
Open Research Online
The Open University’s repository of research publications
and other research outputs

Teaching web technologies: understanding the tutor’s
perspective
Journal Item
How to cite:

Douce, Chris (2019). Teaching web technologies: understanding the tutor’s perspective. Open Learning: The
Journal of Open, Distance and e-learning, 34 pp. 78–88.

For guidance on citations see FAQs.

c© 2018 The Open University

https://creativecommons.org/licenses/by-nc-nd/4.0/

Version: Accepted Manuscript

Link(s) to article on publisher’s website:
http://dx.doi.org/doi:10.1080/02680513.2018.1483226

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

http://oro.open.ac.uk/help/helpfaq.html
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/doi:10.1080/02680513.2018.1483226
http://oro.open.ac.uk/policies.html

Teaching web technologies: understanding the tutor’s perspective

This paper describes an Open University eSTEeM project that gathered the

experiences of computing and information technology tutors who teach an

undergraduate module called Web Technologies with the intention of

understanding more about how they and their students can be best supported.

Twelve distance learning tutors were interviewed by two interviewers. The

interviews were transcribed and then thematically analysed. It was discovered

that some tutors hold the view that some of their students struggle to understand

aspects of the technologies that are being taught. It was also apparent that tutors

have very different approaches when using certain tools to teach web

technologies to students. The paper concludes by summarising key findings,

presenting potential enhancements and suggesting further research directions.

Keywords: pedagogy, computer programming, web technologies, qualitative

study, thematic analysis

Introduction

Web technologies is a second level module, which is equivalent to a second year module

in a full-time undergraduate degree, taken by students who are studying towards a

computing and IT qualification from The Open University. As its title suggests, the

module introduces a range of important software technologies. This article presents

qualitative research that has been carried out to uncover the experience of tutoring a

technologically demanding computing module.

The article begins with a description of the module. This is followed by a

summary of the research questions, a discussion of the data collection and analysis

methods that were adopted. The next sections provide a summary of the data and an

accompanying discussion. Towards the end of the paper a set of conclusions are

presented.

Web Technologies

The Open University Web Technologies module, which is also known by its module

code TT284, is a second level computing and IT module that introduces students to a

range of software technologies that are essential to the operation of today’s web-based

systems and products.

The module comprises four blocks (or units of study): Foundations of web

technology, Web architectures, Mobile content and Developing applications. All blocks

are supported by a series of complementary case studies. The first block introduces

students to ‘basic client server architecture; protocols such as HTTP; content markup

(HTML, CSS, XML) and issues of accessibility and usability’ (The Open University,

2018). The second block has a more practical focus: students are required to adapt and

then implement a simple web application that can be run from a desktop computer,

using technologies such as JavaScript, SQL and PHP. The third block requires students

to create a simple mobile app. The final block enables students to gain knowledge and

understanding about how to plan and manage the development and deployment of web

projects.

The version of the module that was the focus of this study included three sports-

related case studies. These case studies show different ways that web technologies can

be used and depict web-based applications that are of different sizes. The first sets out

the requirements for software needed by the Open University running club. This case

study is used to help students create a web-based application to store information about

running events. It is complemented by the requirement for students to create a simple

stopwatch app that is used on a mobile device, such as a smartphone. The second case

study focuses on a ‘grass roots’ sports initiative called parkrun (parkrun UK, 2018). An

important part of the parkrun case study is that it demonstrates technology that enables

participants, who are runners, to record their running times and overall performance.

The final case study relates to the web infrastructure of the London 2012 Summer

Olympics. This case study was chosen because the Olympics presented some interesting

technical challenges: the web infrastructure had to be both robust and scalable to handle

large numbers of users wanting to access information at different times during the

event.

Module assessment is through three tutor-marked assignments (TMAs) and an

end-of-module assessment (EMA), which is akin to a final examination. The TMAs are

an important element of the Open University’s method of distance teaching: they enable

students to demonstrate their understanding of key concepts in the module, and present

opportunities for their personal tutors (who are known as associate lecturers) to offer

constructive and helpful feedback on their progress.

