DEPARTMENT OF HISTORY

ELECTRIFYING THE STREETS: THE SURFACE-CONTACT CONTROVERSY IN FIVE ENGLISH TOWNS 1880-1920

by

Gerry Colley BA (Hons), MSc, CEng, FICE, FCIHT

Submitted for the degree of Doctor of Philosophy of the Open University

27 November 2014
BEST COPY AVAILABLE.

VARIABLE PRINT QUALITY
ACKNOWLEDGEMENTS

This thesis is dedicated to my dear wife Jan, without whose unwavering support this research would have been impossible. I am indebted to my long-term supervisor, Dr Colin Chant for his advice and guidance over several years, and more recently to Dr Debbie Brunton, both of whom are staff members of the Open University.

I am particularly grateful to the staff of Wolverhampton City Archives, and the archivists in Hastings, East Sussex, Mexborough, the Guildhall, the British Library, the National Archives, and various professional Institutions, all of whom have been most helpful. I am also grateful to my relatives and friends too numerous to mention who have offered support and encouragement over the years, but above all have shown an interest in a rather arcane subject!

'Carpe Diem'

Tunbridge Wells

27 November 2014
ABSTRACT

The turn of the nineteenth century was an exciting time for urban transport innovation. Inventors and entrepreneurs sought a power source that was efficient and economical. In some towns, however, other considerations were equally important in choices about transport mode and subsequent operation. Technology, socio-cultural, political, and economic concerns, as well as environmental and aesthetic considerations were all factors. This research considers their influence in the social shaping of the design and implementation processes.

Opposition to overhead tram traction was widespread but quickly overcome in most towns. However, after lengthy debates, five towns in England opted for the surface-contact system. Of these, Wolverhampton and Hastings are the main focus for this research because they occupy opposite ends of the social and political spectrum. Lincoln, Torquay, and Mexborough, where surface-contact traction survived for some time, are covered in less detail.

Most historians of technology regard surface-contact tram traction as a failure and a temporary deviation from electric traction development. They maintain that surface-contact was technologically and economically unattractive compared to conventional overhead systems. More recent historians have suggested that aesthetic arguments were a surrogate for other interests. Through an analysis of primary and secondary source material, this thesis investigates those claims. It finds that despite technical difficulties, surface-contact traction survived for several years in the five towns, fulfilling the aesthetic ideals of the time and supporting economic and social development in the process. To this extent, the thesis judges surface-contact to have been a success.
The evolution of urban transport, the development of the towns, and social
dynamics including networks of power are all covered, together with aesthetic,
environmental and economic considerations, as well as political and commercial
pressures. The thesis examines how these diverse issues influenced decisions,
and concludes there was no single factor that prompted either adoption or
abandonment.
ABBREVIATIONS

BET – British Electric Traction Company
BoT – Board of Trade
DS&W TC – The Dudley, Sedgley and Wolverhampton Tramways Company
LCC – London County Council
LMBC – London Metropolitan Borough Councils
LUT – London United Tramways
MTC – Midland Tramways Company
WDET – Wolverhampton District Electric Tramways Company
NECC – National Electric Construction Company
WTC – Wolverhampton Tramways Company
LIST OF FIGURES, TABLES and APPENDICES

Figures

3.1 - The art nouveau façade of the Wolverhampton Industrial Exhibition.
3.2 - Decorative Lucy boxes in Wolverhampton.

4.1 - Map of St Leonards district in Hastings.

Tables

1.1 - Number of approved Acts for the laying of tramways.
2.1 - Comparison of tramway provision between the UK and the USA in 1902-03.
2.2 - The ratio between tramway track and population.
2.3 - Comparison between the UK and the USA of tramway systems in March 1904.
2.4 - Surface-contact installations in the UK.

3.1 - Population statistics for Wolverhampton.
3.2 - Population statistics for Wolverhampton's suburbs.
3.3 - Occupational composition of Wolverhampton’s councillors.
3.4 - Wolverhampton councillors who were Freemasons.
3.5 - Report on first year operations of Lorain system.
3.6 - Comparison of receipts from August 1902 to August 1903.
3.7 - A report on surface-contact traction.

4.1 - Population statistics for Hastings.

5.1 - Population statistics for Torquay.
5.2 - Population statistics for Lincoln.

Appendices

1 - Chronological charts from 1820 to 1919.
2 - Illustration of the attitude to steam trams on the streets.
3 - The cable traction system.
4 - The Dolter surface-contact system.
5 - Contemporary advertisement for the Dolter system.
6 - Sector model of Wolverhampton.
7 - Population growth rates.
8 - Other actors and their roles in Wolverhampton.
9 - Map of Wolverhampton tramways.
10 - The Lorain surface-contact system.
11 - The Lorain system in Washington DC.
12 - Typical ornate tramway support poles.
13 - Hastings Borough Engineer’s report.
14 - Secret funding of the anti-tram movement.
15 - Poems about the Dolter system in Hastings and Mexborough.
16 - Map of Torquay tramways.
17 - Map of Mexborough tramways.
18 - Map of Hastings tramways.
19 - Tramway statistics for Wolverhampton and Lincoln.
20 - Capital investment in tramways in the UK.
21 - Conflicts in the decision-making process.
22 - Overhead wires.
CONTENTS

Acknowledgements

Abstract

Abbreviations

List of Figures, Tables and Appendices

Chapter 1 – Introduction

1.1 Introduction

1.2 Sources for the study

1.3 Aesthetic concerns and opposition to tramway development

1.4 The effect of the regulatory process on private enterprise

1.5 Public versus private enterprise

1.6 The British Electric Traction Company (BET) and the National Electric Construction Company (NECC)

1.7 The duties of the Board of Trade

1.8 Prominent actors in the surface-contact debates

1.9 Health and safety issues

1.10 Conclusions

Chapter 2 – The development of transport systems in the nineteenth century

2.1 Introduction

2.2 Technological development

2.3 Horse-drawn omnibuses

2.4 The origin of tramways – horse-drawn trams

2.5 The limitations of horse power

2.6 The move towards mechanisation

2.7 Steam traction – a source of inanimate power

2.8 The fireless steam engine and the Mekarski compressed-air system

2.9 Cable traction

2.10 Accumulator cars

2.11 The advent of current electricity
2.12 The open-conduit system
2.13 Surface-contact systems – the aesthetic answer?
2.14 Conclusions

Chapter 3 – Wolverhampton: an industrial city

3.1 Introduction
3.2 The geological divide
3.3 Modelling Wolverhampton’s development
3.4 Demographic diversity – a profile
3.5 The evolution of local government
3.6 Early transport networks
3.7 The steam tram experiment in Wolverhampton
3.8 A separate enterprise in Wolverhampton
3.9 Municipalisation
3.10 The introduction of surface-contact trams
3.11 Networks of power – the middle classes
3.12 Religious influences
3.13 Corruption and freemasonry – were they factors in the decision-making process?
3.14 The controversial extension of the system
3.15 Aesthetic amelioration
3.16 Conclusions

Chapter 4 – Hastings: a seaside town

4.1 Introduction
4.2 The development of Hastings
4.3 The political dimension
4.4 Early transport developments
4.5 The Hastings and St Leonards Omnibus Company
4.6 The threshold of a new era
4.7 The final stages
4.8 The installation of the Dolter system
4.9 Conclusions

Chapter 5 – The other surface-contact towns

5.1 Introduction
5.2 The impact of local government reform
5.3 Torquay – a seaside town
5.4 Lincoln – a historic city
5.5 Mexborough and district – small industrial towns
5.6 Urban contrasts in London - the surface-contact areas
5.7 Conclusions

Chapter 6 – Conclusions

Bibliography
CHAPTER 1- INTRODUCTION

Surface-contact traction was 'one of the few striking engineering failures of the century'.

1.1 Introduction

In the view of Klapper and some other transport historians, surface-contact traction for tramways was a failure and a deviation from the true path of electric traction development. They reached this conclusion on the grounds that surface-contact was costly to install, difficult to operate, and expensive to maintain compared with the more traditional overhead systems. As a result, councils either failed to adopt or quickly abandoned the system.

This thesis challenges that conclusion. Contrary to Klapper et al, I will show that despite high costs and technical difficulties, surface-contact systems survived in a number of towns for several years in the UK and elsewhere, fulfilling a hitherto unsatisfied demand for mass transportation, and supporting economic and social development in the process. To this limited extent, surface-contact traction can be judged a success.

The thesis explains why a number of councils opted for the surface-contact alternative to overhead traction; and why they decided sooner or later to replace their systems. I demonstrate how the controversies surrounding both the choice of this transport mode and its subsequent operation were not simply about the technology or even economics, but encompassed socio-cultural, political and other issues, as well as environmental and aesthetic considerations. I augment the theme frequently alluded to in the secondary literature of the impact on the

environment with detailed analysis of other influences. My research shows that there were in fact many other relevant contextual factors. I show how these factors influenced design and implementation practice.²

Recent historians of technology, notably Schatzberg³ and Schmucki⁴, have referred to the opposition to overhead traction in the USA, Germany, and the UK. Similar opposition was evident in the historic cities of other European countries, especially France and Austro-Hungary.⁵ Schatzberg suggested that townspeople waged a brief but vigorous campaign against the environmental consequences and aesthetics of overhead wires in America’s largest cities.⁶ McKay had earlier asserted that overhead wires provoked general public concern and strong criticism.⁷ Schmucki acknowledged the opposition, but proposed that the very negative European reaction was weaker than hitherto assumed.⁸ She developed the argument further and suggested that much of the opposition may have been a surrogate for other political and financial arguments.⁹ This thesis also examines Schmucki’s proposition.

Opposition to overhead wires was strong enough in the UK for surface-contact traction to be adopted in five locations. This thesis explores the reasons for its adoption in each of the towns. I have chosen Wolverhampton and Hastings for

⁶ Schatzberg, 'Culture and Technology', p.57.
⁸ Schmucki, 'The Machine in the City', p.1071
special attention because they were at opposite ends of the spectrum socially and economically. The other three areas in the UK where surface-contact was installed were Torquay, Lincoln, and the adjacent south Yorkshire districts of Mexborough and Swinton. As Mexborough and Swinton were small neighbouring urban districts covered by one operating company, my thesis refers to them as a single entity. I have included these three places for comparison, though in rather less detail. To avoid repetition and for easy reading, I refer to all of them as ‘target towns’. There was experimentation with similar systems for a short time in west London and in Stepney in east London, but in those particular council areas the political issues surrounding traction choice served to force the swift abandonment of the trials.

This research is not a technical study per se, although some technical details are included to describe the development process. I have adopted a town-by-town approach in order to capture the complexity of the issues, and the main social, political, economic and cultural contextual factors. Of course, the case-by-case approach has its potential disadvantages. There are some overlapping factors – notably considerations of class, culture and politics – and this could have resulted in the dominance of narrative as well as analytical repetition. However, while there are similarities between the towns, the differences between them are sufficient to make my approach appropriate as they clearly did not follow the same path in reaching their conclusions. My thesis serves to bring out these variations in the decision-making process in each setting, and is generally more conducive to a social shaping approach to urban traction technology.10 My analysis also takes into account the economics of surface-contact traction compared with overhead.

In *How Users Matter*, Oudshoorn and Pinch outline how users consume, modify, domesticate, design, reconfigure, and resist technologies.\(^\text{11}\) While this thesis does not cover such a wide spectrum, my analysis of both resistance to and support for surface-contact readily lends itself to an approach in which key actors, whether they were institutions such as local authorities or manufacturers, or individual members of society, 'could construct radically different meanings of a technology'.\(^\text{12}\) A paper by Divall and Revill indicated the complex relationships between the various parties, and suggested that 'organizations, modes of governance, infrastructures, vehicles and other artefacts shaped expectations and practices'.\(^\text{13}\) Furthermore, transport systems were 'both shaped by the play of social power and in turn acted back upon it'.\(^\text{14}\) This two-way process is highlighted in the following chapters of my thesis.

Different actors were prominent in different locations. In Wolverhampton, councillors and politicians dominated the decision-making process and fought against the introduction of aesthetically unacceptable forms of traction (see chapter 3). In Hastings, the powerful lobbyists were the wealthy and influential residents. The Anti-Trammites fought hard but unsuccessfully to keep trams out of the town entirely (see chapter 4). In other towns, the promoters and system manufacturers, anxious to sell their particular technology, held sway. In Torquay, Lincoln, and Mexborough and Swinton, it was the powerful company interests of the National Electric Construction Company and Griffiths-Bedell which prevailed in the introduction of surface-contact traction (see chapter 5).

\(^{12}\) Ibid, p.3. The social construction of technology tends to emphasise producer social groups. Co- construction is a later variant which posits a mutually shaping relationship between users and technologies.

\(^{14}\) Ibid, p.100.
I have taken Mom's field concept analogy as a starting point for my analysis. Following Mom, I define the ‘application field’ as the finished article, the surface-contact powered tram. The ‘field of expectation’ includes the social and technical requirements for future applications by the various actors. I describe how between the two lie socio-cultural, political, economic, aesthetic and environmental considerations, all of which had to be resolved before stability could be achieved. Some of these factors enabled development, while others constrained it, thereby creating controversy.

An analysis of technological controversies demonstrates that almost everything is negotiable. Historical controversy illustrates very well how technologies are socially constructed. Historical controversies over technologies that are regarded as failures are especially instructive, as social constructionists insist that a proper understanding requires a truly symmetrical account, one that considers both failed and successful technologies. These issues are discussed in detail in later chapters.

Among the contextual factors highlighted in the thesis is the hugely significant issue of class in the late nineteenth century. In his authoritative work The City, the social philosopher Weber characterised towns as places for the organisation of power, and argued that democracy was heavily influenced by privilege and religion. My thesis describes the many class-based responses to the introduction

15 Mom, The Electric Vehicle, p.3.
of trams and their form of propulsion in the target towns through the interplay of class interests. In Wolverhampton, decision-making was driven by rich councillor-industrialists, despite opposition from middle-class shop-owners who feared isolation from adjacent towns. By contrast, in Hastings it was the wealthiest residents who used their influence to keep any form of modern transportation from their streets, but particularly trams. Their close-knit group offered formidable resistance to the council’s transport deliberations, echoing Foucault’s theory that wherever power is exercised, opposition will be generated.

Such battles lasted for many years. The ebb and flow of debate echoed the class struggles identified by Marx, albeit on a much smaller scale. There is evidence of Marx’s claim that users must define the uses, meanings and significance of the technology in order for the process towards stability to be complete, and that production and consumption overlap and contain common elements. Such cross-fertilisation became the norm in debates about surface-contact traction, and it was only when a consensus between consumers and producers was reached that any kind of stability was achieved. Given the short-lived nature of some surface-contact systems, it is debateable whether this state was achieved in those cases (see the variety of forms explained in section 2.13).

The blurring of the boundaries between design and use does not imply that production and consumption should be considered as identical processes, or that designers and users have the same roles in technical innovation. Indeed, both the

22 Ibid, pp.53-58.
market, and technologies' response to it, may be constantly changing. Consumption and production, and their socio-economic impact, must therefore be closely examined in order to identify their particular characteristics.

In stark contrast with the social constructionists, and in keeping with the assumptions of the 'internalist' historians of technology that were the main quarry of them, the German existentialist philosopher Martin Heidegger argued that technology was an entity separate from the socio-economic influences that determine its application. Heidegger saw technology as 'an ordering of the world to make it available as a 'standing reserve' poised for problem solving and therefore as a means to an end'. Such a view reflects his apparent distaste for technology, which he saw as an instrument for domination. Contrary to Heidegger and the internalists, I argue that political and aesthetic constraints were highly influential in traction development. In dynamic societies such as existed in Wolverhampton and Hastings at the turn of the nineteenth century, decision-making was not simply founded on cause and effect. It was 'an intertwining of many factors'.

The nineteenth century was an exciting time of innovation, especially in the field of tram traction. The history of tramways is 'not merely a story of heroic achievement, nor of developing hardware'. Towns had particular political organisations and geography. Entrepreneurs and innovators introduced new equipment, and brought

\footnotesize

new business techniques to manage the developing industry.28 In turn, the process changed the social, political and geographical character of the towns.29 But balanced against enterprise was a feeling that Victorians were entering an anxious and uncertain modern world, particularly with regard to tramway development (see chapter 2 for a description of the options). At each stage, it was impossible to predict how the narrative would unfold, and which interest would eventually prevail.

The over-arching questions for this thesis are: Why did certain towns decide to adopt one of a range of innovative surface-contact systems? Why did they subsequently decide to replace their chosen system with another urban transport technology? In addressing these questions, others arise: Why did surface-contact traction fail to achieve market penetration on a wider scale? Was it technologically inferior, or were socio-economic factors more important? Were deliberations clouded by financial and political arguments rather than aesthetic and environmental aspects? I have used quantitative evidence in the search for answers to these questions.

In Chapter 2, I have traced the development of urban transport systems from horse-drawn omnibuses and tramways, through the early mechanisation era to the confirmation of electricity as the dominant motive power source. The reasons why some experimental schemes quickly disappeared, while others continued for several years, are examined. A chronology of events is included as Appendix 1 at the end of this thesis.

29 Massouh, 'Innovations in Street Railways', pp.202-217.
Chapters 3, 4 and 5 are case studies of the five target towns. The patterns of urban development are discussed, and the emergence of their particular identities is explained. Their geographical and demographic characteristics are compared, and social inequalities, the complex dynamics between certain social strata from the powerful non-users to the poorer classes, and their respective impact on decision-making are examined. Networks of power are identified and the influence of religion and health and safety on the decision-making process is considered.

The ways in which different groups did or did not gain an advantage in certain circumstances are analysed. The aesthetic, environmental and economic issues, set against the wider context of urban mobility and civic development, are examined to test for any commonality between the target towns. Energy networks insofar as they impacted on the environment are included. Finally, the political context is considered, including the role of local government and the decision-making powers of councillors. The effect of commercial pressures exerted by tramway promoters and manufacturers is examined. The impact of central government's regulatory processes is described.

Chapter 6 embodies the conclusions to the research and answers to the questions posed. The choices available are discussed, and the reasons for making them, together with the forces opposing change, and objecting to technological innovation. The processes leading to the eventual decisions to adopt surface-contact traction in particular are explained. Finally, a section is devoted to present-day trends in second generation surface-contact systems.
1.2 Sources for the study

I have consulted a variety of primary sources, including newspaper accounts, letters, journals, and council minutes, in order to analyse the development of urban tram systems. In particular, I have concentrated on the choice of traction; the interplay between these systems and societal values; and the benefits, or otherwise, for the general population. Each source has been studied with an eye to context and subjectivity. The effect of this has been twofold; while accounts themselves have had to be moderated on the grounds of obvious partisanship or special interest, they have at the same time provided valuable evidence of the specific interests, power and strength of influence of key players in the debates. For instance, the proprietor of the Hastings & St Leonards Observer was also chairman of the local omnibus company and as a result, his newspaper was fiercely anti-tram. In fact he was subsequently accused of secretly financing the opposition to them (see section 4.6). The Wolverhampton Express & Star, promoting the interests of ratepayers, objected to the Lorain surface-contact system on economic grounds and was consequently accused by those councillors, who saw aesthetic benefits, of distorting the facts (see section 3.14). Some newspapers viewed themselves as beacons of modernity and strongly supported the introduction of trams, while others still counselled caution, reflecting their readers’ concerns about overhead wires. Opposition to tramways could be shown in terms of class conflicts and presented as dramas between employers, employees, users and residents. Letters to editors formed an important part of my research, particularly in Hastings, and ‘shed new light on issues that attracted

31 Schatzberg, ‘Culture and Technology’, p.80.
a broader public's attention and emotions'. Also included in this thesis are satirical cartoons and poems, which 'take us closer to the street' than do local government archives.

