Chemical and Textural characterisation of two Phobos regolith simulants

Conference or Workshop Item

How to cite:

For guidance on citations see FAQs.

© 2019 The Authors

https://creativecommons.org/licenses/by-nc-nd/4.0/

Version: Poster

Link(s) to article on publisher’s website:

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page.
Currently, samples returned from Phobos have a Planetary Protection status of “unrestricted Earth return”. If impact experiments show significant survival of biosignatures, this status may require re-assessment, with implications for future missions, such as MMX! [1]

Could life, or its signatures, survive the journey from Mars to Phobos?
- Studies have suggested that impact ejecta from Mars, which would represent Mars’ surface over its geological history, could have accreted onto Phobos [2].
- Mars ejecta could constitute up to 0.05% of Phobos’ regolith, where ~200 ppm sand was deposited in the last 10 million years [2-4].
- If life existed on Mars during its ancient past, evidence may have been altered or destroyed by subsequent geological processes [5].
- Impact ejecta, which could have contained ancient martian biosignatures, may have been deposited onto Phobos and could still be preserved today [5,6] - lithopanspermia.

Without direct samples, regolith simulants are vital.
- Currently, all we know about Phobos comes from remote sensing.
- Future sample return missions (i.e. JAXA’s Martian Moons eXploration mission MMX) are in development.

Demand for Phobos simulants:
- Mission tests – landing/take off mechanisms, microgravity sampling techniques and spacecraft exhaust contamination – Planetary Protection.
- Science - *in-situ* resource utilisation potential assessment of Phobos and NEAs [7] and testing the Mars-Phobos lithopanspermia hypothesis.

An ESA concept study funded the design and production of a Phobos regolith simulant. Feasibility dictated that two simulants were needed to meet all the physical and chemical requirements of potential uses [4]

Compositional simulant (Phobos-1C)
- Inherent density of compositional simulant is comparable to Phobos’ regolith.
- Crushed particles subsequently sieved into three size fractions <425 µm, 1.2-3.3 mm and >5 mm for future experiments.

Physical simulant (Phobos-1P)
- Using size distribution power law: $N(D) = k (D/D_0)^{-b}$ power law index x turnover index D_0 cut-off index b constant k [12]
- Physical simulant mimics Phobos’ hypothesized average regolith grain size of ~1 mm [13], with <300 µm depletion [14].

Compositional simulant mineralogy
- Plagioclase: $\text{An}_{3.4-7.4}\text{Or}_{0-3.0}\text{Ab}_{6.6-9.6}$
- Pyroxene: $\text{Wo}_{0.48-8.9}\text{En}_{27.6-83.8}\text{Fa}_{8.5-48.1}$
- Olivine: $\text{Fo}_{74.5-84.8}\text{Fa}_{15.2-25.5}$
- Quartz and glassy phases

Physical simulant mineralogy
- Crushed aggregate concrete *Topcrete* chosen for the physical simulant because it is physically comparable to Phobos [8] with a density of 1.67 ± 0.05 g cm$^{-3}$
- Density 1.67 ± 0.05 g cm$^{-3}$
- Compressive strength 3.5 MPa

Future aims:
- Further characterisation: XRD (NHM)
- Run impact experiments using the high-velocity All-Axis Light-Gas Gun to test the survival and modification of biosignatures.
- Assess the accuracy and reliability of current biosignature identification and analysis techniques.

Acknowledgements: The funding by STFC of a studentship (ST/S505614/1) for ZSM is acknowledged.