER BESSEL FUNCTION WHICH IS TO
BE CALCULATED. M MUST BE A POSITIVE INTEGER.
C M INTEGER
THE LARGER M IS, THE MORE ACCURATE ARE THE APPROXIMATIONS TO
THE BESSEL FUNCTIONS CALCULATED, BUT TOO LARGE A VALUE WILL
INCREASE THE COMPUTER TIME USED UNNECESSARILY, AND MAY
LEAD TO UNDERFLOW. A VALUE IN THE RANGE 0-10 IS SUGGESTED.
C Z, M, M ARE UNCHANGED ON EXIT.
C
C ON EXIT:
C C BES COMPLEX(M+1)
BES(I+1) IS AN APPROXIMATION TO J(I,Z), FOR I = 0,1,...,M.
C C BESDER COMPLEX(M+1)
BESDER(I+1) IS AN APPROXIMATION TO JD(I,Z), FOR I = 0,1,...,M.
C
C REFERENCE:
C [1] M ABRAMOWITZ AND I A STEGUN 'HANDBOOK OF MATHEMATICAL FUNCTIONS'
NEW YORK: DOVER.
C
C INTERNAL VARIABLE DECLARATIONS
C REAL E
INTEGER M, M, N, I, I1
COMPLEX ZZ, J1, JD, JTEMP, ALPHA
C
C THE FUNCTION JAPPRX(M, ZZ) DEFINED BELOW IS THE LARGE ORDER
C APPROXIMATION TO J(M, ZZ), GIVEN AS EQUATION (9.3.1) IN [1].
C
C COMPLEX JAPPRX
```

185
JAPPRX(MN,ZZ) = 0.5*(ZZ*E/(MN+MN+1))**(MN+0.5)/SQRT(MN+ZZ)
E = EXP(1.0)
C
C NOW START THE BACKWARD RECURRENCE WITH THE APPROXIMATE CALCULATION
C OF J(M2,Z).
C
M2 = MAX(MINT(1.5*ABS(Z)),MN)*6
C
M2 = 1.5*ABS(Z)+MN+10
J1 = JAPPRX(M2,Z)
JO = JAPPRX(M2-1,Z)
DO 10 I = M2-2,M-1,-1
C
THE FOLLOWING EQUATION, USED TO CARRY OUT THE BACKWARD
C RECURRENCE, IS A REARRANGEMENT OF EQN. (10.1.19) IN [1].
C
JTEMP = (I+I+3)*JO/Z - J1
J1 = JO
JO = JTEMP
C
AT THIS POINT JO AND J1 APPROXIMATE J(I,Z) AND J(I+1,Z),
C RESPECTIVELY.
C
10 CONTINUE
BES(I+1) = J1
BES(I) = JO
DO 20 I = M-2,0,-1
C
THE FOLLOWING EQUATION, USED TO CARRY OUT THE BACKWARD
C RECURRENCE, IS A REARRANGEMENT OF EQN. (10.1.19) IN [1].
C
BES(I+1) = (I+I+3)*BES(I+2)/Z - BES(I+3)
20 CONTINUE
C
TO CORRECT ERRORS IN BES(I) CAUSED BY USING AN APPROXIMATION TO
C START THE BACKWARDS RECURRENCE, THE VALUES BES(I), I = 1,2,...,MN+1,
C ARE NOW NORMALISED.
C
JO = SIN(Z)/Z
C
THIS IS THE EXACT VALUE OF J(0,Z).
C
ALPHA = JO/BES(1)
BES(1) = JO
DO 30 I = 2,M+1
BES(I) = ALPHA*BES(I)
30 CONTINUE
C
THE EVALUATION OF THE ARRAY BES IS NOW COMPLETED. THE DERIVATIVES
