Copy the page URI to the clipboard
Chetwynd, Amanda Gillian
(1984).
DOI: https://doi.org/10.21954/ou.ro.0000f7e7
Abstract
All the results in this thesis are concerned with the classification of graphs by their chromatic class.
We first extend earlier results of Fiorini and others to give a complete list of critical graphs of order at most ten. We give conditions for extending the edge-colouring of a nearly complete subgraph to the whole graph and use this result to prove a special case of Vizing's conjecture. We also use other methods to solve further cases of this conjecture.
A major part of the thesis classifies those graphs with at most 4 vertices of maximum degree and this work is generalised to graphs with r vertices of maximum degree. We also completely classify all regular graphs G with degree at least 6/7|V(G)|.
Finally we give some examples of even order critical graphs and introduce the concept of a supersnark.