Where published, eye-witness accounts have proved useful, less obviously biased sources of information, although they too will inevitably be subjective and potentially prone to exaggeration, sensationalism and dramatisation of events (see the 'Jovian thunderbolt' propaganda against the Dolter surface-contact system in Hastings in section 4.8). Minutes of local authority council and committee meetings frequently only record resolutions made, rarely including the debates which generated them. A notable exception was the verbatim account of the extraordinary discussions surrounding the Lorain system in Wolverhampton (see section 3.14). Other sources consulted include the journals of various professional institutions, although these must often be treated with caution as they frequently reflected the views of transport and electrical industries. My main focus in this research has been on local actors and the local contexts of their decision-making on tramway traction modes. The primary sources for these decisions have, where relevant, provided enough information on the impact of the wider ambitions of the British Electric Traction Company (BET). Further research on the relationship of the company with local authorities would take on the extensive BET archive at the National Tramway Museum at Crich in Derbyshire. The Museum's library catalogue reveals five pages of items either by or involving the company.

33 Schmucki, 'The Machine in the City', p.1061.
34 Ibid.
35 Wolverhampton Chronicle, 14 October 1903.
As well as primary sources, I have consulted a wide range of secondary sources to investigate the various contextual factors that bore on the decisions to adopt surface-contact systems and on their subsequent history. This will be clear from the footnote references in the substantive chapters that follow. In the past, many authors have adopted what may be called an ‘internalist’ or ‘Whiggish’ account of tram development, focusing exclusively on the development of the technology, and picking out those aspects which could be celebrated as progress, almost to the point of propaganda. Tramway enthusiasts tended to focus on technical matters, including such issues as manufacture, propulsion, track configuration, and the layout of overhead wires, while making comparisons with other systems. Other writers concentrated on contemporary street scenes showing the prominence of tramcars and the effects of track installations. Examples of this approach were the literature produced by Dover, Jackson-Stevens, Barham, and the monographs of the Tramway and Light Railway Society, all of which are referred to in later chapters. Klapper’s ‘Whiggish’ account included a chapter entitled ‘Deviationists’. In this, he briefly focused on the failures of the surface-contact system, concluding rather revealingly that they were ‘brought to book in the end’.

The anti-Whig position, which reveals the merits of relatively unsuccessful forms of tram traction, has received much less attention from historians. Other more academic studies of the history of transport privileged economic considerations above all others. Such selective views tend to distort the history of a subject. My approach, in keeping with the recent ‘cultural turn’ in transport history and mobility

studies, captures the social and cultural categories, their power relations and attitudes, particularly towards tram-traction choices.42

Of course there were exceptions to linear explanations of transport development. McKay’s pioneering work on the transformation of urban passenger transport in Europe included sections on the electric tramcar revolution.43 McKay’s useful monograph included a description of the various traction choices, and went some way in highlighting the opposition to overhead wires in Europe as well as the aesthetics of the available options.44 However, he failed to explain why some towns went ahead with non-standard alternatives. Instead, he concluded that alternatives were of only passing significance in Europe, and in the end, opposition was overpowered by the same economic interests that prevailed much sooner in the United States.45 In some towns in the UK, however, particularly in Lincoln and Wolverhampton, it took many years for that to happen.

Ochojna46 and Buckley47 broadened the debate by including the influence of politics and economics on the development of urban passenger transport in Britain. However, the treatment by historians on such important issues as the types of traction available is generally shallow, with little attempt to investigate, contextualise, or analyse the decision-making process. The past thirty years has seen a change. Historians of technology such as Thomas P Hughes, David E Nye, and Eric Schatzberg, have emphasised the numerous political, social and cultural

\begin{flushleft}
42 Julia Twigg, 'Social Policy and the Body' in Lewis, Gewirtz and Clarke (eds), \textit{Rethinking Social Policy}, p.131.
43 McKay, \textit{Tramways and Trolleys}, pp.35-83.
44 Ibid, pp.99 \textit{et seq}.
45 Ibid.
\end{flushleft}
conflicts surrounding technological choices. More recently, Barbara Schmucki used a similar approach to describe how tramways were appropriated by city dwellers 'to fit them into existing lifeworlds'.

Much of the literature about the debates generated by opposition to conventional overhead electric traction was not focused on individual towns and was of a very general nature. Although several authors have mentioned the five target towns as examples where non-standard traction systems were introduced, there was no in-depth analysis of the reasons for their adoption. The causal factors were not explored. My research finds that the decision-making processes which led to the adoption of surface-contact traction did not follow the same standard path.

More recently, Buckley's academic study about the decline of the British tramway industry introduces three case studies in South Yorkshire. One, the Dearne District light railway, neighbours upon Mexborough and Swinton, the towns among the subjects of my research. There was a physical interconnection between the two systems. However, the time span of Buckley's research is much longer than mine, and he focuses on the socio-economic and political reasons for the decline, with little discussion about the earlier technology.

In the context of tram traction choices, towns provide ideal locations for the examination of the interaction between technology, culture and politics. As tramways used the public space of the street, they faced public debates and

48 Schatzberg, 'Culture and Technology', p.58.
49 Schmucki, 'The Machine in the City', p.1061.
51 Schatzberg, 'Culture and Technology', p.61.
scrutiny.52 As Callon suggests, 'towns consist of more than public transport, conservation, and councils composed of spokespeople. They conceal a hidden life and differ from each other with respect to population, history, and geographical location'.53 They were socially dynamic with town councils governing, and pressure groups seeking to influence policies, enabling valuable comparisons.54

Drawing on wider literature, my specific analysis of the five target towns (see Chapters 3, 4 and 5) does indeed reveal that 'each town was different, with its own idiosyncratic nature'.55 In support of this view, Kellett quoted the manager of Manchester's tramways, writing in 1914: 'it may be very misleading to draw general inferences unless the local circumstances in each case are fully recognized and kept fully in mind'.56 Because of the highly individual character of towns, Kellett stressed the difficulties of making comparisons, pointing out that 'forms of enterprise, the response of their business communities, and the policies of their civic administrations varied widely'.57 However, he acknowledged that they were all subjected to certain common economic events, citing the impact of railways on the urban fabric and economy as his own prime example. There is no doubt that the advent of tramway systems had similar impacts on 'various social groups at different times and in different cities'.58 However, while urban growth and the development of suburbs relied on new forms of public transport, the process was complex and the outcome shaped by several social and economic factors as

52 Schatzberg, 'Culture and Technology', p.61.
53 Callon, 'Society in the Making', p.93.
54 Ibid.
55 McKay, \textit{Tramways and Trolleys}, p.208.
56 Manchester Tramways Department, \textit{The Passenger Transportation Problem: Report of the Special Sub-committee} (Manchester, 1914), p.87 (quoted in McKay, \textit{Tramways and Trolleys}, p.208).
explained in later chapters. Capuzzo argued that fares, labour markets and place of residence, availability of suitable housing land, were all important factors in constraining outward expansion in varying degrees and in different places. In the UK tramways were 'more likely to be designed to cater for an established need than create an entirely new one, although once operational, they 'had great potential for stimulating large increases' in traffic.

The process of industrialisation transformed the relationship between social groups and produced significant changes in their activities. Change also affected urban residential patterns. Pre-industrial towns had high-status central areas. Over time, these were superseded in many towns by high-status zones on the periphery. The five towns covered in this thesis were already well established before the tramway traction controversy began, although they were of very different character. Wolverhampton and Mexborough and Swinton were heavily industrialised. My interpretation suggests that Wolverhampton's development conformed better to Hoyt's sector theory of neighbourhood change, wherein growth tended to be linear along established lines of communication, rather than the Burgess model of urban form. The Burgess model posits concentric rings of residential and industrial development around a central business district, with the wealthiest residents living furthest away. A better fit with the Burgess model was Torquay, which was largely a seaside health and leisure resort catering for the

59 Divall and Schmucki, 'Introduction', p.10.
60 Paolo Capuzzo, 'Between Politics and Technology: Transport as a Factor of Mass Suburbanization in Europe, 1890-1939' in Divall and Bond (eds), Suburbanizing the Masses', pp.23-48.
62 Ibid, p.11.
wealthy. Lincoln’s urban morphology approximates to the Sjoberg model. In this, the wealthiest live in the centre and the poor and industry are consigned to the periphery. Hastings was a poor fit with any model, while Mexborough and Swinton developed in a linear pattern along an established transport axis. The latter were settlements situated on the South Yorkshire coalfield in industrial and mining areas, surrounded by the much larger towns of Sheffield, Rotherham, Doncaster and Barnsley. Each target town had its own distinctive urban morphology that departed from these general models in significant ways. The peculiarities of these towns, the traction options available, and the reasons why they chose unconventional and largely untried solutions are therefore worthy of explanation.

1.3 Aesthetic concerns and opposition to tramway development

When it came to transport policy, technology and innovation on the one hand enhanced the quality of life in urban areas and in so doing, altered the cityscape. On the other hand, this shaping process was a force for the deterioration and destruction of urban areas. Both railways and tramlines necessitated the widening of streets, with the consequential demolition of housing stock. Overhead wires had a visual impact. Whereas many residents welcomed the advent of tramways, others considered them to be intrusive and aesthetically unacceptable. Surface-contact and underground conduit systems accommodated these sensitivities.

Before considering the reasons behind opposition to tramways in general and overhead wires in particular, it is necessary to set objections in context. In the growing conurbations of Victorian England, many expressed their distress over the 'onward march of industrial materialism'. Aesthetic concerns heavily influenced development of the urban fabric. Naturally, such concerns spilled over into the consideration of tram traction choice, especially during the initial stages. Uppermost in the minds of many decision-makers was the aesthetic movement, and the need to balance public transport provision with the quality of life. The movement had its roots early in the nineteenth century when there was a growing awareness and general dissatisfaction with the art that governed the taste of Britain at the time, and a backlash against drab utilitarianism. For some, the early Victorian era was a synonym for all that was dull and unimaginative. The aesthetic movement challenged values and helped to redeem industry from the prevailing drabness and disrepute.

The Great Exhibition at the Crystal Palace in 1851 played an important part in the aesthetic awakening. Aesthetes reacted to the Exhibition, urging new ways of living in defiance of what was perceived as the horrendous design standards of the age. Their views were in stark contrast to the materialism of mid century. They argued that there was an urgent need to establish contact between art and nature on the one hand and manufacturing on the other. Much of technology, and many of the industrial exhibits, were viewed by critics as ugly and depressing. In the aesthetes' opinion, many artefacts were certainly not progressive. In a lecture by Ruskin, one of the founders of the movement, in Bradford in 1859, he urged manufacturers to apply art to industry, and to divert art from the vanities of wealth.

70 Ibid.
to the refinement of the common life. Ruskin stressed that the power of the furnace could bring 'civilisation to the rude'.

As the movement gathered pace, aesthetic criteria began to play a more important role in urban development and innovative artefacts. The Art Nouveau movement during the last two decades of the nineteenth century highlighted comparisons between the rural idyll and industry. Although initially concerned with the decorative arts, the movement developed as a reaction to grim industrial townscapes. Aesthetic themes attempted to reconcile art and the modern face of technology and to find nature through its visual impact on the urban fabric. The adoption of sinuous curves and whiplash lines into the design of street furniture and support systems for tram traction were examples. For the aesthete, cities could be redesigned and enhanced by the Art Nouveau movement.

The movement had its origin in France, reflecting a rejection of American economic pragmatism. Since surface-contact systems were also developed in France, it is at least arguable that it was their aesthetic properties above all that recommended them to certain decision-makers. They were worthy of investigation and eventual adoption by some authorities. There were also political undercurrents. In their quest to improve the quality of life, aesthetes believed that the triumph of beauty in nature would destroy capitalism. They argued that economic and social conditions affect every aspect of an individual's life, from religious beliefs to legal systems and cultural frameworks. The role of art and design was to represent such conditions, and to seek to improve them, a theme

71 Gardiner, John Benn, p. 56.
73 Ibid, p. 9.
adopted by Wolverhampton’s ruling elite to justify their decision to install the Lorain system.74

Compared with cities on the mainland continent, most British cities were not particularly beautiful, but there were exceptions. Edinburgh, parts of London, and some cathedral towns had fine buildings and monuments. But an American academic described British cities as the ugliest in Europe.75 Wolverhampton was no exception. Most of the elegant Georgian squares and houses had long since been demolished to make way for the tenements of the Industrial Revolution. The coal-mining districts of Mexborough and Swinton in south Yorkshire were typical examples of grimy northern towns. Yet Wolverhampton, Mexborough and Swinton installed surface-contact systems to obviate what were perceived as ugly overhead wires and their hideous support poles. Hastings, Torquay and Lincoln on the other hand had elegant areas considered to be worthy of protection. One can understand why an alternative was sought there.

By contrast, any opposition to overhead traction was quickly overcome in the USA, where solid American pragmatism and individualism, compared with the more collective approach of Europe, held sway. Cities in the USA were in any case criss-crossed by multiple overhead cables supplying telegraphs and domestic power supplies. A typical view from a visiting British engineer was:

\begin{quote}
our American cousins have no problem with forming a network of wires over their streets, as long as it facilitates locomotion. In Europe, we proceed more cautiously, and there is little doubt that these objectionable overhead
\end{quote}

74 \textit{Wolverhampton Chronicle}, 14 October 1903.
wires have considerably interfered with the progress of electric traction on this side of the Atlantic.76

Recognising the cultural difference, the chief engineer of New York's street railway company when commenting on the slow growth of electric traction in Europe ventured:

the European does not possess that intense activity. He appears to be more imbued with the spirit of art and beauty, and acts as if he thought that an improvement to be of the greatest benefit to himself, his country or city, should be developed slowly to assure perfection. If an improvement is effected in time for the use of the incoming generation, it is all that one can expect.77

He cited the European pursuit of the aesthetic ideal and the need for perfection rather than practicality. Interesting though they may be as an indication of the way that others saw us, these are generalisations and not universally applicable. Within Europe there were also many influential actors committed to the maximisation of economic benefit: it was just that they encountered contrary cultural forces more often than their American counterparts, where initial opposition was quickly forgotten in most cities.78

The debates about tram traction were not simply based on a New World versus an Old World dichotomy. There was even a distinction between North American

76 JH Cox, 'Street Tramways and Electric Traction' in The Electrical Engineer, Volume 10, (1892), p.86.
78 Schatzberg, 'Culture and Technology', p.82.
neighbours. Colonial Canada was clearly influenced by the aesthetic controversy that raged in Europe. In Toronto, a group of men armed with axes chopped down tramway support poles. The tramway company had not obtained the city engineer's approval to erect 'rough awkward poles that would have disgraced the streets of a backwoods village, more particularly when they were painted a variety of colours, the favourite being a glaring red'.

Opposition to new transport systems had begun well before debates about aesthetic values. As early as 1859, Alexander Easton, an American champion of horse tramways, highlighted popular prejudices against advocates of innovation on the part of existing operators. Each transformation in transport engendered opponents to change, and very often at the forefront of such opposition were champions of established transport modes. Muleteers opposed the building of turnpike roads, and objected to the construction of canals, although improved transport systems eased movement and reduced costs. The most vociferous opponents of tramways were the vested interests of the omnibus companies and 'antiquated communities'. Such opponents were dismissed by Easton as having the 'grossest ignorance of science and its benefits', and were categorised as Luddites by tramway entrepreneurs. Earlier tests by operators had found tramways to be the 'improvement of the age' in New York, Boston and Philadelphia. They offered greater comfort, were more economic to operate, and were much quieter than omnibuses 'rattling over stones'.

79 The Electrical Engineer, Volume 11, (1893), p.3.
80 Schatzberg, 'Culture and Technology' p.62.
82 Ibid.
83 Ibid.
84 Ibid, p.6.
George Bruce, a contemporary of Easton in the UK, visited the USA in 1860 and was surprised to discover that tramways were the ordinary means of transport between different parts of large cities, just as omnibuses were in the UK.\(^{85}\) However, he ominously predicted that prejudices against their introduction in England would be even stronger, as rail tracks were only tolerated in mining areas and colliery villages for coal conveyance.\(^{86}\) His economic analysis, although far from robust, estimated that the operating cost of trams was at least half that of omnibuses.\(^{87}\) Based on his observations in the USA, he recognised that a more rapid means of transport would enable greater freedom of travel and would assist the process of urban expansion.\(^{88}\)

In many towns, the prospect of tramways generated heated debates because they involved the public right of way, namely the street.\(^{89}\) Both Schatzberg and more recently Schmucki noted that 'rails in the street symbolised the tramway's intrusion into an essential public space and threatened existing patterns of circulation'.\(^{90}\) 'Mechanised street transportation threatened to destroy the traditional function of the streets as spaces for social interaction'.\(^{91}\) This theme is discussed further in chapter 2.

In some towns, the disputes and ensuing delays were not simply about the new technology, but about how to employ it in a manner that was satisfactory to the general population. These debates began with the introduction of horse-drawn

\(^{86}\) Ibid, p.2.

\(^{87}\) Ibid, p.6.

\(^{88}\) D Kinnear Clark, Tramways: their Construction and Working, p.328. Bruce was a renowned civil engineer and a strong supporter of tramways. He subsequently became the chief engineer of Buenos Aires tramways and was honoured with a knighthood in 1888.

\(^{90}\) Schmucki, 'The Machine in the City', p.1063.

\(^{91}\) Schatzberg, 'Culture and Technology', p.84.
vehicles, increased in intensity with battery-driven and steam trams in the 1880s, and continued with even more fervency when mains electricity as a power source became popular in the 1890s. The factors involved in the decision-making process were therefore complex, ranging from the aesthetics of design to socio-economic issues. There was also a feeling that tramways 'threatened citizens’ established routines and eventually even the city’s well being'.92 Within this tangled web were also the often petty attitudes of powerful officials, wealthy residents of certain areas, shopkeepers, ratepayers, landowners, pedestrians, and the determination of entrepreneurs to impose their particular systems.93

Consequently, disputes about the type of electrification lasted for many years. A stricter regulatory framework and economic issues also delayed progress and led to indecision in the UK, allowing other countries to move ahead. Schapiro cites the UK’s cautious approach as being 'British entrepreneurial failure compared to American private enterprise and German dynamism', which he considered were respectively the main drivers in those countries.94 Evidence suggests that this view is questionable, as the more dynamic British promoters temporarily diverted their attention to other countries in South America and Asia. Others viewed the UK’s caution as a positive benefit because it enabled all options to be considered.

