Copy the page URI to the clipboard
Ibbotson, Paul; López, Diana G. and McKane, Alan J.
(2018).
DOI: https://doi.org/10.3389/fpsyg.2018.01301
Abstract
Given that there is referential uncertainty (noise) when learning words, to what extent can forgetting filter some of that noise out, and be an aid to learning? Using a Cross Situational Learning model we find a U-shaped function of errors indicative of a "Goldilocks" zone of forgetting: an optimum store-loss ratio that is neither too aggressive nor too weak, but just the right amount to produce better learning outcomes. Forgetting acts as a high-pass filter that actively deletes (part of) the referential ambiguity noise, retains intended referents, and effectively amplifies the signal. The model achieves this performance without incorporating any specific cognitive biases of the type proposed in the constraints and principles account, and without any prescribed developmental changes in the underlying learning mechanism. Instead we interpret the model performance as more of a by-product of exposure to input, where the associative strengths in the lexicon grow as a function of linguistic experience in combination with memory limitations. The result adds a mechanistic explanation for the experimental evidence on spaced learning and, more generally, advocates integrating domain-general aspects of cognition, such as memory, into the language acquisition process.