The first assignment requires students to show their understanding of HTML and

accessibility by making some sample files standards compliant and by writing a short

report about the accessibility of a prototype of the Open University running club

website.

The second assignment is more demanding, but adopts a similar approach: it

requires students to edit and enhance example code to add client-side form validation

(error checking) and store records to an SQL database. SQL is an abbreviation for

Structured Query Language; it is a programming language that enables programmers to

create instructions (or queries) to add, retrieve and update database records. In

completing this task, students have to grapple with PHP, a server-side language that

generates web pages and connects with other software components such as databases

(PHP, 2018), and JavaScript, a client-side language that runs in an internet browser.

Another part of the assignment required students to reflect on the technologies that they

have used during the module, and suggest alternatives. This writing component exposes

students to other ways of solving the same problems with different technologies. The

third assignment is concerned with mobile technologies: students are required to create

a prototype app that relates to the running club case study.

Students are likely to have studied two level one modules before enrolling on

Web technologies. At the time of writing these introductory computing modules were

TU100 My digital life and TM129 Technologies in practice. Web technologies is a

module that is about computer programming. This said, it does not explicitly teach

programming since students are expected to already understand the principles of

problem decomposition and the key elements of imperative programming languages,

such as programming constructs, functions and variables.

Research objectives

Our overarching research objective of the project was to listen to the tutor’s voice to

learn more about the challenges of teaching Web technologies. This objective led to the

creation of a number of connected research questions. The first was whether tutors

believe that their students are adequately prepared for studying a second level

computing and IT module such as Web technologies. This question was especially

important since both TU100 My digital life and TM129 Technologies in practice use

visual programming languages. TU100 My digital life introduces students to a

programming language called Sense, a dialect of Scratch (MIT, 2016). The Sense

language introduces students to key programming concepts using graphical building

blocks that can be combined together to solve simple problems. TM129 Technologies in

practice introduces students to a language that controls a simulated robot. The Web

technologies module, on the other hand, makes use of popular textual languages, such

as JavaScript and PHP.

A further reason for studying the programming aspect of the module was that

some students may struggle with this very important aspect of computing. In a review of

the teaching and learning of programming Robins et al. (2003) say that “novice

programmers face a very difficult task. Learning to program involves acquiring

complex new knowledge and related strategies and practical skills”. With these

complexities in mind, a further question to ask tutors was: what aspects of the Web

technologies module do you think students find most difficult? It was believed that

answers to this question would be informed by instances where experienced tutors were

asked to offer help and guidance to students who struggled with key aspects of their

learning.

The final research question asks what tutors believed might be done to improve

or enhance the module. This question was considered especially important since the

module is presented entirely online: teaching is performed through correspondence

tuition, discussion forums (Nandi et al., 2012) and real-time synchronous tutorials

through online rooms where students are able to directly speak with their tutor.

Methodology

This was a qualitative research project which used interviews with tutors to learn about

their experience of teaching Web technologies. At the start of the project a call for

‘tutor-collaborators’ (co-researchers) was circulated to all tutors who were employed on

the module with the intention of recruiting an experienced tutor who would act as a

research assistant to conduct and coordinate the tutor interviews. The call for co-

researchers yielded a very positive response; many tutors wanted to play a central role

in the research project. Faced with a significant number of very impressive applications,

two co-researchers were chosen by considering the breadth and depth of their

experience and their availability. The extent of their subject knowledge and teaching

experience was considered to be an essential criteria, as experienced tutors should be

able to more readily draw on their background to successfully guide and inform their

interviews with tutors.

The co-researchers were briefed in terms of the research objectives and were

asked to prepare a detailed interview plan (Appendix 1). To prepare for the interviews,

and to test the interview plan, each tutor-collaborator took turns to interview each other

about their experience of tutoring on the module. In doing so, they were able to identify

areas of the plan that needed updating or modification and, secondly, it enabled both co-

researchers to gain experience and familiarity with using the interview plan.