Objections on aesthetic grounds were not the only reasons for opposition. There were cultural issues too. An engineering contractor named Blackwell noted that early attempts to introduce any form of electrical motive power in the UK met with little encouragement. Referring to the systems in Blackpool, Brighton, the Giant's Causeway and the Bessbrook-Newry lines in 1883-84, he commented that 'the

92 Schmucki, 'The Machine in the City', p.1063.
93 Ibid.
94 Schapiro, 'Public ownership', p.152.
public at large did not then even approximately appreciate the value of tramways of any kind and turned a cold shoulder to the proposers of any scheme looking toward their extension or improvement'. As late as 1899, 'the public was only just beginning to estimate them at their true value'. As he was in the business of supplying equipment and building tramways, these comments were not surprising.

Even in the United States, it had required six years of 'earnest effort and great expenditure by inventors and promoters before any appreciable effect was produced'. Notwithstanding this, there were of course, several champions of electrically operated tramways who assisted development with vigour. In 1888, George Westinghouse junior, the president of Washington tramlines, expected to see horses withdrawn from the streets within two years, and electric traction introduced.

Disillusioned by slow progress in the UK with electric traction, manufacturers predicted that it would take years before trams would 'reach their proper estate and be recognised as an indispensable convenience by all classes'. Viewing the industry with dismay, Blackwell ventured that there was not the slightest evidence that any boom was likely to occur in the UK, and suggested that progress would be quiet and steady compared with either America or continental Europe. Certainly in Hastings, several attempts to introduce tramways were thwarted by fierce resistance from sections of the community. According to Blackwell in 1899, 'the British public is by no means educated to believe that a tramway of any kind whatever is necessary to its happiness and well being, and it would acquire that

96 Ibid.
97 Ibid, p.283.
98 The Electrical Engineer, Volume 1, (10 February 1888), p.123.
education only by degrees'. 100 Blackwell's assertion was too sweeping a generalisation: many towns in the UK were already beginning to welcome tramways by then.

As the growth in electric traction accelerated, the differing attitudes of European and American societies towards trams and their power systems became more apparent. Many in Europe rejected the narrow techno-economic view of the American overhead solution on the grounds that it contained some serious consequences and harmful side effects. Additionally, the social expectations of the adoption of some form of electric traction were incredibly high. Many viewed the electric tramway as 'little less than the deus ex machina, descending miraculously on the urban stage to resolve the entire social drama'. 101 People were clearly ready to accept the advent of the electrical tramway in a spirit of technological utopianism, 102 provided the search for a solution that satisfied both environmental and aesthetic criteria continued.

The economic historian Sutcliffe took issue with this view. For him, innovation and invention were 'the direct product of supply and demand relationships'. 103 The opposing argument would be that social requirements must be present to stimulate the demand. Economics and social necessity worked hand-in-hand for the development of surface-contact traction to occur. In any case, the economic case was based on some heroic assumptions about the value to be ascribed to the environment.

101 McKay, Tramways and Trolleys, p.208.
In Europe, inventors and entrepreneurs continued to investigate technological alternatives 'to the simple and very effective overhead method that satisfied Americans completely'. 104 The professional magazine of the Institution of Electrical Engineers, *The Electrical Engineer* concluded:

> while the overhead power system was technically feasible, it was unacceptable for aesthetic reasons. Overhead wires are unsightly, dangerous, and troublesome, and several schemes are still being tried out which will result in economic, safe, and simple solutions. Open slots are not allowed as they are dangerous to cart wheels, are an open receptacle for dirt, and are too costly to put down. The race seems to be between the accumulator and closed conduit system. The race to find a solution is becoming exciting.105

After initial hostility, however, in 1894 the Institution of Electrical Engineers declared that 'there was an almost unanimous feeling among members in favour of the overhead trolley system as being by far the best and cheapest solution in every way'.106 Within four years, the Institution had undergone a complete volte face. It must be said though that as a body representing professional engineers within the industry, the Institution might have had a vested interest which no longer included the concept of aesthetic acceptability.

Despite professional acceptance, general opposition continued. In the technical press and during municipal debates, 'large numbers of influential Europeans

105 *The Electrical Engineer*, Volume 6 (1890), p.88. [et seq]
thought that overhead wires and their support poles were extremely ugly and aesthetically unacceptable'.107 In Paris, a politician threatened to cut down the overhead wires if they were ever installed in his district.108 Taking up the theme, Wolverhampton's former mayor and serving alderman, WH Jones declared that the Lorain system was seen as a way to 'preserve the beauty of the streets and roads of the town from the unsightly poles and wires of the overhead system of electric traction'.109

Elsewhere, surface-contact systems were viewed as exotic foreign imports, and the debate continued about the acceptance of the continental ideas of Bohemian Paris.110 An alarmed reaction began to emerge between conservative British ideals and \textit{avant-garde} innovations from the European mainland.111 The prevailing sentiment was to send inventors and engineers back to the drawing board rather than accept visual pollution and unpatriotic imports.112 Unlike earlier objections to electric traction based on safety to the public and horses and disturbance to the telegraph network, the aesthetic critique 'rested on subjective values that could not be refuted by technical experts'.113

Once overhead traction had been installed, some colourful descriptions arose. As early as 1894, opponents in the city of Danzig complained that 'overhead wires conveyed the ideas of a hop-field, the contact rollers made the noise of a swarm of bees, and the movement of the cars was like the rolling of a ship at sea'.114 Initial

\begin{flushleft}
107 John P McKay, 'Comparative Perspectives on Transit in Europe and the United States' in Tarr and Dupuy, \textit{Technology and the Rise}, p.12 .
108 McKay, \textit{Tramways and Trolleys}, p.86.
110 Wolverhampton Chronicle, 14 October 1903.
111 Lambourne, \textit{The Aesthetic Movement}, p.20.
112 \textit{The Electrician}, Volume 51 (24 April 1903), pp.28-29.
113 McKay, 'Comparative Perspectives', p.12.
114 \textit{The Electrical Engineer}, Volume 13 (1894), p.294.
\end{flushleft}
negative reaction to the use of overhead traction was therefore generally widespread among authorities. Even in Glasgow, which was considered to be at the forefront of the development of new technology, debates continued for several years about the form electric traction might take. As early as 1892, a council delegation had visited the Leeds Roundhay overhead system, and had been impressed by what they saw. However, by June 1895, Glasgow's town councillors concluded that 'overhead electricity would not suit us in the heart of the city on account of its unsightliness, though it might do in the outskirts'.

John Young, the influential General Manager of Glasgow Corporation Tramways, concurred by suggesting that 'all things being equal, a system which provides the power without any overhead wire is preferable'. The wait-and-see approach prevailed, and in August 1896, a Glasgow councillor considered that 'we are on the eve of great developments in electric haulage, and within six months the conduit system might be demonstrated to be the best'.

However, when the issue was finally settled in January 1899, the decision was to electrify all lines on the overhead system. With the benefit of hindsight, one transport historian regretted the decision. 'Seldom did public authority have a better chance to weigh technological alternatives in the light of the societal values it reflected and formed'. Although Glasgow councillors had taken an informed view, McKay believed they could have given deeper consideration to the options available. Young had suggested that it would cost only an extra penny per car-mile to satisfy aesthetic requirements, but his advice was ignored.

Elsewhere, continuous investigation was widespread, and several authorities considered alternatives to overhead traction. Even delegates from smaller towns such as Wigan visited other experimental systems. After a visit to the Canning Town accumulator line in London, a Wigan councillor concluded that 'the system should be avoided on account of its low mechanical efficiency, deterioration of batteries through jolting and variable loads, and the bad smell of unhealthy gases'.

Eventually, some cities adopted a hybrid solution in order to overcome aesthetic concerns. Thus in Paris, central government had considered permitting overhead electrification in peripheral areas in 1897, but it was not until 1902 that overhead wires were permitted more generally, except within the city walls and those quarters where aesthetic considerations should predominate. There, surface-contact systems were installed. Even where overhead traction was permitted, it was established with elegant poles and without 'a spider's web of cross wires'. Other European cities also had a brief flirtation with such systems, including Monaco, Dresden, Prague and Tours. In the USA, Washington installed an experimental length for a short time, but none of these lasted for long, with the exception of Paris, which retained a surface-contact system in the central area as a complement to overhead traction in the suburbs before serious flooding in 1911 caused a reassessment.

The values of the aesthetic movement eventually became established in British culture. Elsewhere, the acceptance of the need for visual environmental improvement inspired the 'City Beautiful' movement in the USA at the end of the

119 The Electrical Engineer, Volume 6 (1890), p.185.
121 McKay, Tramways and Trolleys, p.161.
nineteenth century. The concept was 'in part inspired by Baron Hausmann's transformation of Paris' and dominated urban planning in the USA, particularly in city centres, during the first quarter of the twentieth century. Consequently, public transport systems were transformed to harmonise with their surroundings.

1.4 The effect of the regulatory process on private enterprise

Prior to 1870, the process for seeking approval for the construction of tramways in the UK was complicated. As a result, George F Shaw-Lefevre, a Liberal MP, who was the Parliamentary Secretary for the Board of Trade from 1868 to 1871, introduced the Tramways Act in 1870 to enable promoters to apply for Provisional Orders without having the expense and time-consuming procedure of a private bill. A major disadvantage of the private bill process was that it allowed neighbouring factions to oppose each other. Acts of parliament avoided local conflicts in such circumstances.

Drawing on experience with earlier parliamentary bills for water and gas utilities, the 1870 Tramways Act recognised the right of the local council, the road authority, and more importantly the frontagers to be consulted and their interests taken into account in the process of approval. While not necessarily wishing to use the trams themselves, frontagers had their own usages of the street to protect. Such stakeholders were at the forefront of objectors to the implementation of many tramway systems. The Act recognised the need to safeguard the rights of those who objected to tramways as well as easing the process for those in favour. If a

122 Clay McShane, 'Urban Pathways: the Street and Highway, 1900-1940' in Tarr and Dupuy (eds), Technology and the Rise, p.75.
123 Schatzberg, 'Culture and Technology', p.69.
124 Schapiro, 'Public ownership', p.143.
proposed line ran for more than ten yards at a distance of less than nine feet six inches from the kerb, and if one third of the frontagers objected, then approval could not be given to that section of line.126

Local authorities were allowed to pass by-laws on such issues as speed and frequency of services, and other restrictions were introduced, including both maximum and workmen’s fares, and no compulsory lowering of fares. So as not to discourage private enterprise, Parliament removed ceilings on dividends to shareholders, although this led to charges that tramways were ‘a financial caprice aimed more at private profit than public benefit’.127

The building and operating of tramways was generally the business of a private company, not the local authority. The Tramways Act of 1870 gave the Board of Trade the power to grant tramway orders. The main distinction between tramway and railway operators was that the former did not have to own the right of way that they traversed. The right of way for tramways, namely along the street, involved a property right in use rather than a property right in ownership.128 But there were other differences too. The Act gave blanket approval to local authorities to own the lines, but not to own or operate trams.129

The approval of acts for the laying of tramways increased dramatically after the passing of the Tramways Act as the following table indicates:

127 Schmucki, ‘The Machine in the City’, p.1064.
128 Schapiro, ‘Public ownership’, p.143.
129 Hamish Fraser, ‘Municipal Socialism and Social Policy’, in Morris and Rodger (eds), p.265.
<table>
<thead>
<tr>
<th>Year</th>
<th>Number of Acts passed</th>
<th>Year</th>
<th>Number of Acts passed</th>
</tr>
</thead>
<tbody>
<tr>
<td>1868</td>
<td>1</td>
<td>1880</td>
<td>39</td>
</tr>
<tr>
<td>1869</td>
<td>3</td>
<td>1881</td>
<td>32</td>
</tr>
<tr>
<td>1870</td>
<td>11</td>
<td>1882</td>
<td>43</td>
</tr>
<tr>
<td>1871</td>
<td>11</td>
<td>1883</td>
<td>25</td>
</tr>
<tr>
<td>1872</td>
<td>13</td>
<td>1884</td>
<td>30</td>
</tr>
<tr>
<td>1873</td>
<td>22</td>
<td>1885</td>
<td>21</td>
</tr>
<tr>
<td>1874</td>
<td>8</td>
<td>1886</td>
<td>19</td>
</tr>
<tr>
<td>1875</td>
<td>14</td>
<td>1887</td>
<td>19</td>
</tr>
<tr>
<td>1876</td>
<td>9</td>
<td>1888</td>
<td>20</td>
</tr>
<tr>
<td>1877</td>
<td>22</td>
<td>1889</td>
<td>18</td>
</tr>
<tr>
<td>1878</td>
<td>26</td>
<td>1890</td>
<td>2</td>
</tr>
<tr>
<td>1879</td>
<td>31</td>
<td>Total</td>
<td>23 years</td>
</tr>
</tbody>
</table>

Table 1.1 – Number of approved Acts for the laying of tramways.130

The most controversial clause within the Act was the twenty-one year clause, during which time municipalities could not take over tramway operations. Development was therefore dominated by the private sector. At the end of that term, the clause gave local authorities the option to purchase tramways in their area for the net value of the equipment at the time of sale. The ‘then’ value included the track, buildings and land, but there was no allowance for past or future profits of the enterprise, nor any compensation for forced sales or other considerations.

In defence of the Act, Shaw-Lefevre denied that capitalists would be discouraged from investing in tramways by the purchase clause since there was no limitation on profit.131 To begin with, he was quite correct as Table 1.1 indicates. However,

130 Clark, Tramways: Their Construction, p.23.
many promoters 'floated their company, took their profits, and cleared out' rather than take a steady dividend yield. Many contemporary operators and later transport historians have blamed the purchase clause for causing stagnation in the industry at the end of the century. For Blackwell, the widely varying conditions that the British promoter, owner and manager had to deal with forced them to 'make haste slowly'. He concluded that it would be absurd to expect a rapid adoption of electric traction in the UK such as that experienced in the USA. In his opinion, the stringent twenty-one year rule was the principal reason that only approximately thirty route-miles were electrically operated prior to 1895. Ochojna took issue with this general view, pointing out that the accusation of stagnation caused by the twenty-one year clause was 'more of a public relations exercise than a sound business grievance'. He considered that the valuation exercise was a 'red herring', and concealed the fact that there had been under-investment and poor accounting practice for many years. The combined impact of such policies was to conceal actual capital depreciation.

In support of the general view, the French laissez-faire economist Yves Guyot, who was also the French Minister of Public Works, pointed out that as a result, tramways already constructed suffered a heavy depreciation. He argued that UK capital which might have been devoted to enterprises of this character was invested in foreign countries instead. There is evidence in support of Guyot's argument. WJ Clark, the former manager of the American General Electric Company, suggested that British capitalists had invested $35 million in American

135 Ochojna, 'Lines of class distinction', p.43.
street railways, whereas the total investment in British street railway companies by 1899 was only $52 million.138 Both Vesey Knox and Emile Garcke also believed that the tramways legislation inhibited development, especially that of the private companies.139

The 1870 Tramways Act was in some ways unfair to the tramway companies, who had to maintain the paving between the rails and on either side of the track to a distance of eighteen inches. They also had to maintain the roadway between the double track if the intervening space was less than four feet in width. Such a commitment was considered to be compensation to the local authorities for a loss of jurisdiction of the right of way.140 The disadvantage for the companies was that competing vehicles could take advantage of the paved roads. While benefiting from the improved surface, they frequently obstructed the operation of tramcars.141

The Light Railways Act 1896 was originally intended to stimulate production after the economic downturn of the 1880s, which had seriously weakened agricultural production with consequential effect on rural communities. The Act would enable British farmers to compete with foreign competition, which had grown fiercer as trade restrictions had been relaxed. It was a widely held belief that without a light-railway system in rural areas to give access quickly and easily to the home market, the agricultural industry would continue to be severely depressed.142 The Light Railway Commissioners were set up to consider applications, and to issue a provisional order if they were approved. The provisional order was scrutinised by the Board of Trade, but required no confirmation by parliament. A further

\begin{thebibliography}{9}
\bibitem{Clark} William J Clark, \textit{The Street Railway Journal}, Volume 15, No 10 (October, 1899).
\bibitem{Knox} Knox, 'The Economic Effect', pp. 492-510.
\bibitem{Ochojna} Ochojna, 'Lines of class distinction', p.42.
\bibitem{Klapper} Klapper, \textit{The Golden Age}, p.xii.
\bibitem{Ibid} Ibid, p.33.
\end{thebibliography}
advantage was that five years were allowed for completion compared with only two years under the Tramways Act.143

In general, the Act was not intended to authorise urban tramways, but as there was no clear definition of light railways, entrepreneurs could not be prevented from promoting systems by this method.144 Tramway promoters seized on the opportunity to build new systems under this procedure since the process was cheaper, faster and easier than under the 1870 Tramways Act.145 As a result, between 1896 and 1914 there were 279 applications for urban systems under the Act, of which 158 were approved.146 However, many were never constructed.

The Light Railways Act gave more opportunities for public consultation in view of the opposition to any tramway scheme. It was usual for the Act to be used when two local authority areas were joined.147 Under such criteria, the procedure fitted the purpose well as the system was planned eventually to join Hastings with Bexhill across an intervening wetland area known as the Pebsham marshes.

1.5 Public versus private enterprise

There is no doubt that the shortage of finance facing local authorities was a determinant in the pattern of tramway ownership. In Wolverhampton, Hastings and Torquay, views at the time on the most efficient form of ownership rested on political viewpoints. With the benefit of hindsight, Millward believed that 'the pace

143 Klapper, \textit{The Golden Age}, p.34.
144 Cyril Dodd and Charles E Allan, \textit{The Law Relating to Light Railways}, London: Shaw and Sons, 1896, pp.3-4.
of expansion was not affected decisively by whether undertakings remained within the private sector or were taken over by municipalities.148 This was not entirely true, however. Opposition to companies threatened to block tramway development because the private sector was granted the use of municipally-owned streets while providing town authorities with little in return.149 An objection was that tramways were associated 'primarily with economic speculation and investment'.150 For that very reason, supporters of municipalisation were extremely critical of the companies, for whom in their view profitability took precedence over the general good.151

Yves Guyot, on the other hand, concluded that almost all municipally-owned tramways in the UK operated at a loss. As he was opposed to socialism in all its forms, his views were hardly surprising. He blamed the losses on the advantages conferred on their employees, citing reduced working hours, holiday entitlements, increase in salaries, one day's rest in seven, and the provision of free uniforms.152 He also opposed the introduction of special fares for workmen, and claimed that municipalisation involved an arbitrary policy combined with a régime of privilege. In his case, the privileges were enjoyed by employees and workers to the disadvantage of tramway operators.