C OF THE BESSEL FUNCTIONS ARE NOW CALCULATED, USING EQUATION (10.1.20)
C IN [1].
C
BESDER(1) = -BES(2)
DO 40 I = 1,M
II = I+I
BESDER(II) = BES(I) - II*BES(I)/Z

186
D.26 Subroutine SPHHNK

SPHHNK calculates values of the spherical Hankel function and its derivative. There are no subprograms referenced.

SUBROUTINE SPHHNK(Z, M, HMK, HMKDER)
 INTEGER M
 COMPLEX Z, HMK(M+1), HMKDER(M+1)

 THIS SUBROUTINE CALCULATES AN APPROXIMATION TO H(I,Z) AND HD(I,Z),
 FOR I = 0, 1, ..., M, WHERE H(I,Z) DENOTES THE SPHERICAL BESSEL
 FUNCTION OF THE THIRD KIND OF ORDER I AND ARGUMENT Z, AS DEFINED
 IN 10.1.1 OF [1] (H(I,Z) := J(I,Z) + II*Y(I,Z), WHERE J(I,Z) AND
 Y(I,Z) DENOTE THE SPHERICAL BESSEL FUNCTIONS OF FIRST AND SECOND
 KINDS RESPECTIVELY, AND II = SQRT(-1)). HD(I,Z) DENOTES THE FIRST
 DERIVATIVE OF H(I,Z) WITH RESPECT TO Z. THE METHOD OF CALCULATION
 OF H(I,Z) IS FORWARD RECURSIVE, WHICH IS STABLE AT LEAST PROVIDED
 Z IS NOT TOO FAR FROM THE POSITIVE REAL AXIS.

ON ENTRY:

 Z COMPLEX
 Z SHOULD LIE IN THE HALF-PLANE RE Z .GE. 0, AND THE ALGORITHM
 WILL CALCULATE MORE ACCURATELY THE NEARER Z IS TO THE REAL AXIS.

 M INTEGER
 M IS THE ORDER OF THE LARGEST ORDER BESSEL FUNCTION WHICH IS TO
 BE CALCULATED. M MUST BE A POSITIVE INTEGER.

 Z, M ARE UNCHANGED ON EXIT.

ON EXIT:

 HMK COMPLEX(M+1)
 HMK(I+1) IS AN APPROXIMATION TO H(I,Z), FOR I = 0, 1, ..., M.

 HMKDER COMPLEX(M+1)
 HMKDER(I+1) IS AN APPROXIMATION TO HD(I,Z), FOR I = 0, 1, ..., M.

REFERENCE:

 [1] M ABRAMOWITZ AND I A STEGUN 'HANDBOOK OF MATHEMATICAL FUNCTIONS'
 NEW YORK: DOVER.

INTERNAL VARIABLE DECLARATIONS

 INTEGER I,II

 HOW CARRY OUT THE FORWARD RECURSENCE TO CALCULATE HMK.

 HMK(1) = (0.0,-1.0)*EXP((0.0,1.0)*Z)/Z
 HMK(2) = HMK(1)*((1.0,0.0)/Z-(0.0,1.0))
 DO 10 I = 2,M

 THE FOLLOWING EQUATION, USED TO CARRY OUT THE FORWARD
 RECURSENCE, IS A REARRANGEMENT OF EQN. (10.1.19) IN [1].

 HMK(I+1) = (I+I-1)*HMK(I)/Z - HMK(I-1)
10 CONTINUE
THE EVALUATION OF THE ARRAY HNK IS NOW COMPLETED. THE DERIVATIVES
OF THE BESSEL FUNCTIONS ARE NOW CALCULATED, USING EQUATION (10.1.20)
in [1].