A total of 12 tutors for interview were randomly selected from a list of 27. Each

of the 12 tutors were asked whether they would like to participate in the project. Despite

not being offered an incentive, all 12 tutors agreed: 6 were interviewed by one tutor-

collaborator, 6 by the other.

Before each interview, each participant was told that all interviews would be

anonymised and they were free to stop the interview at any point. Participants were also

told that all interviews would be recorded and then transcribed. Since all participants

were tutors who worked remotely, it was decided that they would be interviewed

through OU Live, the university’s online tutorial tool that was used at the time of the

study. The advantage of this approach is that OU Live could be used to share a

summary of the interview questions and to record an entire interview. After each

interview was completed, the interview exported to an audio (MP3) file, which was then

emailed to a transcriber.

When all the interviews had been completed the interview transcripts were read

and then loaded into a qualitative analysis software, NVivo, for thematic analysis (QSR,

2016). The analysis was an iterative process that roughly adopted the phases suggested

by Marshall and Rossman (1999): categorisation, coding, testing of understandings

using the data, and searching for alternative explanations.

An important aspect of this type of research is the background and perspective

of the researcher who is interpreting the data. This is in keeping with the view that ‘[a]ll

social research is founded on the human capacity for participant observation’

(Hammersley and Atkinson, 1995, p. 18). It is important to state that the author has

worked as an Open University tutor for approximately ten years. His main role within

the university is to line-manage a group of Open University tutors (associate lecturers);

he communicates with them on a daily basis and works with them to support their

students. Before joining The Open University he worked as a professional software

developer for over six years using many of the technologies that are featured within the

module.

After completing the thematic analysis, a meeting was arranged to share the

initial results with the co-researchers. A summary of the key findings were presented

along with key themes that had emerged through the data. Since the raw data were

available through NVivo, the co-researchers were able to view (and critique) the tags

(or ‘codes’) that had been used to annotate their interviews.

Results

The tutor interviews ranged between 40 minutes and 1.5 hours in length. Each interview

was transcribed. The resulting interview corpus was over 110,000 words, and over 250

pages in length. During analysis, 108 unique nodes, or ‘discussion themes’, emerged

from the data. These ranged from topics about the technologies that were being taught

through to comments about module tuition philosophy. These topics were used to

identify, or tag, 850 fragments of text. Coding took place by closely analysing and re-

reading the text, and carefully considering existing themes to constantly determine

whether new themes needed to be introduced.

The top ten most referenced themes were as follows: forums (62), OU Live (62),

JavaScript (44), challenges (35), PHP (34), student background (29), module structure

(28), struggling students (27), tutor background (25) and pedagogy (25). These broad

themes have a direct relationship to the topics that were presented to participants

through the interview questions. The data also contains 37 themes that were only

referenced once across all interviews.

It was clear from the interview data that participants were free with their

opinions and generous with their time. In fact, since distance education can be a solitary

activity, participants seemed to welcome the opportunity to discuss the challenges of

tutoring.

Participants emphasised that Web technologies attracted a wide range of

students. Some students may begin study with a pre-existing knowledge of some of the

key technologies that are featured in the module, such as PHP and JavaScript, whereas

others begin with very little; this wide variation is not uncommon within The Open

University due to its open access policy.

An interesting and important theme was that participants reported that some

students struggle with programming. In particular, they voiced concerns about

debugging saying, for instance, that ‘debugging your code is not easy’, ‘perhaps they

don’t know how to use debugging, perhaps a session on that might be useful or perhaps

given them some hints and tips’ and ‘basic debugging skills; some just don’t seem to be

understand how to test and if they do have a problem they just don’t seem to be able to

understand how to work out where the problem is’. Another participant reported that

‘the biggest problem with students is that, particularly the weaker students, lack

strategies of how to understand why things don’t work’. The same participant went as

far as saying, ‘I actually think that is something that we don’t really teach them; we

almost hope that it is a skill that they will pick up; we don’t really teach it to them, and I

think that is part of the problem’.

