Copy the page URI to the clipboard
Dey, Avishek; Lopez, Arlene; Filipič, Gregor; Jayan, Aditya; Nordlund, Dennis; Koehne, Jessica; Krishnamurthy, Satheesh; Gandhiraman, Ram P. and Meyyappan, M.
(2019).
DOI: https://doi.org/10.1116/1.5087255
Abstract
Printing of nanostructured films with tailored oxidation state and electronic structure can have far reaching applications in several areas including printable electronics, optoelectronics, solar cells, catalytic conversion, and others. Widely used inkjet/aerosol/screen printing techniques require pre- and postprocessing for enhanced adhesion and tailoring of the chemical state of the thin film. Herein, we demonstrate atmospheric pressure plasma jet printing with unique capability to print and tune in situ the electronic properties and surface morphology of nanomaterials. Plasma printing of copper thin films with tailored oxidation state from an inexpensive copper oxide precursor is demonstrated and characterized using x-ray absorption spectroscopy, Raman spectroscopy, and electrical measurements.