Copy the page URI to the clipboard
Osborne, Francesco and Motta, Enrico
(2018).
DOI: https://doi.org/10.1007/978-3-030-00671-6_29
Abstract
Increasingly, organizations are adopting ontologies to describe their large catalogues of items. These ontologies need to evolve regularly in response to changes in the domain and the emergence of new requirements. An important step of this process is the selection of candidate concepts to include in the new version of the ontology. This operation needs to take into account a variety of factors and in particular reconcile user requirements and application performance. Current ontology evolution methods focus either on ranking concepts according to their relevance or on preserving compatibility with existing applications. However, they do not take in consideration the impact of the ontology evolution process on the performance of computational tasks – e.g., in this work we focus on instance tagging, similarity computation, generation of recommendations, and data clustering. In this paper, we propose the Pragmatic Ontology Evolution (POE) framework, a novel approach for selecting from a group of candidates a set of concepts able to produce a new version of a given ontology that i) is consistent with the a set of user requirements (e.g., max number of concepts in the ontology), ii) is parametrised with respect to a number of dimensions (e.g., topological considerations), and iii) effectively supports relevant computational tasks. Our approach also supports users in navigating the space of possible solutions by showing how certain choices, such as limiting the number of concepts or privileging trendy concepts rather than historical ones, would reflect on the application performance. An evaluation of POE on the real-world scenario of the evolving Springer Nature taxonomy for editorial classification yielded excellent results, demonstrating a significant improvement over alternative approaches.