Continuing with the subject of programming, another participant questioned the

strength of problem-solving skills: ‘if they don’t know the tools that are available to

them in order to be able to solve the problem then how can they possibly solve the

problem’. In this context, ‘tools’ are interpreted to mean an understanding of the

fundamental structures of programming, and general ways to decompose problems.

In the second block of the module students are required to use JavaScript,

regular expressions, PHP and SQL. Participants had different views about the extent to

which students struggled with JavaScript, primarily because it used other pieces of

technology. One participant explicitly reported that ‘I would probably put JavaScript at

the top of the list in terms of difficulty’. Others raised concerns that related to

programming knowledge: ‘the trouble is that obviously we are starting to deal with

concepts of arrays and I think that this is where the students who are newish to this kind

of thing are going to have a problem’. Other points related to debugging, as participants

said ‘I think that the problem that they have with JavaScript is … being unable to spot

errors and detect errors’ and ‘I will look at it [student code] within a web console and it

throws up all these errors and they have obviously never looked at [it]’.

Some participants reported that some of their students find the pedagogic

approach adopted by the module challenging. In keeping with a desire to teach

professional skills, the module team direct students to publically available tutorial

resources and familiar computing text books, the same resources that professional

software developers are likely to use. Participants anecdotally reported that some

students struggle to use these resources effectively, citing that some students may feel

overwhelmed.

Students are required to use regular expressions to validate data before records

are sent to an SQL database for storage. Regular expressions is a well-known pattern

matching language found in many different programming languages, including

JavaScript. Participants were consistent in their views that regular expressions are

difficult for students. They also reported that students ‘certainly seem to struggle the

most with regular expressions’ and find that ‘regular expressions are really hard and I

don’t think there is any getting away from that, and they are hard for everybody’.

Participants hinted at potential solutions. These included providing further explanations

or even adopting an alternative approach. One said, ‘to be honest these days … I would

use a validation library, or something like that’.

In one assessment students are required to write PHP code that receives data

from a web client and save that data to a database. Some participants reported that there

was not enough context or background about the PHP language and said, for instance, ‘I

think that PHP is grossly undersold in this course. It is presented purely as a database

interface and I think it is massively undersold’. Understanding that PHP code runs on a

server is an important part of a wider mental model that helps students understand how

the different technologies are combined together. One participant reported that ‘quite a

few will find the concept of moving onto server type technologies really a head bashing

idea and the number of them that try and run PHP locally is quite amazing’.

Participants held opinions about how students are taught SQL. One participant

was very clear: ‘I think what the students also need is a set of practice SQL tables,

which are nothing to do with the TMA so that they can practice on them, and we could

use in tutorials to help [the students to] understand concepts’. The same participant had

a very clear vision of how such a resource could be used: ‘if we had a set of dummy

tables then we could use application sharing and say [to our students] look, this is how

you connect to a database’. Another participant offered a complementary view: ‘I think

it would be quite helpful … to have a few extra practice activities for those that need the

practice, and a couple of stretch activities for those that are more familiar [with

databases]’.

The other significant programming component of the module, MIT App

Inventor (MIT, 2016), exposes very different opinions. One participant clearly

described App Inventor as an ‘unnecessary diversion’ from the challenge of learning

about the key technologies that were introduced in the earlier parts of the module.

Another participant stated that ‘[with] App Inventor there is a change of gear, you

know, there is this flow chart and actually this is not so bad … it is then a lot easier’.

(The flow chart refers to the graphical format of a program; ‘it’ refers to the task of

understanding and working with programs.)

The inclusion of App Inventor exposes debates that are similar to those that

surround the use of BlueJ in computing education (BlueJ, 2016): namely whether

experienced and skills gained by using an educational environment can be easily

transferred to industrial and commercial settings. Put another way, participants asked:

‘is the module team using the right tool?’ Another participant said that to ‘produce the

apps, you need to have an understanding of how Android works’, which suggests that it

might be useful for students to have a more detailed understanding of computer

operating systems beyond what is introduced in the earlier module, TM129

Technologies in practice.

