Copy the page URI to the clipboard
Tuite, James
(2019).
DOI: https://doi.org/10.1016/j.disc.2019.01.010
Abstract
A k-geodetic digraph with minimum out-degree d has excess ϵ if it has order M(d,k)+ϵ, where M(d,k) represents the Moore bound for out-degree d and diameter k. For given ϵ, it is simple to show that any such digraph must be out-regular with degree d for sufficiently large d and k. However, proving in-regularity is in general non-trivial. It has recently been shown that any digraph with excess ϵ=1 must be diregular. In this paper we prove that digraphs with minimum out-degree d=2 and excess ϵ=2 are diregular for k≥2.