Ochojna's paper about the influence of local and national politics on urban transport contains some challenging hypotheses regarding the impact of tramways on society, particularly about the conflict between the wealthier sections of the

149 Schatzberg, 'Culture and Technology', p.71.
150 Schmucki, 'The Machine in the City', p.1064.
151 Howe, \textit{The British City}, p.125.
152 Guyot, \textit{Where and Why}, p.143.
community and those not so well off. He also highlights the struggles between on the one side monopolies and the private sector, and on the other local authorities, who at the time were flexing their muscles after local government reorganisation. Ochojna summarises the 1870 Act as a 'nicely calculated response to potential misuse of economic power and disregard for urban amenity'. Clearly, Parliament had learned the lessons of past mistakes, when the lack of regulation of public utilities had caused problems.

In the USA, there was an effective absence of public control until at least the early 1900s. The result was twofold: on the one hand development of tramway networks was not constrained, but on the other a general free-for-all developed. In the UK, political interference was widespread at both national and local levels. As a result, private investors were more cautious, although economic historians have suggested that problems of asset-specific investment did not help. Under the UK's twenty-one year clause, franchises granted to would-be operators were too short.

The friction and petty jealousies between tramway promoters mirrored the earlier tribulations of railway development. As early tramway promoters were 'frequently controlled by railway interests', with a 'strong influence of railway financing built into them' it was not so surprising. Similar questions were raised, including inter-company rivalry and monopoly by certain companies, the impact on the old central core of a town and its urban fabric, the indirect social costs, and

153 Ochojna, 'The Influence of Local and National Politics', pp.125-146.
155 Schapiro, 'Public ownership', p.152.
156 Kellett, The Impact of Railways, p.18.
157 Ochojna, 'The Influence of Local and National Politics', pp.139-140.
whether urban extension was stimulated.158 These themes occur continually during tramway development debates, reflecting the uncertainty surrounding the choices available for electric-tramway systems.

Following Guyot, a more recent interpretation by a tramway enthusiast, Jackson-Stevens, was highly critical of the role of local authorities in UK. Progress was 'bedevilled by the ineptitude and incompetence of local authorities'.159 In particular, he referred to the frustration encountered by the British Electric Traction Company (BET) to their extensive private enterprise plans, caused by municipal obstruction and lack of vision. Jackson-Stevens also attacked parochial narrow-mindedness, petty jealousies and rivalry between neighbouring towns, which resulted in incompatible systems. Furthermore, he referred to the acrimony surrounding BET's attempts to unify systems in the Black Country, where 'no uniform agreement could be negotiated'.160

1.6 The British Electric Traction Company and the National Electric Construction Company (NECC)

Both companies were key players in the debates about surface-contact traction. The BET had been registered on 26 October 1896 with Emile Garcke as the managing director, with the objective of developing electric tramways throughout the UK.161 By 1901 he controlled 40 undertakings and 124 route-miles of electrified track, including the Wolverhampton & District Electric Tramways Company.162 His network eventually expanded to more than 80 companies and subsidiaries. He

158 Kellett, \textit{The Impact of Railways}, p.4.
159 Jackson-Stevens, \textit{British Electric Tramways}, p.12.
160 Ibid, p.14.
162 Schapiro, 'Public ownership', p.150.
was an expert on electrical systems and founded the Tramways and Light Railways Association. Because of his huge controlling network, he was known to his detractors as 'oligarcke', and BET as the octopus.163 Wherever he was involved, he had a decisive effect from his position of power. Garcke was born in Germany in 1856 and became a naturalised British citizen in 1880.164 Although BET became one of the most important operators in the tramway industry, the pressure to reduce fares at a time of increasing municipal ownership led to disputes with local councils. The company's attempts to increase fares had resulted in boycotts and a permanent loss of custom. As a result, the company began to withdraw from tramway operations after 1906.165

The NECC was registered on 16 July 1897. The company's aims were similar to those of BET but its operations were on a much smaller scale. They promoted tramway systems in South Wales and Yorkshire, and unsuccessfully attempted to promote other systems in Scotland, Oxford and Folkestone.166 NECC entered into an agreement with the Dolter Company in March 1905, and consequently championed that company's surface-contact system in Torquay and Mexborough through their subsidiary business ventures.167 Financial problems soon beset NECC, and the company struggled to survive after the First World War, blaming the attitude of local authorities to expand their networks. Any remaining tramway interests were eventually acquired by BET in 1930.168

164 Schapiro, 'Public ownership', p.150.
165 Fulford, \textit{Five Decades}, p.38.
166 Charles C Hall, 'The Mexborough & Swinton Traction Company', \textit{British Bus and Tram Systems}, No 33, p.365.
167 Ibid, p.368.
168 \textit{The Times}, 24 June 1931.
1.7 The duties of the Board of Trade

In Torquay, Lincoln and Mexborough, the Board of Trade played an important role in regulating their surface-contact systems, and indeed ordering their closure when deemed necessary. But these were relatively new powers. In the early part of the nineteenth century, the Board of Trade's main job was to advise the Crown on matters of economic activity. By the 1860s, it had become responsible for new legislation on patents, design and trademarks, company regulation, labour, transport, and power. In this expanded role it had enormous influence on the development of tramway systems and both regulated and approved them. The Board of Trade ruled that while local authorities were best placed to construct and develop tram systems, 'given their disruptive nature in winding narrow streets, the lines should be leased out to company operators'.\footnote{\textit{Robert Millward}, 'The Political Economy of Urban Utilities', in Martin Daunton (ed), \textit{The Cambridge Urban History of Britain, Volume III 1840-1950}, Cambridge: Cambridge University Press, 2000, p.323.}

Learning the lessons from earlier regulatory problems with gas, water and railways, the Board of Trade imposed conditions on tramway undertakings that were in some cases tougher.\footnote{\textit{Millward}, \textit{Private and Public Enterprise}, p.81.} Investment had already been inhibited by the twenty-one year rule introduced by the 1870 Tramways Act (see section 1.4). Combined with the coincidental upsurge in electrical power, the stricter regimes imposed by the Board of Trade only exacerbated these effects.\footnote{\textit{Ibid}, p.82.} Fears were also expressed by telegraph and telephone engineers, who were very much alarmed at the possibility that electric traction would interfere with their systems. Surface-contact traction was particularly targeted. Reports from the United States suggested that great damage to gas and water pipes might be produced by
electrolytic action. In consequence the Board of Trade stipulated that the drop in voltage on the return circuit should not exceed seven volts.172

In dealing with applications, the Board of Trade scrutinised the soundness of the companies, which had to be legally incorporated with limited liability status. Profits were controlled through the regulation of fares, rates and tariffs. The Board of Trade also had an interest in the configuration of routes to ensure that potential passengers' needs were satisfied. The more unscrupulous entrepreneurs, such as Henry O'Hagan, did manage to circumvent these requirements, especially those relating to competitive bidding.173 The Board of Trade also had supervisory powers to prevent monopoly abuse. If it was considered that the public were not receiving the benefits to which they were entitled after three years of a scheme's implementation, the Board was empowered to license the use of the line to other parties.174

During the electrification era, the Board had an impressive list of senior managers. Charles Ritchie (Lord Ritchie of Dundee) was President from June 1895 until November 1900; Gerald Balfour (Earl Balfour) was President from November 1900 until March 1905. He was the brother of AJ Balfour, the Prime Minister, who was an ardent supporter of the need for innovation in transport to overcome the problem of urban overcrowding (see section 2.2). Sir Courtenay Boyle was Permanent Secretary from 1893 until 1900. Together, these men spanned the most important years of tramway innovation and development.

172 Blackwell, 'Electric Tramways', p.285.
173 Henry O'Hagan, \textit{Leaves from My Life: Volume 1}, London: John Lane, 1929, p.54.
1.8 Prominent actors in the surface-contact debates

In Wolverhampton particularly, significant actors were influential in deciding the future of tramways. There, policy-making was effectively left to Council committees, and to the chairmen of those committees, since the Conservative and Liberal parties had few municipal programmes to implement.\(^{175}\) Committee chairmen frequently took decisions independently. These were subsequently confirmed by full council as a matter of course. The workload of council members was demanding, the calibre of some chairmen was frequently inadequate, and their judgement questionable. Meetings were described as ‘tediously lengthy and ineffectual’.\(^{176}\) Not surprisingly, many of the most capable and successful among the borough’s self-made men would avoid council service.\(^{177}\)

Furthermore, committee chairmen were keen to promote their own schemes and were reluctant to support other committees’ plans. More projects resulted in higher rates, and as many councillors were industrialists, their business operations were being affected. There was therefore a need for a careful balancing act between committee policies and Council expenditure. As a result, the Council chamber became ‘a battleground where each chairman sought to promote the proposals of his particular committee, to obtain for his schemes the necessary amount of scarce resources, and to prevent other chairmen from pursuing any plans which might eat up those resources, leaving none for him’.\(^{178}\)

176 *Wolverhampton City Archives*, L388, Council Minutes, p.150.
Several key figures played leading roles in the decisions taken on forms of traction in Wolverhampton. Sir Charles Mander was a very influential industrialist who was also chairman of the Tramways Committee, and it is no wonder therefore that he eventually won the day with his support for surface-contact. Mander had been born to a well established local family in 1852. His grandfather, great-grandfather, uncle and great-uncle had all been members of the Board of Township Commissioners. He was educated at Rugby School and Corpus Christi College, Cambridge, graduating with an MA in the 1870s. He was a leading supporter of both electric lighting and trams. He was elected as a Conservative member to the Council in 1886, mayor for four consecutive years from 1892 to 1896, and an Alderman for thirty-four years. He was Chairman of the Lighting Committee from 1893 to 1902 and the Tramways Committee from 1896 to 1920, as electricity was judged to be a common factor of both. His Company were a leading manufacturer of paints and varnishes with several factories in Wolverhampton. The concentration of decision-making in his hands afforded him a key role in the development of surface-contact traction. Something of a philanthropist, one of his many gestures was to donate seasonal gifts, including warm underwear, for cabmen, tram conductors and drivers. As well as being an enthusiastic sportsman, he was a practising Anglican, and became secretary of the Church Congress of Wolverhampton in 1887. He held many eminent positions during his life, including that of High Sheriff of Staffordshire, and vice president of the Royal Orphanage.

Stephen Craddock was vice chairman of the Tramways Committee and was a close friend and supporter of Sir Charles Mander. He was mayor in 1896/97. Like

180 *Jones*, *Borough Politics*, p.227.
Mander, he was said to have 'tramways on the brain' and followed him as chairman of the Tramways Committee in 1920.182

Price Lewis was elected to Council in 1888 until 1914, and became mayor in 1898/99. He was a member of the Methodist New Connexion church, and had 'profound sympathy with labouring people and the struggles of the poor'.183 His asceticism was such that during his year of mayoralty, he judged himself 'unequal to the pecuniary obligations which custom rather than necessity has attached to the office'.184 He immediately cut the expected lavish entertainment and accepted no money payment or salary. His aim was to improve the conditions of the working classes as much as circumstances would allow. In many ways he was an extremist, and in due course became a leading opponent of the surface-contact system on the grounds of extravagance.

GR Thorne, a firm opponent of the surface-contact system, was a Radical Liberal, belonging to a group of temperance reformers, 'opposing the Boer War and idolising Lloyd George. Their religious persuasions were extreme Nonconformity, Primitive Methodism and Baptism in particular'.185 Along with Price Lewis, Thorne led the opposition to the more influential Chairmen of other Committees on the Council and never became a member of Wolverhampton's establishment, despite being an elected member for twenty-six years between 1888 and 1920.186

Alderman Sir John Morris was a vehement opponent of steam trams on the experimental route to Tettenhall. In 1881 when an extension was sought to the six-

182 Wolverhampton Chronicle, 13 January 1897.
183 Jones, Borough Politics, p.121
184 Midland Evening News, 4 October 1898.
185 Jones, Borough Politics, p.36
186 Ibid, p.139.
month trial period, he strongly opposed it on the grounds that the district was an attractive leafy suburb which was being damaged by the steam trams' noise and smoke.187

1.9 Health and safety Issues

The general public had little experience of electricity. They were frightened by something unseen yet so powerful, and concerns about health and safety of users naturally resulted. Overhead wires were considered to be dangerous because high winds could blow them down. Equipment failure could leave live wires exposed on the ground where all townspeople, especially children, were at high risk of electrocution. They might even start fires.188 The more fanciful worried that inquisitive people might touch overhead wires with their umbrellas with similar results.189 Electrical engineers branded such fears as irrational and superstitious.190 In fact, the risk of any danger to humans from electrical systems was low because tramways operated at 500 volts, although even this low voltage could deliver an unpleasant shock.

The higher speed of electric trams compared with horse traction resulted in an increase in accidents in most towns. At the turn of the nineteenth century, pedestrians, horses, cyclists, trams and motor cars were all competing for road space, and a ‘modus vivendi’ had not yet been reached.191 Horse-drawn carriages caused many of the accidents, as animals were unused to the new noises, but

188 Schatzberg, ‘Culture and Technology’, p.70.
189 John Burke, \textit{The Blackpool Tram Story 1885-1930} at \url{http://www.allanburke.freeserve.co.uk/trams/trams.htm} (accessed on 26 June 2003).
190 Schatzberg, ‘Culture and Technology’, p.70.
191 Mom, \textit{The Electric Vehicle}, p.109.
three quarters of the victims were believed to be pedestrians, ‘children playing in the streets inattentive to the new vehicles’.192

Surface-contact traction introduced new dangers and posed risks to animals, particularly horses, when studs were left live after the passage of a tramcar. The risk to humans was, however, exaggerated. There was a wider dimension to the problem of health and the tramways. The politician Vesey Knox suggested that the UK’s lack of progress with electrification of its tramways had a negative effect on the nation’s health by denying the general public access to better dwelling places.193 ‘Working class children will have to remain in crowded courts while they might have been in healthier suburbs’.194 In Munich, public-health experts urged companies to keep fares low so that poorer people could enjoy some fresh air ‘beyond the dust of the city for an hour or two on Sundays and holidays’.195 However, opponents of tramcars believed that they simply added to the problem. Tramcars were dirty and unheated, filled with disease and germs, and were even accused of spreading pneumonia epidemics.196

\textbf{1.10 Conclusions}

Most of the earlier literature about tramways and the adoption of surface-contact systems was general in nature. Very often it was written from a partial viewpoint, with little by way of analysis of the causal factors behind the conclusions reached. There was a tendency for tramway studies to be nostalgic and even romantic at times, written by enthusiasts for enthusiasts. The influence of politics, social

\begin{itemize}
\item 192 \textit{Mom}, \textit{The Electric Vehicle}, p.109.
\item 193 \textit{Knox}, ‘The Economic Effect’, p.506.
\item 194 Ibid, p.510.
\item 196 Howe, \textit{The British City}, pp.125-129.
\end{itemize}
composition, economics, and geographic location on the development of transport systems was neglected. All of these factors are undoubtedly to the fore in the debates about traction choices as later chapters containing case studies show. The contribution of individual personalities, such as the entrepreneurs and inventors, as well as powerful government administrators and council elites, could also be decisive.

More recent authors have focused on the opposition to the development of new transport systems, and the interaction between various social groups. In particular, the hostility generated by the introduction of overhead electric traction for tramways was recognised. The question of whether aesthetic objections were really a surrogate for other reasons was suggested. In many towns, the proposed installation of overhead traction created controversy. This literature review highlights the key objections, and considers the alternative forms of traction.

Although there was a degree of commonality among the various decision-making processes, it was by no means universal. The towns in the UK adopting surface-contact systems were very disparate, varying from the wealthy health centres and seaside resorts of Hastings and Torquay, the ancient county town and cathedral city of Lincoln, the fiercely independent and proud city of Wolverhampton, to the urban districts of Mexborough and Swinton.

The issue of health and safety has received little attention in the way of written documentation. Overhead traction created alarm due to the possibility of falling wires, and surface-contact systems posed hazards to both horses and pedestrians. There is evidence to support such fears, but all of this points to the fact that electricity was a relatively unknown and mysterious substance.
Most authors have tended to overlook the important role played by surface-contact traction in the development of the target towns. Among the few that did, McKay's conclusion that economic interests prevailed in the end may have some validity. None of the target towns was 'new', having all been established well before the modern transport era began. In considering the dynamics at play in the selection process, the question remains whether aesthetics and environmental factors were the main reasons for rejecting the overhead system, and how powerful each of them was. If they were not, what were the other contributing factors?

There is a major difference between aesthetic and environmental factors in the context of tramway design. Aesthetics relates to a perception, an appreciation of the appearance of the actants, namely the trams and their power supply networks. To meet the standards desired in some towns, tram systems had to harmonise with their surroundings. The environment was the urban fabric in which people lived and operated, and where social activities were carried out. At the turn of the nineteenth century, recognition of the environmental impact in towns was in its infancy, but for some decision-makers, the intrusion of tram systems on their surroundings raised important questions and had to be minimised. Possible answers have been suggested in this introduction and are developed in case the studies in subsequent chapters.
CHAPTER 2 – THE DEVELOPMENT OF TRANSPORT SYSTEMS IN THE NINETEENTH CENTURY

'We cannot be satisfied methodologically with the designer's or user's point of view alone'

2.1 Introduction

This chapter investigates the development of transport systems from the introduction of horse-drawn omnibuses to the widespread acceptance of tram electrification. Cities developed economically and physically between the 1820s and the end of the nineteenth century, and innovators and entrepreneurs inevitably turned their attention to solving the problem of transporting people from home to workplace in a quick and efficient manner. The introduction of the numerous inventions that resulted, however, was not a linear process. There was a continual ebb and flow 'between the designer and the user, between the designer's projected users and the real users, between the world inscribed in the object [in this case the tram], and the world described in its displacement'. This free flow of ideas also spread geographically, and was cross-fertilised between North America and Europe.

The path from horse-power to electrification was difficult, with many inventions failing the crucial socio-economic viability test. Within the mix, surface-contact traction played an important part. Even so, there was experimentation with several surface-contact systems in an attempt to satisfy the environmental and aesthetic criticisms of overhead traction. Paris in particular, appeared to be a 'gigantic

2 Ibid.
testing station’ at the end of the nineteenth century. The Dolter surface-contact system originated there, along with several others discussed later. The choices available caused confusion and uncertainty to many local authorities. Consequently, experimentation lasted almost as long as the heyday of electric traction systems, and was one of the reasons why some towns seemed so cautious about tramway development.

Cultural values and symbolic meanings were also prevalent. In the nineteenth century, streets provided access to dwellings, but they had become congested and noisy, especially in the inner cities. Streets were not seen simply as transit routes, but were used for social purposes in densely populated areas. Scenes of everyday life were chaotic, alive and exciting. For the lower classes in large towns, residents gathered in streets to socialize, dance and promenade. They were informal playgrounds where children enjoyed games. Streets also provided a socio-economic function in that trade was conducted on them. Movement on foot encouraged social interaction and cohesion. Attempts to designate streets as ‘transportation arteries’ were therefore resisted because a valuable social amenity could be threatened.