All tuition is online: students never get to physically meet their tutors. All

tutorials are delivered through the university tutorial tool, OU Live. From the

interviews, it is clearly evident that there is a wide variety of ways in which participants

use the tool. Some participants described using it to deliver a presentation that is based

around a deck of slides prepared using PowerPoint. Other participants described

adopting a more dynamic approach, actively choosing to share code with students,

helping students to see what code looks like and how it might be manipulated using

different tools. One participant reported that they ‘always use the shared desktop and I

have got two monitors so I pull my PowerPoint show in and out of the shared section

and I will edit code live and I will go to websites live in the shared desktop’.

An interesting difficulty that many participants reported is the challenge of

trying to get students talking. One participant said that ‘the [OU Live] chat box can be

much more popular than talking’. Another stated that ‘many of them are quite reluctant

to admit that they have microphones, but they will chat away [using the chat box] quite

happily and that works quite well.’ Aware of these challenges, another participant

reported that they deliberately stay silent until students decide to make contributions.

This implicitly echoes the work of Haythornwaite et al. (2000) who explored the

importance of developing community in online and distance education.

Most participants record their OU Live sessions, but there are some who

deliberately choose not to. This difference in practice is, to some extent, a reflection of

the ambiguity in faculty policies. At the time of the study, the recording of online

tutorials was not yet an official faculty recommendation, although some line managers

of tutors did explicitly recommend recording, citing the view that recordings can help

students.

Another important set of teaching tools are the online discussion forums.

Students have access to a number of module-wide forums (also known as national

forums) in addition to a forum for their tutor group. The module-wide forums are

moderated and supported by tutors who have been chosen by the module team, but all

tutors can make a contribution if they choose to do so. Participants reported that,

through the moderators, the module-wide forums offer ‘a very efficient way of

providing technical help’ and that ‘they are very supportive’. One participant said that

it is sometimes difficult to follow the many discussions that take place in the module-

wide forums: ‘so I always say to [my students] if you want me to see your posting in the

national forum send me an email and tell me so that I can go and have a look at it.’

Tutor group forums (TGFs) are used differently to the module-wide forums. One

participant reported that discussions are difficult to maintain due to a lack of a ‘critical

mass’ of students. Another said that their ‘students tend to come to the national forum

rather than the TGF’. An important comment from one participant was that the tutors

‘use it as a noticeboard; I use it for sharing the results of the online sessions’. This was

echoed by a further participant who stated that they use their forum to follow up after

OU Live tutorials, and to remind students when they are going to take place.

Moving away from tools and the specific technologies that are taught,

participants offered comments about the structure of the module. One important point

related to the amount of materials that students were required to study. In relation to

this, one participant said that ‘I would make it 60 credits’ and another that the ‘breadth

[of study] is right … [the] depth isn’t there’. This is reflected in a participant opinion

that the module could spend more time teaching programming skills and concepts and

‘explaining how things work’.

Since the tutors represent the face of the university, the support that they are

given from the module team is very important. All participants reported that they were

happy with the marking and correspondence tuition guidance they were offered. One

criticism was that some sections of the tutor notes lacked model answers. That said,

participants felt the module team responded quickly to any issue that arose when the

module was being presented.

Discussion

Given the focus of Web technologies it is perhaps unsurprising that some participants

reported that students can find the technical sections particularly challenging. This point

can be related to the wider question of: how do we best teach computer programming?

This is especially difficult to answer since we are teaching through distance education.

This forces us to ask another question: what pedagogies are most appropriate? This

question is especially important since students are not able to sit next to each other in a

computer laboratory where they could provide each other with support and inspiration,

ask each other for advice and attract their tutor’s attention to develop and correct their

understanding of how a technology or programming language might function.

