Copy the page URI to the clipboard
Chen, BingJin; Lourembam, James; Goolaup, Sarjoosing and Lim, Sze Ter
(2019).
DOI: https://doi.org/10.1063/1.5052194
Abstract
Leveraging on interfacial Dzyaloshinskii-Moriya interaction (DMI) induced intrinsic magnetization tilting in nanostructures, a parametric window enabling field-free spin-orbit torque (SOT) magnetization switching in a perpendicular ferromagnet is established. The critical current density (Jc) bounds for SOT switching are highly dependent on the DMI, producing a distorted diamond-shaped region bounded by the Jc-DMI curves. The widest Jc interval is found for DMI values between 0.5 mJ/m2 and 0.8 mJ/m2. Geometrical modulation, of the ferromagnetic layer, reveals that the circular structure is optimum for minimizing the switching energy while maximizing the parametric window. For all the structures investigated, the SOT induced reversal process is via domain wall nucleation and propagation, and the switching is practical at room temperature.