Streets had different meanings for other strata of society. In parts of Hastings, the value attached to street usage was entirely different, particularly in the St
Leonards area of the town. There, the wealthy believed that streets were mainly for parading in their carriages and enjoying the seaside air.10

In an engineering sense, trams were especially favoured in towns with very wide streets, like Paris boulevards, or where the road surface was so dreadful as in New York that digging it up could only improve matters. In the UK, streets and roads in general were narrow and winding and tramways were therefore liable to be very disruptive to existing activities and buildings.11 Whatever method of traction was chosen, there would be disruption from the laying of tracks, power lines, studs, feeder cables, and their subsequent maintenance.12

The perceptions of the function of streets gradually changed as the century progressed. Instead of being sites of the traditional functions of social and economic exchange, in the eyes of the suburbanites streets became thoroughfares whose primary value was for transport. In the USA, 'dangerously high speeds or blighting overhead wires were not a sufficient reason to delay the suburbanite's homeward commute'.13 Such views were less prevalent in the UK, but the introduction of trams dramatically altered the function of streets. Main routes became transit thoroughfares, enabling people to move freely and more purposefully. Thus these new transport systems impacted adversely on social behaviour, and town dwellers had to adjust their customs to live harmoniously with the new technology. Such adjustments were not straightforward, and frequently produced conflict and fierce resistance. Neither did they follow a similar pattern in

10 Hastings \& St Leonards Observer, 29 November 1879.
12 Ibid, p.168.
13 McShane, Down the Asphalt Path, p.30.
all towns. Tramway networks began to contend with the original street functions, particularly in the older, crowded districts.

As far as the influence of women on traction design was concerned, nineteenth-century society was male-dominated, to the extent that women's views were seldom heard or even invited. In general, women's social activities were separate from those of men's. Few ventured onto the stage of local government. There was one unusual social effect of tramways put forward which reinforced the dominant male stereotype. By one account, more rapid transport enabled men to go home for lunch where they could keep an eye on their wives, who if left alone all day 'very often fell into bad and drunken habits'.14 Walsh contended that transport history has been predominately gender-blind. The greater part of analysis has been 'primarily by men for a male audience, focusing on machinery, technology, and the operation of transport companies'.15 A strong bond existed between technology and masculinity, closely identified with the mastery of machines.16 Few analyses have acknowledged that although tram systems were designed by men, both men and women were users. Trams had a significant effect on the lives of women as consumers.17

Unsurprisingly, tram operations were also male-dominated. There were few, if any, female drivers or conductors until the First World War when a shortage of men necessitated their employment. Women operators of tram systems were frowned upon. It was considered unglamorous and unbecoming for women conductors to

14 House of Commons Select Committee, \textit{Municipal Trading}, Q.2125.
use such familiar tramcar terms as 'any more fares please, pass right down inside, and no more room on top', even though the terminology was quite acceptable for male conductors. Such terms engendered doubt and disquiet, and were considered inappropriate for women who aspired to be ladies. By the standards of the time, they were behaving in an unseemly way. Conducting was not seen as suitable work for women.18

2.2 Technological development

It is possible to define three loose periods of tramway development in the nineteenth century. The first began in the 1830s during the era of the horse-drawn omnibus. It continued with the introduction of horse tramways until the 1870s, by which time the limitations of horse-drawn vehicles were becoming increasingly apparent. Although there was some overlap, for the next twenty years the potential for steam, cable traction, accumulator batteries, compressed air, and a variety of non-animal power systems were tested, discussed and valued, as well as traction through current electricity.19 New products such as heavy duty rails, special track-work, improved tramcar bodies, lamps and heaters were also introduced.20 This second period was particularly creative, when inventors and entrepreneurs experimented with combinations of power sources and profitable management techniques. By the 1890s, overhead electric traction had begun to dominate in a third period following Sprague’s demonstration of its viability in the USA.

Towards the end of the nineteenth century, an indication that a new age had dawned was a lecture given in Wolverhampton in 1898 by Professor Thompson of the Finsbury City and Guilds Technical College. Choosing the title 'The Coming of the Electric Horse', Thompson acknowledged that developments in the UK were several years behind the USA, but considered that the delay was advantageous. In his opinion, the USA was too anxious, and had 'spent money like water' on inventions. The UK began later, but had the full benefit of research and experiment. On the positive side, Thompson acknowledged that in USA, workers were 'now able to reside in suburbs, the slums have declined, and the health, comfort and morals of people have improved'.

As the nineteenth century drew to a close, the pace of expansion of tramway systems accelerated. Although a latent demand existed for the improvement of urban transport before electrification, there is little doubt that the improved services and fare reductions enabled by electrification assisted the process. The evidence suggests that the notions of 'technological push' and 'demand pull' were both present to explain the phenomenon. Undertakings were mainly run by local monopolies except in the larger towns, but even there, the nature of the service restricted competition to separate operational districts. Problems of ownership made it difficult to run trams of different operators on the same lines.

However, by 1898 there were still only 6 kilometres of track per one million of the population in Britain, compared with 13 kilometres in France, 26 in Germany, and

more than 500 in the USA.²⁴ By 1897, 90% of tramways in the USA were electrically operated. There is a possibility that the UK’s slow take-up may have been partly a product of the 1870 Tramways Act, which included a twenty-one year purchase clause. In consequence, the investment in electrification might have appeared a very risky proposition to a private company.²⁵ There is an element of truth in this suggestion, but it does not explain why some towns, which previously did not invest in horse-drawn tramways, were slow to adopt electrification. It is likely that the extra investment required for new tracks and equipment also delayed progress. Public opposition was also a delaying factor.

Recognising the problems being caused by rapid urban development, Arthur J Balfour told the House of Commons in May 1900 that ‘to remedy the great disease of overcrowding, you must trust to modern inventions and modern improvements in locomotion for abolishing time’.²⁶ He had raised an interesting concept, the juxtaposition of time with transport, and consequently the possibility of suburban expansion with working class housing. Balfour was referring particularly to the situation of workmen travelling in London, but most of the great cities in UK were experiencing similar problems. The concept of ‘the industrialisation of space and time’²⁷ would have varied from town to town. Although trams were a spur to overcome this urban deficit and assisted a move towards modernity, there were

²⁵ Foreman-Peck and Millward, Public and Private Ownership, p.166.
²⁶ Harold J Dyos, ‘Workmen’s fares in South London 1860-1914’, Journal of Transport History, Volume 1, 1953-54, p.3. Arthur J Balfour was the leader of the Conservative party and became Prime Minister from July 1902 until December 1905. He became famous when, as Foreign Secretary, he made the Balfour Declaration in 1917, promising the Jewish people a national homeland in Palestine.
other factors which constrained outward expansion before 1914. Capuzzo concluded that the level of fares in relation to income, the degree of development and location of factory systems, patrimonial political structures, and policy towards the provision of public transport were all important issues.

Balfour, and many others, failed to realise the huge amount of opposition there would be to the suggestion of the humbler classes moving out of the densely populated inner city areas to the leafy suburbs. These had previously been the province of the wealthier sections of society, who could afford private or public transport and had left the expanding cities in greater numbers. The movement had created segregated suburban areas quite unlike any urban phenomena occurring in America at that time. In the UK, much of the land was owned by the gentry, aristocrats, or corporate bodies. The majority of wealthy people had moved to the periphery by mid-century, while in America the alterations in residential patterns had yet to happen.

By the end of the century, however, there had been a massive explosion in population growth and movement in the USA, triggered to some extent by the boom in tramway construction. Tramcars 'enlarged cities, reached far out into the countryside, and integrated smaller hamlets into the urban market'.

29 Paolo Capuzzo, 'Between Politics and Technology: Transport as a Factor of Mass Suburbanization in Europe, 1890-1939' in Divall and Bond (eds), Suburbanizing the Masses', pp.29-32.

Table 2.1 indicates the comparative growth in tramway provision in the two countries, and emphasises the divergence between them:

<table>
<thead>
<tr>
<th>Cities with a population of</th>
<th>United Kingdom</th>
<th>United States</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number</td>
<td>Proportion supplied with street railways in 1903</td>
</tr>
<tr>
<td>5,000 - 5,999</td>
<td>95</td>
<td>11</td>
</tr>
<tr>
<td>6,000 - 6,999</td>
<td>75</td>
<td>13</td>
</tr>
<tr>
<td>7,000 - 7,999</td>
<td>60</td>
<td>13</td>
</tr>
<tr>
<td>8,000 - 8,999</td>
<td>43</td>
<td>9</td>
</tr>
<tr>
<td>9,000 - 9,999</td>
<td>44</td>
<td>16</td>
</tr>
<tr>
<td>10,000 - 11,999</td>
<td>84</td>
<td>17</td>
</tr>
<tr>
<td>12,000 - 14,999</td>
<td>91</td>
<td>31</td>
</tr>
<tr>
<td>15,000 - 19,999</td>
<td>75</td>
<td>30</td>
</tr>
<tr>
<td>20,000 - 29,999</td>
<td>82</td>
<td>50</td>
</tr>
<tr>
<td>30,000 - 39,999</td>
<td>47</td>
<td>64</td>
</tr>
<tr>
<td>40,000 - 49,999</td>
<td>30</td>
<td>80</td>
</tr>
<tr>
<td>50,000 - 59,999</td>
<td>13</td>
<td>100</td>
</tr>
<tr>
<td>60,000 - 69,999</td>
<td>13</td>
<td>92</td>
</tr>
</tbody>
</table>

Table 2.1 – Comparison of tramway provision between the UK and the USA in 1902-03.33

Within the UK's provincial towns, tramway networks became more influential than rail. Travel distances were short and a cheap readily accessible service was essential to compete with the no-cost walking alternative. Trams were 'the gondolas of the people'34, encouraging the migration of the working classes into the suburbs; in this way they were 'enormously important, particularly in the provincial cities'.35 Their introduction was a local landmark, and 'battles between the protagonists of different systems of operation and of different structures of ownership enlivened late Victorian local government'.36

36 Ibid, p.16.
By 1902, Wolverhampton had provided one track-mile for each 6,300 of its inhabitants, while Lincoln's contribution was only one track-mile for each 27,000 townspeople. These statistics reflect the massive difference between tramway provision in the UK and the USA, illustrated in Table 2.2:

<table>
<thead>
<tr>
<th>One mile of tramway track for:</th>
<th>USA in 1902</th>
<th>United Kingdom in 1903</th>
</tr>
</thead>
<tbody>
<tr>
<td>530 cities, groups of cities and towns, and groups of towns</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>less than 1,000 people</td>
<td>24.7</td>
<td>0</td>
</tr>
<tr>
<td>each 1,000 to 1,499 people</td>
<td>33.0</td>
<td>0</td>
</tr>
<tr>
<td>each 1,500 to 1,999 people</td>
<td>21.9</td>
<td>1.9</td>
</tr>
<tr>
<td>each 2,000 to 2,599 people</td>
<td>10.7</td>
<td>5.7</td>
</tr>
<tr>
<td>each 2,600 to 2,999 people</td>
<td>3.8</td>
<td>3.2</td>
</tr>
<tr>
<td>each 3,000 to 3,999 people</td>
<td>2.8</td>
<td>7.6</td>
</tr>
<tr>
<td>each 4,000 to 4,999 people</td>
<td>2.3</td>
<td>10.1</td>
</tr>
<tr>
<td>each 5,000 to 5,999 people</td>
<td>8.7</td>
<td>12.7</td>
</tr>
<tr>
<td>each 6,000 to 6,999 people</td>
<td>12.7</td>
<td>3.2</td>
</tr>
<tr>
<td>each 7,000 to 7,999 people</td>
<td>1.5</td>
<td>5.1</td>
</tr>
<tr>
<td>each 8,000 to 8,999 people</td>
<td>0</td>
<td>2.5</td>
</tr>
<tr>
<td>each 9,000 to 9,999 people</td>
<td>0</td>
<td>6.3</td>
</tr>
<tr>
<td>each 10,000 to 10,999 people</td>
<td>0</td>
<td>4.4</td>
</tr>
<tr>
<td>each 11,000 to 11,999 people</td>
<td>0</td>
<td>10.1</td>
</tr>
<tr>
<td>each 12,000 to 12,999 people</td>
<td>0</td>
<td>2.5</td>
</tr>
<tr>
<td>each 13,000 to 19,999 people</td>
<td>0</td>
<td>3.2</td>
</tr>
<tr>
<td>each 20,000 to 21,999 people</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>each 22,000 to 29,000 people</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Table 2.2 – The ratio between tramway track and population.\(^{37}\)

Tramways continued to develop in the UK. By 1900 there were 213 tramway undertakings, and five years later, there were 311 of which one half were municipally owned.\(^{38}\) Despite the growth, statistics for March 1904 give an indication of how far the UK still lagged behind the USA in the development of electric traction, as Table 2.3 shows:

<table>
<thead>
<tr>
<th>Method of Traction</th>
<th>United Kingdom</th>
<th>United States</th>
</tr>
</thead>
<tbody>
<tr>
<td>Route mileage</td>
<td>1,462</td>
<td>21,920</td>
</tr>
<tr>
<td>Track mileage</td>
<td>109</td>
<td>259</td>
</tr>
<tr>
<td>Electric</td>
<td>30</td>
<td>241</td>
</tr>
<tr>
<td>Steam</td>
<td>235</td>
<td>170</td>
</tr>
<tr>
<td>Horse</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>Gas</td>
<td>1,840</td>
<td>22,590</td>
</tr>
</tbody>
</table>

Table 2.3 - Comparison between the UK and USA of tramway systems in March 1904.

To set these figures in context, the population of the UK in 1904 was little more than 38 million. In the USA, the population by then had reached 82 million. The peak mileage for tramway systems in the UK occurred in 1923-24, when there were 2,624 route-miles.

Although the subject is dealt with specifically in later case studies, the evidence suggests that in the UK prevailing political convictions and social conventions at the local level helped shape the development of tramway systems. Municipal authorities were at the forefront of the process. At the national level, contemporary economic, political and aesthetic values of the Victorian era held sway. The challenging operational network was further complicated by regulatory and ownership requirements. In some towns, there were almost insurmountable barriers to tramway development from various sectors of society.

39 Meyer, 'Municipal Ownership', p.484.
43 Millward, Private and Public Enterprise, p.4.
2.3 Horse-drawn omnibuses

As the UK’s economy expanded, the growth of horse-drawn vehicles from the early nineteenth century onwards was phenomenal. In 1814, there were 23,000 four-wheeled vehicles in London. By 1834, there were 49,000; a period of rapid expansion followed so that by 1864 there were 102,000 four-wheelers with a further 170,000 two-wheelers.\(^{44}\) Such an enormous number caused massive congestion, quite apart from the pollution left behind by the horses. The increase in traffic was mirrored elsewhere in the rapidly expanding towns. Many of the four-wheelers were delivery carts, transporting goods to a variety of destinations. Private travel was the realm of ‘carriage folk’, people who belonged to an immensely privileged and comfortable social class with an increasing amount of leisure time enhanced by their wealth.\(^{45}\) As urban growth intensified, demand for carrying capacity increased. Without improvements to road surfaces, however, the need would not have been met. In the great cities, paving kept pace with the increase in the number of carriages.\(^{46}\) In smaller towns, it did not.

Based on a modification of existing intercity stage-coaches, the first horse-drawn omnibuses were introduced in Nantes by the French entrepreneur Baudry in 1826.\(^{47}\) He quickly discovered that he was generating more revenue from short-haul passengers than from his operations over a longer distance.\(^{48}\) Before long, these services were replicated in most large European and American cities. They were introduced to London and New York in 1829 and to Philadelphia in 1831. In

\(^{46}\) Ibid, p.8.
\(^{48}\) McShane, *Down the Asphalt Path*, p.7.
the UK, other cities quickly followed suit. The first recorded horse-drawn omnibus service in Wolverhampton appeared in 1833, albeit on a small scale.49

The advent of these horse-drawn vehicles had a profound effect on rural as well as urban areas. Thompson estimated that it took five acres of land to provide feed for one horse.50 Based on this assumption, in the USA alone, more than a third of available agricultural land was given over 'to raising crops to fuel the nation's horses'.51 The majority of these 'urban herds' were employed to move freight rather than people. Even so, the impact on agricultural production was significant. While clearly not on the same scale in the UK, such consumption of a scarce resource was a significant factor in the search for alternative forms of power.

In many towns, omnibuses had severe limitations. The rough nature of the roads reduced travel speeds to five or six miles per hour, which was not much faster than walking. The vehicles were uncomfortable and their propensity to overturn, combined with the difficulty in controlling the horses, posed safety hazards to both passengers and pedestrians. The hilly topography of some towns such as Hastings placed further limitations on the routes on which they could operate. Referring to the discomfort of travelling by omnibus in a debate in Hastings Council, one councillor likened omnibuses to 'ramshackle old liver pills from the way they shook people up', adding 'when passengers were outside (that is to say on top deck) it was like being up in a balloon, and when they were inside they were nearly stifled'.52 Another correspondent wrote 'if you are fond of asphyxia, you should ride inside an omnibus on a sultry summer day: a bouquet of fusty

51 McShane, \textit{Down the Asphalt Path}, p.45.
52 Hastings & St Leonards Observer, 4 July 1891.
straw will contribute much to your gratification, and you may faint away amidst appropriate sights and sounds'.53 Clearly, there was a demand to find better solutions to the urban transport problem.

There was a further problem. The high fares charged on omnibuses excluded the general population from using them. As a result, the bulk of the population continued to live in urban centres close to their workplaces. However, in the great cities, the main catalyst for suburban development was the train service, which enabled much faster connections between inner cities and their suburbs. In London, the suburb came first and the short-stage coach or omnibus followed once the potential passengers had been established.54 Nevertheless, omnibuses remained the primary form of transport, especially in the smaller towns and cities where distances were short.55 Omnibuses flourished, and in Paris for example, there were six horse-drawn omnibus companies covering various arrondissements in the early 1850s, and in 1855, the Compagnie Générale d'Omnibus was awarded a fifty-year concession to operate.56

An added problem to suburban development in the UK was that transport entrepreneurs were prevented by government regulations from investing in land on the outskirts of towns.57 The situation was different in the USA. Entrepreneurs there were prepared to see transport as an initial loss leader, paving the way for lucrative real estate development. Even so, omnibuses in the USA hardly changed urban residential patterns as they barely expanded the commuting radius.58

53 Chamber's Journal, Volume 13, No.328 (14 April 1860), p.229.
56 Millward, Private and Public Enterprise, p.82.
57 Ibid, pp.76-90.
58 McShane, Down the Asphalt Path, p.8.
2.4 The origin of tramways - horse-drawn trams

The origins of a tramway on which vehicles could run lay in antiquity, but the first horse-powered street system is generally acknowledged to have begun in 1832.59 This was introduced by the New York and Harlem Railroad Company, but it was unpopular and was suppressed for a time.60 The reason was that the iron rails were very wide with deep grooves and a ridge projecting above the road surface.61 They not only caused damage to other road users, but also the grooves frequently became clogged by mud and pebbles. Apart from an isolated four-mile section in New Orleans in 1835, there was little further expansion for almost twenty years62, despite the fact that costs per passenger were reduced below that of omnibuses.63

The major advantage of rails was the reduction of friction between wheels and the track and consequently more efficient use of horse-power. A pulling power of thirty kilograms was needed to move a tonne on cobbledstones and of twenty kilograms on a well-paved road. A pulling power of only eight kilograms was necessary to move the same load on rails.64 Overcoming the rolling resistance of wheels on road surfaces therefore enabled two horses to pull vehicles weighing six tonnes when fully loaded with up to fifty passengers.65 Passengers also experienced a more comfortable ride compared with omnibus travel.