The participant interviews have yielded some interesting insights. One view is

both simple and compelling. One tutor stated: ‘I think there should be more movies

generally demonstrating things’. In fact, some have even taken it upon themselves to

create their own video resources to fill an important need. Videos or screencasts can be

used to illustrate how different tools can be harnessed and to familiarise students with

the syntax and form of source code. Ahmadzadeh et al. (2007) suggest that exercises to

teach debugging have the potential to help students learn programming. Videos could be

created to illustrate debugging approaches to help students become familiar with

different troubleshooting strategies and the context in which they can be applied.

As mentioned earlier, it was apparent that some participants chose to show

students how to work with source code through OU Live sessions. In some respects,

these demonstrations represent ‘programming as performance’, which is sometimes

known as ‘live coding’ – situations where performers manipulate software code to

either demonstrate skill or ideas (Collins et al., 2003). Paxton (2002) suggested that live

coding could become an important and useful pedagogic approach for the teaching of

programming.

Addressing another aspect of digital pedagogy, the fact that many students

remain steadfastly silent during OU Live sessions raises interesting questions, such as

what might be done during earlier levels of study to reduce reticence to speak and what

tutors could do during tutorials sessions to increase participation. These research

questions go beyond the current focus of the project reported in this paper since they

relate to the importance of engagement and community; but these are themes that are

important to digital tutors and educators from all disciplines.

It was also interesting to note that while the case studies used in the module did

feature in the interview transcripts, they were not discussed in any great length. This

finding is surprising given the central role that they take within the module. An

explanation for this might be that the participants were satisfied with their design, and

preferred to highlight the more significant challenges that are faced by students.

The research reported here represents only one perspective of the work of a

single cohort of very experienced tutors. The results and this accompanying discussion

are, of course, substantially influenced by the experience of the researchers: the two

tutor interviewers and the lead author. This experience can affect not just how the

original interview data were coded, but also how the key themes that were identified

have been read and interpreted.

One of the key research questions of whether the earlier modules help to prepare

students for study at a higher level remains unanswered. Rather than speaking with

tutors it may be more useful to speak directly with the students. What has been exposed

during this project, however, is a broad range of valuable practices and experiences.

Conclusions

The paper began by presenting three interrelated research objectives:

(1) Are Web technologies students sufficiently prepared?

(2) Which aspects of the module do students find difficult?

(3) What could be done to improve or enhance the module?

By undertaking this research and by exposing the tutor’s voice, it was also

envisaged that more could be learnt about the challenges faced by both the students and

tutors.

The first research question remains unanswered. Nevertheless, the tutor voice

was clearly exposed and participants clearly expressed the view that students found

some technical aspects challenging. They also suggested that students were uncertain

about the operation of different pieces of technology and were challenged by the use of

different sources of information. Participants demonstrated a wide variety of pedagogic

practice when using online tutorial tools such as OU Live. They also presented different

opinions about how online discussion forums were used, and expressed views about the

structure of the module and what kind of materials might be useful for students.

This research has focused on listening to the tutor voice. From the beginning of

this research, tutors were very willing to come forward and share their opinions. It is the

author’s view that listening to the tutor’s voice is very important, if not essential, if we

are to develop effective computing, IT and STEM distance education. Another voice

that has not been studied in this study is that of the student’s. The student’s voice, along

with the tutor’s, needs to be listened to if we are to gain a full understanding of the

challenges that accompany teaching technical subjects such as Web technologies.

References

Ahmadzadeh, M., Elliman, D. and Higgins, C. (2007) The impact of improving

debugging skill on programming ability, Innovation in Teaching and Learning

in Information and Computer Sciences, 6:4, 72–87.

BlueJ (2016) BlueJ, http://www.bluej.org/ Accessed 17 March 2016.

Collins, N., McLean, A., Rohrhuber, J., and Ward, A. (2003) Live coding in laptop

performance, Organised Sound, 8:3, 321–30.

Hammersley, M. and Atkinson, P. (1995) Ethnography: Principles in Practice,

Psychology Press.