```
HNKDER(I) = -HNK(I)
DO 20 I = 1,N
   I1 = I+1
   HNKDER(I1) = HNK(I) - I1*HNK(I1)/Z
20   CONTINUE
END
```
D.27 Subroutine W

W calculates values of the error function erfc. There are no subprograms referenced.

```
SUBROUTINE W(Z,WIZ)
C THIS SUBROUTINE CALCULATES THE ERROR FUNCTION, ERFC.
C
LOGICAL LI,LY
COMPLEXES Z,VIZ,CEF,W,SI,T1,T2,T3
DATA C08S/1.126379167095/
C
X=AIMAG(Z)
Y=REAL(Z)
X1=Y
Y1=-X
10 LA=X.GE.0.0
LY=Y.GE.0.0
IF(LX.AND.LY)IQ=1
IF(.NOT.LX.AND.LY)IQ=2
IF(.NOT.LX.AND..NOT.LY)IQ=3
IF(LX.AND..NOT.LY)IQ=4
X=ABS(X)
Y=ABS(Y)
S=CMPLX(X,Y)
IS=X
YS=Y
100 IF(Y.GE.4.29.OR.X.GE.5.33)GOTO 110
S=(1.0-Y/4.29)*SQRT((1.0-(X*X)/28.41))
H=1.6+H
H2=2.0+H
ICAP=6.5+23.0+H
ALANDA=H2+ICAP
ND=9.5+21.0+H
GOTO 120
110 T1=4.63135E-1/(S+S-1.901635E-1)
T2=9.997216E-2/(S+S-1.7844927)
T3=2.858994E-3/(S+S-5.5263437)
WIZ=S*(T1+T2+T3)
V=REAL(WIZ)
U=AIMAG(WIZ)
GOTO 160
120 R1=0.0
R2=0.0
S1=0.0
S2=0.0
H=NU
130 IF(H.LT.0)GOTO 150
P1=H+1
T1=Y+P1*R1
T2=X-P1*R2
C=0.5/(T1+T2+T2)
R1=C*T1
R2=C*T2
IF(H.EQ.0.0.OR.H.GT.ICAP)GOTO 140
T1=ALANDA*SI
S1=R1*T1-R2*S2
S2=R2*T1+R1*S2
```

ALANDA = ALANDA / S2

140 E = E - 1
GOTO 130

150 IF (ALANDA .EQ. 0.0) GOTO 160
U = CONS + S1
V = CONS + S2
GOTO 180

160 U = CONS + R1
V = CONS + R2

180 CEFW = CMPLX (U, V)
TEST = XS * XS + YS * YS
IF (TEST .LT. -85.0) TEST = -85.0
IF (TEST .GT. 87.0) TEST = 87.0
GOTO (230, 220, 210, 210), IQ

210 CEFW = 2.0 * CMPLX (CMPLX (TEST, -2.0 * XS * YS)) - CEFW
IF (IQ .EQ. 3) GOTO 230
IF (IQ .EQ. 4) GOTO 220

220 CEFV = CONJG (CEFV)

230 MW = CEFW
RETURN
END
D.28 Subroutine ZC

ZC calculates value of characteristic impedance as given by equation (3.63). There are no subprograms referenced.

```plaintext
SUBROUTINE ZC(F, PROPC, CDEIS, ZR)
REAL*4 F
COMPLEX*8 PROPC, CDEIS, ZR
C
C ZC CALCULATES A SINGLE VALUE OF CHARACTERISTIC IMPEDANCE.
C
C ON ENTRY
C
C  F      REAL
C   FREQUENCY
C  PROPC  COMPLEX
C  COMPLEX PROPAGATION CONSTANT
C  CDEIS  COMPLEX
C  COMPLEX DENSITY
C
C ON EXIT
C
C  ZR  COMPLEX
C  RELATIVE (I.E. NORMALISED WRT AIR) CHARACTERISTIC IMPEDANCE
C
C THIS VERSION DATED 8TH JANUARY, 1990.
C
C INTERNAL VARIABLES
C
COMPLEX*8 I
REAL*4 PI, RHOF, OMEGA, CF
C
PI=4.0*ATAN(1.0)
I=CMPLX(0.0,1.0)
RHOF=1.2
OMEGA=2.0*PI*F
CF=343.
ZR=(CDEIS*OMEGA)/(PROPC*RHOF*CF)
RETURN
END
```
D.29 Subroutine ZL

ZL calculates value of the surface impedance of a rigid-backed layer as given by equation (4.1), with Z_2 given by equation (3.64). Reference to other subprograms are:

- CCOTH: see section D.1

```
SUBROUTINE ZL(F,PROP,CDEIS,D,ZR)
COMPLEX*8 PROP,CDEIS,ZR
REAL*4 F,D

C ZL CALCULATES A SINGLE VALUE OF THE SURFACE IMPEDANCE OF A
C RIGIDLY-BACKED LAYER.
C
C ON ENTRY
C
C F REAL
C FREQUENCY
C
C PROP COMPLEX
C COMPLEX PROPAGATION CONSTANT
C
C CDEIS COMPLEX
C COMPLEX DENSITY
C
C D REAL
C LAYER DEPTH
C
C ON EXIT
C
C ZL COMPLEX
C SURFACE IMPEDANCE
C
C THIS VERSION DATED 5TH DECEMBER, 1989.
C
C SUBROUTINE CCOTH IS CALLED.
C
C INTERNAL VARIABLES
C
COMPLEX*8 I,IKD,IKD1,ZC,CCOTH
REAL*4 PI,RHOF,OMEGA,CF
PI=4.0*ATAN(1.0)
I=CMPLX(0.0,1.0)
RHOF=1.2
OMEGA=2.0*PI*F
CF=343.0
ZC=(CDEIS*OMEGA)/(PROP*CDEIS*CF)
IKD=-I*PROP*D
IKD1=CCOTH(IKD)
ZR=IKD1*ZC
RETURN
END
```
D.30 Subroutine ZSPHERE

ZSPHERE calculates value of the surface impedance induced by a rigid sphere embedded within a rigid porous medium as given by equation (4.12). Reference to other subprograms are:

- LEGNDR: see section D.19;
- SPHBES: see section D.25;
- SPHNNK: see section D.26.