60 D Kinnear Clark, Tramways: their construction and working, Buckingham: Adam Gordon, 1992, facsimile of 1894 edition, p.5.
61 Buckley, History of Tramways, p.13.
62 Ibid, p.9.
63 McKay, Tramways and Trolleys, p.15.
64 Ibid, p.14.
65 Clark, Tramways: Their Construction, p.359.
Once the problems associated with rails protruding above the surface of the road had been overcome, horse-drawn tramways developed strongly from the 1850s onwards. In 1852, a French engineer named Alphonse Loubât introduced a rail flush with the road surface in Paris, and a regular service opened in the following year. Nevertheless, the wealthier sections of the public, particularly in the UK, continued to be slow in accepting what was perceived as an American innovation. Tramways generated an ‘aura of public enmity’, with much of the opposition coming from the carriage-owning community. They objected strongly to any innovation which affected their way of life. Many even preferred an improved omnibus service to a new technology. This manifestation of enmity varied from town to town and within society’s stratifications. It was quelled for a time in the 1860s by ‘the endorsements of engineers, parliamentary commissions, and the transit industry’ but was to reappear with renewed vigour once the battle to introduce electric tramways began.

A ‘brash and grandiloquent’ American named George Francis Train succeeded in introducing the first real horse tramways in England on the macadamised roads of Birkenhead, the line opening on 30 August 1860. Subsequently he also obtained permission to lay down lines in London along Bayswater Road, Kennington Road, and in Westminster during 1861. These lines were, however, short-lived due to strong opposition from carriage owners, who objected to the damage caused to their wheels by the system’s step rails, and obstructions to travel caused by ‘these huge machines’. Inevitably, omnibuses were damaged and someone was killed.

67 Ibid, p.16.
70 Ibid, p.1063.
71 Clark, Tramways: Their Construction, p.13.
Train was prosecuted on charges of creating a public nuisance and all charges were proven.⁷³

Omnibus companies also opposed the new form of competition. Train’s venture in the Potteries in north Staffordshire fared a little better in 1864 when he substituted grooved rails for the step rails used elsewhere. That company lasted until 1880 when it was wound up.⁷⁴ Overall, his ventures were unsuccessful, and he had left England in frustration well before, referring disparagingly to ‘that effete country’.⁷⁵ In fact, it seems likely that Train selected the wrong areas for his innovations, particularly in London, where local wealthy residents owned their own carriages, and had no need of public transport.⁷⁶ Moreover, these higher-class residents resented the unwelcome intrusion into their way of life. Although the interiors of Train’s tramcars were luxurious, the refined carriage owners took exception to the ‘people’s carriage’ which they viewed as a vehicle for the lower classes. Train’s ‘misjudgement of sensibilities’ generated a ‘collective memory of nuisance and obstruction’ which was to last for many years.⁷⁷

Partly as a result of this strong opposition, and partly because of the relatively good condition of roads in the UK compared with America and elsewhere, the second half of the decade saw a lull in development. The need for tramways was considered less urgent as ‘cabs and omnibuses were available for general circulation at reasonable fares’.⁷⁸ Another elitist view was pronounced by Alexander Beresford-Hope, a member of parliament, privy councillor, and one of the wealthiest men in the UK, who said ‘society in London looks upon the

⁷³ The Times, 27 March 1861.
extension of tramways with dislike and apprehension'. Such opinions ignored the requirements of the poorer members of society who continued to have unmet transport needs.

In 1865, Portsmouth introduced trams, followed shortly afterwards by Liverpool, but by the end of the decade, only a handful of the larger cities had a service. During this period, the legislative procedure to start up a tramway service was complicated and expensive. As a result, legislation in the form of the tramways Act of 1870 was introduced to simplify the process (see section 1.4). Nevertheless, a plethora of potential bases for objection remained, and the anti-Trammites of Hastings and the wealthy inhabitants of Torquay were able to delay the implementation of any scheme in their towns. By contrast, the more dynamic decision-makers of Wolverhampton were ready to embrace the positive effects and had a horse-tramway network in operation by 1877.

However, after the passing of the 1870 Tramways Act, development was more pronounced, and aided by the fall of the world price of fodder, a 'mild tramway mania' ensued. But operational problems soon appeared. The disadvantages of horse power applied to trams every bit as much as to omnibuses. Horse feed represented one third of total operating expenses for horse-drawn trams. There were additional expenses such as horseshoes and harnesses, grooms and vets. A horse could be worked only four or five hours per day, but services had to be offered for twelve or sixteen hours. Many cars required a double team, with extra teams for even modest grades. With spares required for emergencies, as many

80 McKay, Tramways and Trolleys, p.17.
81 Clark, Tramways: Their Construction, p.736.
82 Buckley, History of Tramways, p.24.
as eleven horses had to be kept on hand for each horse car.83 Horses were neither swift nor powerful. A lighter car weighed up to two tons and seated twenty passengers, which a single horse could only move at an average speed of five to six mph, or a maximum of eight to ten mph.84 For larger tramcars, two horses were needed to pull a vehicle weighing around 2 ½ tonnes. In hilly areas, extra trace horses were necessary. Due to the constant stopping and starting and the energy needed to overcome the inertia of a tramcar, the average working life of a horse was around four years, after which they were often unfit for any other work.85

There were widespread complaints from passengers about the levels of comfort within tramcars. One correspondent, writing in the \textit{New York Herald}, described the adventure as ‘modern martyrdom, with passengers packed in like sardines in a box with perspiration for oil. The seats being more than filled, passengers are placed in rows down the middle, hanging from straps like smoked hams in a corner grocery. Pickpockets ply their vocation and the foul, close, heated air is poisonous’.86 This conjures up a most unappealing image of transport, particularly in the crowded hours. Improved ventilation awaited further developments in tramcar design.87

The eventual expansion of horse-drawn transport was helped to some extent by the rise in real earnings of the working classes.88 Extra disposable income produced greater potential for freedom and mobility for leisure purposes. After the introduction of horse tramways, competition between that mode of transport and

\begin{flushright}
83 \textit{Buckley, History of Tramways}, p.24.
84 \textit{Clark, Tramways: Their Construction}, p.735.
85 \textit{Buckley, History of Tramways}, p.24.
87 John A Brill, 'The Development of the Tram Car from Horses to Electricity' in \textit{Cassier’s Magazine}, p.391.
\end{flushright}
omnibuses developed. Ochojna asserted that for a tramway to be successful, it would have to serve all major routes in a town or service area. This argument was based on the assumption that if a passenger had to change somewhere along the route, the advantages of speed and comfort would be undermined significantly.

2.5 The limitations of horse power

By the mid-nineteenth century, cities were almost entirely dependent on horse-drawn transport for the movement of passengers and freight. Steam railways provided a service for inter-urban transport, but where deliveries had to be made to centres not adjacent to depots, horses remained the prime movers. Horse dependency increased as economic exchanges accompanied industrialisation, and the horse-drawn tram became the first urban mass-transport system. Many other public services also depended on animal power. At mid-nineteenth century, there were a quarter of a million working horses in the UK. By the peak in 1901, the number had grown to more than one million.

Horses were expensive and costly to maintain. When they were not working, they were 'eating their heads off'. They were temperamental and many were nervous, and had difficulty in learning to cope with city traffic. They were prone to illness and an epidemic could result in huge losses in both animal welfare and financial terms. Consequently, tramway companies kept an additional ten per cent of

90 Thompson, Victorian England, p.18.
91 Barker, 'Towards a Historical', p.88.
92 Barker, Urban Transport, p.135.
94 Schatzberg, 'Culture and Technology', p 63-64.
horses above normal operational requirements in order to cover such eventualities.

The 1872 Great Epizootic outbreak, an influenza epidemic which resulted in the death of thousands of horses in the USA, underlined the significance of horse dependency to a country's economy.95 Although not as serious in the UK, similar outbreaks did occur. Disaster struck in Hastings in the severe winter of 1876/77 when an epidemic killed several horses belonging to a private omnibus operator. In Keighley, the horses of the Tramways Company developed pinkeye soon after the Company was founded in 1888, and all services were discontinued for two months while they recovered.96 Although such events did not lead to an immediate push towards mechanisation in Hastings as they did elsewhere - for one thing it was not so serious - a consequence was the flotation of an omnibus company to spread the risk.

Horse-drawn transport was unhygienic. Each horse deposited between ten and twenty pounds of manure and two gallons of urine every day on the roadways, creating significant public health hazards.97 'The heaps attracted flies until they were pulverised, dried up and blown about by the wind'.98 The problem was exacerbated by the tramway operators' practice of storing manure in enormous heaps near their stables over many months, in order to sell it to farmers for fertiliser, even though the revenue raised from the activity was minimal.99 The

\begin{footnotes}
\item[95] McShane, \textit{Down the Asphalt Path}, p.42.
\item[97] McShane, \textit{Down the Asphalt Path}, p.51.
\item[99] McShane, \textit{Down the Asphalt Path}, p.52.
\end{footnotes}
practice was widespread, and even a medium-sized stable in New York accumulated a 30,000 cubic feet pile of manure.100

Many of the problems associated with horse-drawn omnibuses persisted throughout the tram era, and objections to horse-drawn vehicles gathered momentum. A Victorian social conscience was awakening, and appalled by the scenes of brutality to overworked horses, social reformers began to raise concerns about animal welfare in many towns.101 Unless road surfaces were well-maintained, horses were frequently injured through straining and slipping. When teams of horses were operated, movement became more complex as all of them had to begin pulling at the same time to overcome the inertia of the load.102 Horses occasionally dropped dead through exhaustion, causing severe delays to other traffic as it took hours to remove the carcasses.103 The pro-tram lobby in Wolverhampton became energised by such matters when debates about electrification began at the end of the nineteenth century. Replacement by mechanised transport was recognised as a strong justification. As Buckley pointed out, horses were inherently unsuited to tramway operations.104

2.6 The move towards mechanisation

Although the limitations of horse-drawn transport were well recognised, it is difficult to pinpoint exactly when the first attempts at mechanisation of horse tramways occurred.105 Rather, there was an effort to find a suitable alternative across a

100 McShane, Down the Asphalt Path, p.52.
101 Schmucki, 'The Machine in the City', p.1067.
102 McShane, Down the Asphalt Path, p.49.
103 Ibid, p.48.
104 Buckley, History of Tramways, p.24.
105 Klapper, The Golden Age, p.38.
broad front from the early 1870s onwards.106 What is certain is that the cost of animal traction, combined with the propensity of horses to illness, the unhygienic consequences, and slow speed of travel, led to experimentation in several countries simultaneously. To the tramway operators, the economic case against equine power was indisputable.107 Additional tramcars required additional horses, and the cost per car mile remained practically the same. Increased services resulted in no proportional decrease in operating costs as there was no economy of scale.

The tramway businessman WJ Clark noted that in the USA, the average percentage of operating expenses to gross receipts never fell below 80\%, which left little for reserves and payment of dividends.108 Similar statistics applied to the UK. Consequently, operators were incurring very high operating costs and making small profits, although the New York lines paid fairly well in the initial stages with average annual dividends of 8\% between 1855 and 1864.109 General unprofitability was not the only problem. Low levels of passenger comfort and humanitarian concerns also contributed to growing demands for an alternative method of propulsion.

There was no sequential time line of traction development, but rather a series of parallel experimental investigations of possibilities. In the light of its success on railways, steam power was the most obvious choice for tramway mechanisation. Steam was proven and established in many fields of transport. It seemed that it

106 McKay, Tramways and Trolleys, p.27.
107 Joyce, Tramway Heydey, p.15.
only needed scaling down and adapting to the needs of urban transit. 110 Speculators applied their experiences with railways and other forms of steam transport and sought to adapt them to suit urban street requirements. More recent authors have described this process as a form of social shaping between those involved with technological development on the one hand, and users and urban mobility on the other, a concept discussed in chapter 1 of this thesis. 111 There followed a series of attempts by inventors to find a suitable solution, but there was no immediate panacea.

2.7 Steam traction – a source of inanimate power

The first steam-powered light locomotives to run on tracks laid in the streets appeared in New York in the 1830s. They were unsuccessful due to public fears that their introduction was a ploy for main-line railways to penetrate inner-city streets, and objections to their polluting effects. They were 'noisy, emitted large volumes of steam and smoke, and posed dangers of fire and explosion'. 112 It was not until 1859 that the first steam-powered vehicles designed solely for tramway operations were introduced on an experimental basis in several cities in the USA. 113 The steam trams, manufactured in New Jersey by Grice and Long, were of the combined tram design, incorporating the steam motive power into the passenger compartment. 114 They did not last long, but several manufacturers, including Grice and Long, continued development throughout the 1860s.

112 Schatzberg, 'Culture and Technology', p 63.
114 Brill, 'The Development of the Tramcar', p.400.
In the UK, trials with a separate locomotive and passenger-car trailer began on the Ryde pier tramway in March 1864. The trial was unsuccessful, but stimulated further experimental work throughout the next two decades. The first permanent steam tramway service in the UK began at Wantage on 1 August 1876. This was a roadside line, running for two-and-a-half miles on a verge alongside the Wantage Road. Again, it was unpopular, but this time objections came from the authorities in the shape of the Board of Trade inspector, who was said to be horrified by the achieved high speed of fifteen mph.

As with the later introduction of electrically powered trams, the UK lagged behind in the introduction of steam power despite the many indigenous manufacturers. As a consequence, several companies sought export outlets across the world, so that by 1875, UK-manufactured steam trams were operating in Brazil, Belgium and France. One example of the export of locomotives and expertise was the first regular steam passenger service in Paris, operated by Les Tramways Sud (the Southern Tramways). This company had been formed on 9 August 1873 by presidential decree, and was originally horse-powered. In March 1876, the system was extended to include steam traction. GP Harding, an English promoter, obtained a concession to order Merryweather dummy locomotives employed over the four-and-a-half mile route from the Bastille to Montparnasse railway station. Shortly afterwards, a total of forty-six locomotives were delivered to various operators in Paris. Steam dummy locomotives were developed to address the distress caused to the horses still operating omnibuses and private carriages. This

115 Buckley, *History of Tramways*, p.27.
involved enclosing the engine in a box-like body in order to make them resemble horse tramcars as far as possible.

The primary benefits of steam were economic. A steam tram could do the work of five horses at less than half the cost. However, although they provided an improved mass-transit service, steam trams were not universally welcomed. Even dummy locomotives did not entirely overcome the dangers caused by scared runaway horses. Also, damage to the light rails previously designed for horse trams was considerable. The loads imposed were often in excess of seven tons, resulting in high track-maintenance costs. More importantly, the number of accidents caused by steam trams persuaded the public that animal power was better suited to the crowded streets.\(^1^{19}\) A contemporary brochure described the machines as being ‘far from graceful’, and complained that ‘a cloud of steam condensed everywhere, on the passengers, on passers-by, and on people in carriages’.\(^1^{20}\) Consequently, the Paris steam locomotives were taken out of service and by 1878 had been replaced once again by horse traction, with most engines being transferred to Harding’s undertaking in Rouen. By 1881 Tramways Sud was making heavy losses and in 1884 the Company applied for bankruptcy.

Combined steam cars, wherein the steam engine was incorporated within the passenger compartment, were unsuccessful on UK tramways with very few lasting beyond the experimental stage. The main objections were noise, vibration, heat and dust in the passenger compartment. Also, unequal weight distribution made the vehicle unstable, and any defect would put both the traction and passenger

\(^{19}\) Robert, *Les Tramways Parisiens*, p.32.
\(^{20}\) Ibid, p.136-137.
They had a little more success in continental Europe, although separate vehicles soon became the norm.

The tight regulatory framework in the UK acted as a deterrent to innovation. In particular, McShane blamed the Red Flag Act of 1865 for hindering the more advanced developments in road-based mechanical traction in the UK. He saw the law as symbolising opposition to high-speed road travel and restricting the spread of steam-powered vehicles. In comparing the respective countries’ entrepreneurial spirit, he concluded that American venture capitalists would hardly be willing to invest in road-based steam vehicles in the UK after such a daunting precedent. Improving and regulating boilers to prevent the possibility of accidents also became a major political issue, and in the UK a rigid inspection regime for steam tramways was introduced by the Board of Trade in 1875. Apart from steam and smoke emission, regulations on noise, brake systems, and speed of travel were introduced. The matter became so important that there were three House of Lords Committees between 1877 and 1879 to consider tramway policy, deliberations that culminated in a recommendation to the Board of Trade to issue only seven-year licences for steam operation. Ochojna attributed the languishing of the steam-tram industry to the ensuing regulations. When the time came to renew the original seven-year licences for the use of steam with the Board of Trade, complaints from individuals and local authorities became more insistent. To become acceptable, the new technology had to be ‘transformed from unfamiliar, exciting and possibly frightening things into familiar objects embedded in the culture of society and the

121 Webb, The British Steam Tram, p.47.
122 McShane, Down the Asphalt Path, p.94.
123 Schatzberg, ‘Culture and Technology’, p.63.
125 E Jackson-Stevens, 100 Years of British Tramways, Newton Abbot: David & Charles, 1985, p.6.
practices and routines of everyday life.126 In reality, this did not happen, and to the opponents of steam trams, they remained a 'nightmare come true'127, as the illustration at Appendix 2 from the satirical magazine \textit{The Dart} indicates.

The final House of Lords Committee strongly recommended that local authorities should construct and maintain the tramway tracks in order to protect the public highway, but should be debarred from operating the tramways, mainly to protect the integrity of the public highway in the event of any conflict of interest.128 Despite the recommendation, on 11 January 1883 Huddersfield Corporation Tramways began operations with steam traction. This was the first municipally-owned tramway in the UK.129 The reasons for the departure from standard practice were twofold. The gradients within the town were such that horse tramways were deemed impossible, and in addition, the enterprise was too risky to attract a private operator.

The relative success of steam trams between 1880 and 1900 was not without its problems. The locomotives were difficult to maintain, and a further disadvantage was that they were difficult to start up initially, and the constant stopping and starting reduced their efficiency. They were therefore unable to exploit the benefits of increased speed, and average journey times suffered as a result.

Other objectors pointed to their proneness to accidents. Among the evidence cited was an incident in Huddersfield in 1883, when seven people were killed and

127 Ochojna, 'The Influence of Local', p.141.
128 Ibid.
twenty-eight injured by a runaway engine.130 In 1891 an engine exploded ‘with disastrous consequences’.131 Such incidents, however tragic, are associated with many transport modes, and assume greater significance when a system has become unpopular for other reasons.