Haythornthwaite, C., Kazmer, M., Robins, J. and Shoemaker, S. (2000) Community

development among distance learners: temporal and technological dimensions,

Journal of Computer Mediated Communication, 6:1.

Marshall, C., and Rossman, G. B. (1999) Designing Qualitative Research, Sage

publications.

MIT (2016) Scratch, https://scratch.mit.edu/ Accessed 15 March 2016.

Nandi, D., Hamilton, M. and Harland, J. (2012) Evaluating the quality of interaction in

asynchronous discussion forums in fully online courses, Distance Education,

33:1, 5–30.

parkrun UK (2018) parkrun, http://www.parkrun.org.uk/ Accessed 4 May 2018.

Paxton, J. (2002) Live programming as a lecture technique, Journal of Computing

Sciences in Colleges, 18:2, 51–6.

PHP (2018) PHP, http://www.php.net/ Accessed 4 May 2018.

QSR (2016) NVivo, http://www.qsrinternational.com/ Accessed 17 March 2016.

Robins, A, Rountree, J and Rountree, N. (2003) Learning and teaching programming: a

review and discussion, Computer Science Education, 13:2, 137–72.

The Open University (2018) TT284 Web technologies,

http://www.open.ac.uk/courses/modules/tt284 Accessed 4 May 2018.

Appendix 1: Tutor interview plan

This appendix contains the introductory script that is read to participating tutors, along

with a copy of all the questions that are asked during the participant interviews.

Thank you for volunteering to participate in the project. The aim of the project is to

learn about what works well and what doesn't work well in terms of TT284 and the

teaching of programming. Other objectives are to learn about what the university might

be able to do to help you with your tutoring work, and to learn lessons that could feed

directly into the design of future modules.

This interview should take up to an hour, and you will not be paid. The

interview is also going to be recorded. Are you okay with this?

The interview will take the form of a series of open ended questions that are

designed to ask you about your opinions and experience. There are no right or wrong

answers to these questions. You are free to stop or pull out of the interview at any time.

If you are unsure about any of the questions, please feel free to ask your own questions

to clarify what is being asked.

Following the interviews, all recordings will be transcribed, and these

transcriptions will be anonymised and then analysed. There is a possibility that some

fragments of the interviews might be quoted in either internal reports or publications.

No names will be attributed to any quotes.

If, by the end of the interview, you would not like your interview to be used as a

part of the research project, this is okay too. You can either mention this during the

interview, or send us an email afterwards.

Are you okay for the interview to start?

Questions

First of all, could you say something about yourself and your background? For

example, what is your experience of being an Open University tutor, and what other

experience of working with or teaching web technologies do you have?

What are the biggest challenges that you face as a tutor on TT284?

What do you think are the biggest challenges that your students face?

Can you give any examples of why you think this is the case?

What aspects of web technology do you consider that students find the most difficult?

What is your opinion or experience of teaching programming in TT284?

Are there certain subjects or skills that you feel that students who study TT284 may be

lacking? Or, put another way, are there any areas that TT284 should perhaps teach or

focus on that it doesn’t at the moment?

Students gain access to learning through different parts of the module website and

different devices. Are there aspects that work better than others? Are there other

opportunities that you think could be taken advantage of?

TT284 obviously doesn’t have any face-to-face sessions. Can you tell us about your

views of the challenges and opportunities that OU Live offers students and tutors?

Could you say what works well and what doesn’t work well in TT284?

Acknowledgements: I would like to thank the hard work of the two co-researchers: Dave

Macintyre and John Williams. I would also like to acknowledge the authors of Web

technologies and those who support its delivery. These include Soraya Kouadri, current module

chair; John Busvine, TT284 curriculum manager; Neil Simpkins, production module chair; and

module authors Doug Briggs and Nick Heap. I would also like to thank the Open University

eSTEeM project, led by Clem Herman and Diane Butler, which funded this research. I also

thank Emma Elder and the two reviewers for their invaluable suggestions; their comments and

their time has significantly helped to improve this article.