```fortran
SUBROUTINE ZSPHERE(K1, K2, R, Z1, Z2, THETA, A, I, D, Z)
INTEGER I
COMPLEX A(I+1), K2, Z2, Z
REAL K1, THETA, R, D, Z1

C ENTRY:
C
C K1 REAL
C PROPAGATION CONSTANT OF THE UPPER MEDIUM
C K1 IS UNCHANGED ON EXIT.
C
C K2 COMPLEX
C PROPAGATION CONSTANT OF THE LOWER MEDIUM
C K2 IS UNCHANGED ON EXIT.
C
C R REAL
C DISTANCE TO THE MEASUREMENT POINT
C R IS UNCHANGED ON EXIT.
C
C Z1 REAL
C IMPEDANCE OF THE UPPER MEDIUM
C Z1 IS UNCHANGED ON EXIT.
C
C Z2 COMPLEX
C IMPEDANCE OF THE LOWER MEDIUM
C Z2 IS UNCHANGED ON EXIT.
C
C THETA REAL
C ANGLE
C THETA IS UNCHANGED ON EXIT.
C
C A COMPLEX
C COEFFICIENT ARRAY
C A IS UNCHANGED ON EXIT.
C
C M INTEGER
C M IS THE ORDER OF THE LARGEST ORDER.
C M MUST BE A POSITIVE INTEGER.
C M IS UNCHANGED ON EXIT.
C
C D REAL
C DISTANCE FROM THE CENTRE OF THE SPHERE TO THE SURFACE (WHICH
C MUST BE GREATER THAN THE RADIUS OF THE SPHERE).
C D IS UNCHANGED ON EXIT.
C
C EXIT:
```

194
C
C Z COMPLEX
C INDUCED RELATIVE SURFACE IMPEDANCE
C
C THIS VERSION DATED 16TH JANUARY, 1989.
C
C INTERNAL VARIABLES
C
COMPX ALPHA,ALPHINV,DRPDT,H(1000),HDER(1000),I,IM
C
REAL C,CT,P(1000),PDER(1000),PI,ST

C PI=4.0*ATAN(1.0)
C CT=COS(THETA)
C ST=SIN(THETA)
C C=COS(THETA)
C S=SIN(PI-THETA)
I=(0.0,1.0)
RI=K2/K1
RI2INV=1.0/(RI*RI)
ZK2R=K2*R
ALPHA=(Z2*K2)/(Z1*K1)
ALPHINV=1.0/ALPHA
QQ=CSQRT(RI2INV*S*S)
PP=C+ALPHA*QQ
RP=(ALPHINV*C-QQ)/(ALPHINV*C+QQ)
DRPDT=-(S+S)*ALPHA*(QQ-(C*C)/QQ)/(PP*PP)
CALL LEGNDR(CT,P,PDER)
CALL SPHNRK(ZK2R,I,H,HDER)
VRSA=(0.0,0.0)
VRSB=(0.0,0.0)
PRS=(0.0,0.0,0.0)
DO 010 M = 1, N+1
VRSA=VRSA+(P(M)*K2+HDER(M)+CT+PDER(M)+ST+ST+H(M)/R)*A(M)
VRSB=VRSB+P(M)*A(M)+B(M)
PRS=PRS+P(M)*A(M)+B(M)
010 CONTINUE
POS=EXP(-I*K2*D)+PRS*(1.0+RP)
VRSA=I*(I*K2*EXP(-I*K2*D)+(1-RP)*VRSA-DRPDT+VRSB)/ZK2R
Z=POS/VRS
Z=Z/Z1.
END