Nevertheless, because of the widely accepted shortcomings of horse power, there was some network expansion. To many, however, they remained ‘belching trains, startling horses and mowing down pedestrians indiscriminately’.132 Even the satirical Punch magazine published a poem describing steam trams as ‘bogeys to be avoided at all costs’.133 An amusing all-black postcard was produced in the Potteries, captioned ‘when Stoke stokes’.134 The patience of passengers on the upper decks had become so drained that they complained vehemently about the soot and smoke from the exhaust chimneys, and a deputation was sent to the Board of Trade.135 As a result, the steam trams were withdrawn in 1882, though they reappeared two years later after modifications had been carried out.

At their zenith, the transport historian Klapper ventured that there must have been more than 2,500 steam trams in operation in continental Europe.136 In the UK, the network increased from 9.65 route-km in 1878 to 82.06 route-km in 1883, and to 410.3 route-km by 1891.137 According to Board of Trade returns, the peak in the UK arrived in 1898 when there were 589 engines in service.138 The main concentrations were in the conurbations of the Black Country and the north of

\begin{itemize}
\item \textbf{Buckley, History of Tramways}, p.32.
\item Ibid.
\item Ochojna, ‘The Influence of Local’, p.141.
\item \textit{Punch Magazine}, Volume 104, 21 January 1893.
\item Klapper, \textit{The Golden Age}, p.151.
\item Ibid.
\item Ibid, p.47.
\item Ochojna, ‘The Influence of Local’, p.141.
\item \textbf{Board of Trade, Return of Street and Road Tramways}, Her Majesty’s Stationery Office (1900), p.3.
\end{itemize}
England where steep gradients made the use of horse tramways impossible, although more than fifty undertakings countrywide ran steam trams at some time. By contrast, there were only 698 engines operating in the USA in 1892, falling to 616 in the following year.139

In her doctoral thesis, Pender claimed that the number of steam trams in operation in the UK was 'truly impressive' given its smaller relative size.140 Comparative statistics do not show the real picture. By 1892, steam traction had peaked in the USA and was already declining. Electric traction had taken off, and the UK was lagging behind the USA in the introduction of the latest technology. In the early 1890s, there was substantial opposition to steam trams in the USA from both town authorities and the horse-owning fraternity, partly due to the anti-pollution lobby.141 Electric traction was in the ascendancy with 13,413 tramcars in 1892.142 This number had increased to 17,233 in the following year. Steam traction in the USA peaked in 1890, when there were 527 route-miles carrying 287 million passengers.143

Some steam-tramway promoters were not entirely scrupulous. In particular, Henry O'Hagan, described by some authors as 'notorious', gave 'lurid details in his autobiography of bribery of local officials to secure concessions, very high promotion expenses, and of what is usually regarded as watered capital'.144 A financial journal claimed that he built tramlines at prices not subject to competition, and 'of all the tramways ushered in by his City of London Contract Corporation Ltd,139 Clark, Tramways: Their Construction, p.731.140 Karen J Pender, 'British electric tramcar design 1900-1962', Open University, PhD thesis, 2004, p.52.141 Sutcliffe, 'Street Transport', p.33.142 Clark, Tramways: Their Construction, p.731.143 McKay, Tramways and Trolleys, p.41.144 Whitcombe, History of the Steam Tram, p.4 (see note 129).
75% of the capital was lost.145 He was involved with most of the major steam undertakings, including those in south Staffordshire and the Manchester conurbation, and was responsible for ‘part of the odium incurred by the urban steam tram’.146 GP Harding, the entrepreneur of Paris Sud and Rouen, acquired a similar reputation. He received 3.5 million francs in shares for tracks and equipment costing only 2 million.147 McKay identified two different sources of profits for such entrepreneurs, the more obvious being operation of the system after the lines were built, and the other being the inflation of capital from construction and the provision of equipment.148

By the early 1890s, steam tramways began to decline as electrification became popular, and were replaced by electric power when it was shown to be a cleaner and more efficient form of traction. In the complex world of tramway development, the steam tram enthusiast Dr Whitcombe called the advent of electrical traction ‘a great stunt initiated by the Press’ and backed by ‘American propaganda’.149 In an open debate with Whitcombe in 1937, locomotive designer H Holcroft argued that it was an awakening of municipal consciousness that sounded the death knell of steam trams. Municipally-owned power stations stood idle for most of the day, and the option of taking over tramways occurred just at the time when the authorities wanted to secure a large power load for the generating stations to bring the unit cost down and thereby attract new customers.150 In Holcroft’s view, councils therefore exercised their option to purchase in order to fill that gap. The last urban steam tram in the UK ran in 1909.

145 The Railway Times, 18 April 1891.
146 Whitcombe, History of the Steam Tram, p.4 (see note 129).
147 McKay, Tramways and Trolleys, p.21.
148 Ibid, p.20.
149 Whitcombe, History of the Steam Tram, pp. 334 and 397 (see note 118).
150 Ibid, p.385.
2.8 The fireless steam engine and the Mekarski compressed-air system

A variation on the steam engine designed to overcome the strict regulations governing the polluting effects of smoke and ash was the fireless steam engine. Pressurised steam was generated in a stationary boiler, usually situated at a line terminus. The steam was fed into a locomotive, which ran on the stored energy as steam was released into the driving pistons. Not only was pollution centralised, but the weight of the locomotive was also reduced since it was unnecessary to carry a coal supply.151 The system was first used by Emile Lamm in New Orleans in 1873, and transferred to France by Léon Francq, who installed it in Lille, Lyon and parts of Paris from 1876. There were benefits from reduced pollution, but no economic or operating advantages compared with horse-drawn trams. A major disadvantage was that after around fifteen kilometres of normal running, recharging became necessary, and any extra exertion could leave the locomotive stranded as it ran out of power.152

The Mekarski system used compressed air instead of steam to drive the pistons. It was installed in Nantes and was used on a number of lines in Paris from 1878 onwards.153 The system solved the problem of pollution from the locomotives, but the stationary compressors required uneconomically large amounts of coal. It met the environmental and aesthetic requirements, but was unreliable and slow, achieving average speeds of only five-and-a-half mph.154 Compressed-air systems were considered as dangerous to the public as steam trams due to the risk of

151 McKay, \textit{Tramways and Trolleys}, p.32.
152 Ibid.
153 Klapper, \textit{The Golden Age}, p.51.
154 Buckley, \textit{History of Tramways}, p.35.
However, a professional journal in support of the system, reported a boiler explosion incident in New York, and took delight in stressing that the only injury was to a man in a restaurant, who sustained burns when a small piece of flying metal knocked over a can of hot water on a stove. Needless to say, the accident would have been less amusing if the man had been hit by the piece of metal.

Wolverhampton Council did in fact consider a compressed-air engine in September 1881 at the behest of the Tramways Company, but finally rejected it because they mistakenly thought it was powered by steam. It was subsequently discovered that the word 'steam' had been inserted into the company's application in error, but by then it was too late.

2.9 Cable traction

It is likely that cable traction evolved from the system adopted in mines and collieries, and was first applied to street tramways in San Francisco in 1873. The system was designed in the previous year by Alexander Hallidie, and is an example of a technology appropriate to topography as San Francisco has hills far too steep for horse-drawn transport. Cable cars were operated by an endless cable in a duct between the rails, where a 'gripper' on the car engaged with the cable for propulsion (see Appendix 3). Power to pull the cables was provided by a centrally-located steam engine. The problem of smoke pollution was therefore

155 Buckley, History of Tramways, p.35.
157 Wolverhampton City Archives, Minutes of the Streets and General Purposes Committee, 20 September 1881.
159 McShane, Down the Asphalt Path, p.27.
160 Jackson-Stevens, 100 Years of British Tramways, p.6.
concentrated, overcoming one of the causes of opposition to steam-tram traction.161 As there was no possibility of boiler explosion, cable traction also improved safety, and the speed of the cable limited the speed of the tramcars to an acceptable level. However, efficiency was low because up to 80 per cent of the power generated by the steam engine was needed to haul the heavy cable.162 Although he regarded cable cars as the only real competitor to conventional overhead-powered trams in the USA, Nye pointed out that they were more than twice as expensive to install.163

At the zenith of cable traction in the USA in 1890, there were 283 route-miles over which 373 million passengers travelled each year.164 The advantages of cable traction compared with horse power were speed: cars were two or three times faster; and versatility: cars could ascend gradients much too steep for horses. Most cities in the USA were built on a grid pattern, which was better suited to the use of cable chains than the generally more complex shape of European cities. Indeed, the curves and junctions in most historic European cities caused such operational problems that cable cars were considered little more than curiosities.165

Despite its limited potential, cable traction was introduced in some cities where it was possible to have long straight runs. The first system in the UK was at London’s Highgate Hill in 1884, and lasted until it was replaced by the overhead system in 1909. It was also employed in Edinburgh, Birmingham and Streatham,

\begin{footnotes}
\footnote{161 McShane, \textit{Down the Asphalt Path}, p.27.}
\footnote{162 Nye, \textit{Electrifying America}, p.90.}
\footnote{163 Ibid.}
\footnote{164 McKay, \textit{Tramways and Trolleys}, p. 40.}
\footnote{165 Ibid, p.41.}
\end{footnotes}
although the latter two systems were short-lived. In Edinburgh, however, cable cars ran for more than twenty years, where they were disparagingly referred to as a 'perpetuation of an anachronism' by supporters of standard overhead systems.

Edinburgh's system was the largest in Europe and indeed, the fourth largest in the world comprising 36 route-miles. There was a serious attempt to replace it in 1907, referred to in a contemporary journal article as the 'Edinburgh Tramway Fiasco'. The Tramways Company needed to renew worn-out cables and their adviser, Professor Kennedy, suggested experimentation with surface-contact systems. The city council visited selected towns where the Lorain, Dolter and Griffiths-Bedell systems were operating, but their final report recommended only a two-hundred yard section of surface-contact, with a mixture of cable and overhead traction in the suburbs. Intercommunication between the routes would have been difficult as the heavier electric cars would damage the light track of the cable cars. Also, a dual power system would have required different rolling stock and maintenance programmes, resulting in extra costs.

Not surprisingly, the report was rejected as a 'tangled recommendation'. At an estimated cost of £32,000, the recommended solution was not much less than total cable replacement. Meanwhile, the Kingsland Traction Company offered to install their mechanical surface-contact system, using the cable car's centre conduit slots, at a cost of £24,300. The city council decided to opt for cable replacement.

166 Whitcombe, History of the Steam Tram, p. 393 (see note 118).
168 Klapper, The Golden Age, p.49.
169 Ibid.
170 The Electrical Review, Volume 60 (15 March 1907), p.452.
replacement, which the *Electrical Review*, as an organ of the electrical industry, labelled a ‘stick in the mud policy’\(^\text{172}\). Electric traction had ‘appeared to be a goldmine’\(^\text{173}\), but an acceptable solution still had to be found.

While cable traction was initially welcomed, it became unpopular with the general public. The system was subject to frequent cable, pulley and power plant failure, as well as obstructing other road users. Drivers had to be particularly skilful when detaching from and re-attaching to cables at route line changes, otherwise the tram would stop violently, causing accidents to passengers.\(^\text{174}\) Despite some advocates believing that it could become a popular form of traction\(^\text{175}\), the disadvantages were too great and it was not long before innovators looked elsewhere.

2.10 Accumulator cars

As no entirely successful system had been discovered, there continued to be much experimentation, driven not only by economics, but by a need to find an environmentally and aesthetically acceptable solution to the urban transport problem. One of the early pioneers of electric traction was Thomas Davenport, who in 1835 in the USA used primary battery power as the source of electrical energy to drive his motors.\(^\text{176}\) His invention was, however, massively expensive compared with coal-powered steam traction, with the additional problems of handling chemicals and of fragile material within the battery cells.\(^\text{177}\) Meanwhile, Robert Davidson in Scotland experimented with a battery-powered electric motor

\(^{172}\) *The Electrical Review*, Volume 60 (15 March 1907), p.452.
\(^{175}\) Brill, *The Development of the Tram Car*, p.403.
\(^{176}\) Thorburn Reid, ‘Some Early Traction History’ in Cassier’s Magazine, p.357.
\(^{177}\) Ibid.
on a railway car, reaching speeds of four miles per hour.178 In 1854, Professor Page developed a battery-powered electric locomotive which attained speeds of 19 mph in the USA. Such attempts were short-lived due to the high cost of operation.179

In London, Brussels, Berlin and Paris, experiments were carried out with accumulator-driven tramcars from 1884 onwards. At first, the results were encouraging as the average cost of such traction was five pence per car mile compared with six-and-a-half pence per car mile for horse traction.180 However, in May 1890, the Brussels experiment was abandoned, a decision which left the \textit{Electrical Engineer} puzzled, finding it 'curious that the initiators of the storage car system in Europe should abandon their attempt at the time when the great London tramway companies were convinced of the financial success of the system, and were actively taking steps for the extensive introduction of it'.181

Accumulator-driven tramcars soon proved impractical. Batteries were insufficiently strong to withstand the forces placed upon them by uneven tracks. They were only capable of containing a limited energy supply, which necessitated frequent recharging, and consequently reduced their range of operation.182 Batteries themselves were heavy, accounting for around 30\% of the total tramcar mass. This limited their passenger-carrying capacity. As a result, they proved costly and inefficient.

178 McKay, \textit{Tramways and Trolleys}, p.36.
179 Reid, 'Some Early Traction History', p.359.
180 \textit{The Electrical Engineer}, Volume 5 (1890), p.221.
181 Ibid, p.245.
182 Buckley, \textit{History of Tramways}, p.53.
There were social issues also. Passengers complained of strong smells from the battery chemicals and expressed fears about damage to their clothes in the event of spillage.183 Indeed, there were several instances of passengers pursuing claims for damage caused by acid leakage. In Birmingham, a portion of the gross profit of the Central Tramways Company was set aside for the settlement of such claims.

Because of the restricted range of the cars, accumulator traction was relatively unsuccessful184, and made little commercial impact in the UK.185 Interest diminished quickly after 1895186 with the exception of Birmingham, where 10 cars ran on the Bristol Road line between 1890 and 1901 despite causing much trouble with frequent breakdowns.187 As it happens, the Birmingham accumulator cars were manufactured by the Electric Construction Company of Wolverhampton, one of whose directors, responsible for the commercial side of the business, was the renowned Emile Garcke referred to in later chapters.188

2.11 The advent of current electricity

The early nineteenth century saw a series of scientific discoveries that underpinned notable developments in electrical engineering.189 One of the most important occurred in 1831, when Michael Faraday developed the dynamo, a device capable of converting electricity into motion, on which later electric motors

183 Buckley, \textit{History of Tramways}, p.53.
184 Jackson-Stevens, \textit{100 Years of British Tramways}, p.6.
185 Buckley, \textit{History of Tramways}, p.52.
186 Mom, \textit{The Electric Vehicle}, p.11.
187 Klappler, \textit{The Golden Age}, p.150.
188 \url{http://www.historywebsite.co.uk/Museum/Engineering/Electrical/TheECC.htm} (accessed on 1 April 2012).
189 Klappler, \textit{The Golden Age}, p.35.
were based. But there were many years of further experimentation by innovators and pioneers before a proven traction system for transportation was available. 190

Another major development occurred in 1860s when the principle of self-exciting electromagnets was discovered independently by Wheatstone and Siemens. The discovery paved the way for the Belgian Gramme, who in 1870 built the first generator capable of providing bulk economic supplies of electricity. 191 From then on, progress was halting as each inventor attempted to improve the designs of others, until in 1879, Siemens and Halske built a locomotive for the Berlin Industrial Exhibition. Powered by a two horse-power dynamo, the locomotive attained speeds of 7 kilometres per hour hauling three trailers. Each trailer carried eighteen passengers. 192 Current was transmitted from a small central station to a motor on the car by means of a third rail. 193

Progress was then more rapid, and the first commercial electric tramway was opened at Lichterfelde in Germany in May 1881. 194 In this system, one of the running rails was connected directly to the positive pole of the dynamo, and the other to the negative. However, if both rails were touched simultaneously, shocks to pedestrians and animals occurred. The problem was to find a power supply that was both efficient and less dangerous to the general public.

Initial experimentation with overhead trolley systems was carried out by Leo Daft and Charles van Depoele in the USA, but it was the American Frank Sprague who achieved the breakthrough with his ‘universal swivelling, under running trolley to

190 McKay, Tramways and Trolleys, p.35.
191 Buckley, History of Tramways, p.46.
192 Ibid.
194 McKay, Tramways and Trolleys, p.38.
pick up current from a single copper wire conductor'.195 His invention 'launched the electric streetcar revolution' in 1887.196 In Sprague's opinion, overhead-line propulsion would prove to be the cheapest, but he conceded that the system 'may be unsightly in appearance, and perhaps be somewhat in the way'.197 He further predicted that overhead lines would be resisted in many large cities. His prediction proved to be correct, especially in Europe, although in the USA any opposition was short-lived.198

Thus the first awareness had emerged of a set of issues that would be debated in the UK and elsewhere over the next twenty years. Despite his prediction of resistance, Sprague also believed that strong financial incentives for private decision makers 'could almost always be trusted to override non-economic considerations and impractical aesthetic principles'.199 Electrification had to 'serve both public need and private greed'.200 A careful balance was necessary, but there were many instances where apparent aesthetic considerations won the day, as later case studies show. After Sprague had demonstrated the practicability of electricity for tramcar propulsion, contemporary authors considered that the inventive and experimental stage had ended, and it was the turn of the engineer and designer to perfect details.201

In the overhead traction system, current is collected by means of a trolley pole. The trolley presses against the underside of the wires and current is passed to motors on the tramcar. By 1893, there were no major technical or legal barriers to

195 McKay, \textit{Tramways and Trolleys}, p.50.
196 Ibid, p.47.
197 Ibid, p.48.
198 Schatzberg, 'Culture and Technology', p.82.
199 McKay, \textit{Tramways and Trolleys}, p.49.
200 Schatzberg, 'Culture and Technology', p.68.
201 Reid, 'Some Early Traction History', p.367.
prevent the installation of overhead traction. Indeed, systems were already being introduced in Leeds and in south Staffordshire, the latter adjacent to Wolverhampton's boundaries.202

2.12 The open-conduit system

Although overhead systems proved almost universally acceptable, alternatives to the unsightly poles and wires were still sought in certain locations. One of the options was the open-conduit system. This comprised an enclosed electrical supply buried in a channel between the rails of the track. Power was transferred to the tramcar by means of a collector known as a 'plough', a rod protruding from beneath the tramcar running in an open slot.203 The main advantage was that no overhead wires were required and maintenance costs were lower than those of overhead wires.204 A further benefit was that any anticipated damage to existing gas and water mains from current leakage would be minimized as the conduit was completely insulated. In 1885, Blackpool became one of the earliest towns to adopt open conduits, but soon encountered a major problem. The system was installed along the sea-front, but sea water flooding caused frequent breakdown, and wind-blown beach sand, mud, pebbles and other debris blocked the conduit slots and interfered with traction.205 Because of these difficulties, the system was converted to overhead traction in 1899.206

In the very same year of 1899, Clifton Robinson, who was managing director of several tramway companies including London United Tramways, made a number

204 Buckley, History of Tramways, p.61.
of visits to European cities to investigate alternative forms of electric traction.207 He saw the open-conduit systems in use in Berlin, Brussels and Budapest. He was particularly impressed by the combined overhead and open-conduit system in central Paris, which he thought could be adopted by the London County Council. Consequently, the open-conduit system was used extensively in central London despite the high cost of installation and disruption to street traffic while work was undertaken. The network eventually comprised 123 route-miles.208 To overcome aesthetic objections, the LCC installed a hybrid system, with open-conduit operation in the central area and overhead traction in the suburbs. Open-conduits were also installed in the centre of Bournemouth, and lasted from 1902 until 1911 before replacement by overhead wires.209 A handful of towns in France were relatively enthusiastic about open-conduits, with the last line closing in Bordeaux in 1958.210 It is likely that memories of this system persuaded the Bordeaux authorities to install a second-generation surface-contact network in 2003 (see chapter 6).211

Estimates of the cost of installing open-conduits varied greatly. One author suggested they cost thirty-three per cent per mile more than overhead.212 However, according to Dover's near-contemporary study, the cost of open-conduits was twice as high per mile compared to overhead.213 In the USA, they were found to be four times as expensive.214

208 Buckley, \textit{History of Tramways}, p.64.
209 Ibid.
210 Mott MacDonald, 'Power Distribution for Trams and Electric Trains', \textit{Technical Note No 7} (July 2008), p.6.
211 Ibid, p.46.
214 Schatzberg, 'Culture and Technology', p.81.
2.13 Surface-contact systems – the aesthetic answer?

