Contextual Semantics for Radicalisation Detection on Twitter

Fernandez, Miriam and Alani, Harith (2018). Contextual Semantics for Radicalisation Detection on Twitter. In: Semantic Web for Social Good Workshop (SW4SG) at International Semantic Web Conference 2018, 9 Oct 2018, CEUR.

URL: https://sw4sg.github.io/ISWC2018/

Abstract

Much research aims to detect online radical content mainly using radicalisation glossaries, i.e., by looking for terms and expressions associated with religion, war, offensive language, etc. However, such crude methods are highly inaccurate towards content that uses radicalisation terminology to simply report on current events, to share harmless religious rhetoric, or even to counter extremism.

Language is complex and the context in which particular terms are used should not be disregarded. In this paper, we propose an approach for building a representation of the semantic context of the terms that are linked to radicalised rhetoric. We use this approach to analyse over 114K tweets that contain radicalisation-terms (around 17K posted by pro-ISIS users, and 97k posted by “general” Twitter users).

We report on how the contextual information differs for the same radicalisation terms in the two datasets, which indicate that contextual semantics can help to better discriminate radical content from content that only uses radical terminology.The classifiers we built to test this hypothesis outperform those that disregard contextual information

Viewing alternatives

Download history

Item Actions

Export

About

Recommendations