Contact angle hysteresis in a microchannel: Statics

Hatipogullari, Metin; Wylock, Christophe; Pradas, Marc; Kalliadasis, Serafim and Colinet, Pierre (2019). Contact angle hysteresis in a microchannel: Statics. Physical Review Fluids, 4(4), article no. 044008.



We study contact angle hysteresis in a chemically heterogeneous microchannel by tracking static meniscus configurations in the microchannel upon varying the volume of liquid. We first construct a graphical force balance similar to a previous approach by Joanny and de Gennes for this system, though here with a straight contact line. It is shown that hysteresis is induced by wettability gradients above a finite threshold value. This is also visualized in a phase-plane plot enabling to easily predict stick-slip events of the contact line and the occurrence of hysteresis. Above the threshold and for nonoverlapping Gaussian defects, we find good agreement with the expressions by Joanny and de Gennes for the hysteresis amplitude induced by a dilute system of defects. In particular, the hysteresis amplitude is found to be proportional to the square of the defect force and to the defect concentration. For a model sinusoidal heterogeneity, decreasing the ratio between the heterogeneity wavelength and the microchannel gap size brings the system from a subthreshold regime, to a stick-slip dominated regime, and finally to a regime with a quasiconstant advancing and receding angle. In the latter case, the hysteresis amplitude is found to be proportional to the defect force. We also consider an unusual heterogeneity for which the gradients of increasing and decreasing wettability are different. In such a situation breaking the left/right symmetry, whether or not hysteresis is observed will depend on the side the liquid enters the microchannel.

Viewing alternatives

Download history


Public Attention

Altmetrics from Altmetric

Number of Citations

Citations from Dimensions

Item Actions