Surface-contact systems, sometimes called closed-conduits, involved a ground-level power supply for electric trams. Studs were set in the road at intervals and connected to a buried electric cable by switches operated by magnets, usually located on the tramcars. Current was collected from the studs by a 'skate' or 'skid collector' under the tramcar.

In his book tracing the development of tramways, Klapper described options to overhead systems under the pejorative term of 'deviationists', which could be interpreted as a subconscious indication of his views. In order to explain this seemingly irrational departure from the logic of technological norms, he ascribes the experimentation taking place to a 'profound urge to be different in human nature'. The evidence does not support his case and there was a rather more complex set of issues than his over-simplification suggests. There is no doubt that some towns diverged from an established course or a standard deemed acceptable elsewhere, but the reasons lay in strongly held beliefs and local considerations, a combination of factors that could not be resolved by simply copying others, as argued in the case studies in later chapters.

The surface-contact method of tramway current collection for commercial operation originated in France. Some 50 route-miles of lines were laid in Tours, Lorient and Paris with moderate success. Their sponsors' intention was to overcome aesthetic objections by finding a viable method of operation not requiring overhead wiring. There was also an economic advantage as the surface-

contact system was a cheaper alternative to open-conduits, as the latter required major excavation of the street to install the power supply in deep tubes.217 The towns in this country which installed surface-contact systems were as follows:

<table>
<thead>
<tr>
<th>Location</th>
<th>Type</th>
<th>Installed</th>
<th>Replaced</th>
<th>Replacement Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wolverhampton</td>
<td>Lorain</td>
<td>1902</td>
<td>1921</td>
<td>Overhead Wires</td>
</tr>
<tr>
<td>Hastings</td>
<td>Dolter</td>
<td>1905</td>
<td>1914</td>
<td>Petrol-electric. Later, overhead wires.</td>
</tr>
<tr>
<td>(only along sea front)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lincoln</td>
<td>Griffiths-Bedell</td>
<td>1905</td>
<td>1919</td>
<td>Overhead Wires</td>
</tr>
<tr>
<td>Mexborough</td>
<td>Dolter</td>
<td>1907</td>
<td>1908</td>
<td>Overhead Wires</td>
</tr>
<tr>
<td>Torquay</td>
<td>Dolter</td>
<td>1907</td>
<td>1911</td>
<td>Overhead Wires</td>
</tr>
<tr>
<td>Whitechapel-Bow</td>
<td>Griffiths-Bedell (only for 23 day experimental period)</td>
<td>1908</td>
<td>1908</td>
<td>Conduit</td>
</tr>
</tbody>
</table>

Table 2.4 – Surface-contact installations in the UK.

As early as 1888, the West Metropolitan Tramways Company had experimented with the Lineff surface-contact system, when 200 yards of track were laid with three-foot sections of central rail at the Chiswick depot.218 A length of flexible hoop iron was laid along the electrical conductor, underneath, but not in contact with the central rail. As a tramcar passed, a powerful magnet lifted the rail to energise the motors, after which it dropped back to its original position.219 Commenting on this demonstration, the \textit{Electrical Engineer} stated:

217 Schatzberg, 'Culture and Technology', pp.67-68.
218 Buckley, \textit{History of Tramways}, p.65.
219 Ibid.
Although a number of successful experimental sections have been shown in and around London, no progress regarding actual work has yet been chronicled. Electric traction *ought* to be cheaper than horseflesh, but problems are recognised with leakage of current and water ingress.220

The trials were discontinued as Lineff wanted a seven-year experimental period but the Hammersmith Vestry were only prepared to offer two years.221 Unlike other surface-contact systems, the Lineff system was never commercially operated in the UK.

Other inventors continued to develop systems, mainly in France, Germany, the UK and to a lesser extent, the USA where aesthetic objections were rarer. In France, the oldest system was the Claret-Vuilleumier (C-V), which was used on the Place de la République to Romainville section in Paris from 1896 until 1900, when it was abandoned in favour of Diatto surface contacts.222 The C-V was unusual in that it had electro-magnets under the track rather than on board the tram. The unwelcome result was considerable current leakage. In addition, the magnets attracted other metals and so became ineffective, thus necessitating constant maintenance.223

An important modification of the pioneering C-V was the placing of the electro-magnets on board the cars. To this group belonged the Diatto, Dolter, Lorain, and Griffiths-Bedell systems. The Diatto stud system was the most common in France,

220 *The Electrical Engineer*, Volume 1 (27 January 1888), p.87
222 Robert, *Les Tramways Parisiens*, p.157-159 (see note 133).
there being more than 20,000 studs in use. It was the invention of Italian Alfredo Diatto of Turin and was first installed in Tours in 1899, a lead followed by four of the Paris tramway companies in 1900.224 The studs in Tours and most in Paris had been removed by 1910 (many having been destroyed by the floods of 28 January that year, when waters of the River Seine reached almost nine metres above normal level) but one Paris route continued until 1913.225

In common with all magnetic-stud systems, the power was supplied to the tram from studs laid between the rails. The studs only become live when activated by an electro-magnet carried on the car as it passed. In the Diatto system, the tram carried a three-part skate with five electro-magnetic coils.226 The outside two parts of the skate formed the south magnet pole and the centre part the north pole. The centre part had a double function: it also made the electrical contact with the stud head, being sufficiently long always to be in contact with at least one stud.

The stud itself consisted of a six-inch diameter soft iron disk laid in an asphalt block and fitted on its underside with a carbon contact. Beneath this was a cylinder made of ebonite and lined with non-magnetic nickel-steel with a copper stud at its base through which the power was fed in from below. The cylinder contained a pool of mercury in which there floated a soft iron armature, topped with a carbon contact. When a tram was positioned over the stud, the armature was attracted upwards to make electrical connection via the mercury with the stud head and thus with the car. Once the tram had passed, the armature fell back by gravity to break

\begin{footnotes}
\item[224] The Electrical Review, Volume 45 (1 December 1899).
\item[225] Buckley, History of Tramways, p.63.
\item[226] The Electrical Review, Volume 45 (1 December 1899).
\end{footnotes}
The one major problem encountered with the Diatto system was that mercury leaked out causing the stud to go dead. In addition, when the mercury level fell, there was arcing at its surface causing mercury vapour to form. The vapour not only allowed the current to leak, but also condensed onto the insides of the stud, destroying its insulation properties and causing the stud to stay live. Additional skates were fitted to the cars to short-circuit any live studs and blow a fuse in them. In a later design, there was even a magnetic-arc blow-out coil incorporated into the stud head.

An important competitor to the Diatto system was developed by the Dolter Electric Traction Company (see Appendix 3). The company’s publicity made the explicit point that it obviated the use of overhead wires in picturesque towns (see Appendix 4). Dolter also emphasised the compatibility of the two methods:

it lends itself admirably to a combination with overhead systems. It is easy to use the Dolter system in the middle or busy parts of towns, employing the trolley for the outskirts or for parts where it is not considered necessary to use surface-contact. Dolter is prepared to put down surface-contact in the whole or parts of any system and guarantees the satisfactory working for any required time.

227 *The Electrical Review*, Volume 45 (1 December 1899).
228 Ibid.
In the cases of Hastings and Mexborough, the adjacent systems over which the cars had running powers employed overhead collection, and the trams had therefore to be fitted with both types of traction.

The Dolter installation at Torquay operated on a 550 volts supply split into sections of feeder cables which were laid under the road surface in the centre line of the tracks. The Dolter pots were fitted into the cables at regular intervals, their caps just flush with the road surface.\(^{230}\) The pots consisted mainly of a ceramic insulated material, though into their tops were set two metal pads which were normally dead electrically.

Below the tram were suspended two skids, polarised north and south by coils energised either from the car's operating current or from a bank of batteries carried on the vehicle.\(^{231}\) This latter supply activated the first contact plate upon starting, and then cut out. As the skids passed over a Dolter pot surface, the two metal pads were magnetised, thereby attracting a pivoted arm inside the ceramic pot. On rising, the arm closed a set of contacts and the main current then flowed up through the plate and via the skids to the tram controller and motors.\(^{232}\) After the tram had passed, the magnetic field ceased and the pivoted arm fell by gravity, cutting off the supply and rendering the road surface plate inert. There was also a smaller skid, following the main pair. When this passed over a plate which had remained live, it rang a bell on the tram to warn the crew.\(^{233}\)

Corrosion from the sea air affected the action of the pivot arm with unfortunate results. Either it remained up, releasing up to 550 volts to anything with which it

\(^{232}\) Ibid.
\(^{233}\) Barham, *Torbay Transport*, p.31.
came into contact, or it stayed stubbornly down and the tram received no supply. Sometimes a follow-up gang, nick-named in Torquay as 'the Dolter murderers', had to work on the faulty plates and replace or service them.234

The Lorain system adopted by Wolverhampton differed from the Dolter because it used a single contact skid 12 feet long. On either side were six pairs of electromagnets which formed magnetic poles over an area of 16 feet, extending beyond the skid at both ends of the tramcar.235 As a tram approached a contact stud, the magnetic field lifted a switch which fed an electrical current to the tram's skid. Apart from the method of current collection, the Lorain system was similar to the Dolter operation.236

The Griffiths-Bedell system varied in the operation of the contact stud. In all the other surface-contact installations, the moving armature was attracted upwards towards the stud head by the magnetic field. When the field passed, the armature fell back by gravity (the Lorain was assisted by a spring), thereby breaking the electrical circuit.237 In the case of Griffiths-Bedell, the whole stud head and armature became magnetized and the armature was attracted downwards against the pull of a spring to make contact with the cable below and was broken by the spring pulling it back.238 The accurate positioning of the stud mechanism with respect to the collector magnets, both in height and laterally, were therefore critical, and precise installation was essential.239

\begin{footnotesize}
\begin{itemize}
\item 234 Barham, Torbay Transport, p.31.
\item 235 Webb and Addenbrooke, A History of Wolverhampton Transport, p.25
\item 236 Ibid, p.28.
\item 237 Ibid, p.25.
\item 238 Ilford Historical Society, Newsletter No.110, December 2012.
\item 239 Ilford Recorder, 16 March 1906.
\end{itemize}
\end{footnotesize}
The Thomson-Houston system in Monaco was another surface-contact variation. The system comprised two rows of studs staggered at 3 metre intervals. Each row was 30 centimetres from the running rails with one set for power and the other for control. Each tram had two skates beneath, but the same problems occurred, with power studs remaining live after the passage of the tramcar. The system operated from 1898 until replacement by overhead in 1903. In Prague, the Krizic system was installed to preserve the aesthetic qualities of the 650-year-old King Charles Bridge, a major tourist attraction across the Vltava River. The system was in operation from 1903 until 1908. In both, pickup studs were activated by remote electrical switchgear at trackside, unlike the more common group of systems using electro-magnets.

During his European expedition in 1899 (see section 2.12 above), Clifton Robinson inspected the surface-contact systems in Paris and Monaco. He recognised that they were less efficient than open-conduit, but also less expensive to install. Prior to his trip abroad, he had seen an experimental surface-contact system in operation at Willesden. This was the Thompson-Walker system, which had been developed to eliminate the risk of studs remaining live after the passage of a tram. The costs were substantially less than the open-conduit system adopted by the London County Council in other areas: between £8,600 to £9,500 per mile compared with £11,400 per mile. The LCC went so far as to recommend adoption of the Thompson-Walker system on some sections in west London. However, they rescinded their recommendation when it was pointed out that the roads in question had recently been reconstructed, and it would have been both

costly and politically embarrassing to begin again. Those particular sections were eventually fitted with overhead traction.

In 1905, the LCC were considering the expenditure of between £4 and £5 million on the electrification of their northern system of tramways. Consequently, several learned papers were produced urging the Council to consider the adoption of surface-contact systems as an alternative to overhead traction. One such paper set out a balanced assessment of the economic benefits and disadvantages of surface-contact, open-conduit, and overhead systems. W Noble Twelvetrees outlined the technical merits of various forms of surface-contact systems, and the problems associated with them, with the benefit of several years of operation. He concluded that although such systems were imperfect, they had passed beyond the experimental stage and deserved serious consideration as alternatives to both overhead and open-conduit traction.

Several other towns considered installing surface-contact traction, but eventually rejected it, mainly on cost grounds. After Sheffield City Council exercised its right to take over the horse-tramway system in 1896, a committee was formed to inspect other tramway operations with a view to expanding and electrifying the network. The committee was particularly interested in surface-contact traction as an inter-connector across the city centre, where it was felt that overhead wires would be intrusive. Nevertheless, after visiting several operations, the committee recommended overhead traction as it was cheaper to install.

245 The Street Railway Journal, Volume 16 (10 February 1900).
246 Ibid.
In 1906, the City of Oxford Electric Tramways Company, a subsidiary of the National Electric Construction Company (NECC), wanted to electrify its horse-drawn lines without using overhead wires. The overhead system was unthinkable in the city of dreaming spires, and open-conduits were deemed too expensive. The NECC proposed the Dolter system, which they were installing in Torquay and Mexborough. By then, defects were becoming apparent with the Dolter system in Hastings. Cautiously, in 1908 the city council wrote to Torquay for a report on the operations there, to which Torquay replied that the system seemed fairly satisfactory. Oxford agonised for another five years before the city council finally decided to introduce motor buses instead of electric trams in 1913.

Folkestone was another town where the NECC attempted to introduce the Dolter system. In October 1907, a council deputation visited the Dolter installation in Mexborough and travelled on a short length which had not at that stage been officially opened. It was said to be 'a great success'. Nevertheless, Folkestone decided against any form of electrification. As it was a relatively small network, it was considered better to continue with horse-drawn trams as a tourist attraction in the seaside town until 1921, when motor buses were introduced.

2.14 Conclusions

My starting point for this chapter was a quotation from Akrich, who claimed that a multi-layered network of actors exists in the development of any technological system. This was particularly true of urban transport, where an exchange of ideas

247 Barham, Torbay Transport, p.31.
produced innovation, sometimes through imitation and replication. At each stage, users and producers had an important part to play.

The introduction of an appropriate transport system was not merely a battle between entrepreneurs and inventors on the one hand, and the middle and upper classes on the other. It is true that wealthy and influential people, insulated from everyday life by privilege, did exert a disproportionate amount of power in the decision-making process as later chapters will show. But there were many other actors including local authorities, central government, and users further down the social scale.

Public transport gave greater freedom to many. Initially, however, the introduction of horse-drawn omnibuses made little impact. Horse-drawn trams had a much greater impact. Higher speeds meant that the effective range of travel doubled, and as a consequence, workers could live twice as far from their employment, giving them a wider range of residence. Urban mobility also enabled workers to seek employment at places previously too distant to contemplate. Employers too could relocate to more suitable areas in the knowledge that employees would be able to travel cheaply and more easily to work. For all its faults, and there were many, tram travel with improved frequency, convenience and accessibility revolutionized urban life.\(^{251}\)

Although tramways were presented as 'natural, technologically superior successors to uneconomical omnibuses' the fight to introduce them was not won easily.\(^{252}\) The carriage-owning community offered strong resistance, anxious to maintain the status quo. They were joined by wealthy merchants and landowners

\(^{251}\) Joyce, *Tramway Heyday*, p.9.
\(^{252}\) Schmucki, 'The Machine in the City', p.1062.
in opposition to these 'unnecessary intruders'. But despite the objections, horse tramways continued to increase in numbers, reaching their peak around 1884. They continued to operate alongside other forms of transport, but decline gathered pace and by 1914 there were few remaining. The decline coincided with a realisation of the limitations of horse-power, and of the range of mechanical options available. It was not solely due to the problem of urban pollution, important as that was. Technical, as well as social impulses, also played a part in the transition. Even so, as far as intra-urban transport was concerned, animal power proved to be far more flexible than the services provided by steam railways, except in the great cities.

Despite opposition, steam traction offered a ready-made mechanical alternative to the limitations of horse power, but the technology remained socially unacceptable except in certain industrial areas. While recognising the obvious hygienic disadvantages, many people still preferred horse traction. There was, however, a body of people who considered animal traction to be morally wrong, especially when horses were forced to work in hilly areas. Steam trams fulfilled an important role in providing a suitable alternative to animal power, but there were two key reasons why they failed to meet the demands of urban transport. Steam traction did not fulfil 'the environmental, aesthetic, and cultural requirements on the one hand, and the technical and economic requirements on the other'. Thus neither the users among the general population nor the tramway operators were content, a 'consequence of an urban culture that did not blindly embrace the machine'. Nevertheless, they co-existed uneasily with horse-drawn trams in many towns.
and for more than twenty years were developed and improved by designers in response to the many complaints from users, local authorities and regulators. The cable system was the only serious competition to steam trams in the pre-electric period, although its viability in the UK was confined to Edinburgh. In the USA, there was a distinct phase of investment in cable traction before electrification. In San Francisco with its hilly topography and grid-pattern street layout, cable traction is still in operation although mainly as a tourist attraction.

The social implications of technological progress became more prominent as the century progressed. The Fabian Society considered all the electric traction options and concluded that conduits were dangerous to bicycles because of their deep slots. Furthermore, in line with the growing Victorian perception that a progressive society needed to embrace moral issues, they held that ‘people who are sensitive to overhead traction have no objection to the sight of horses straining with their loads, or the intolerable uncleanness of streets, or the employment of boys in the disgusting labour of cleaning up’. Although this apparently powerful case for overhead traction was not immediately accepted everywhere, an argument was clearly developing on both sides of the debate. If overhead wires were unacceptable on aesthetic grounds, what about the environmental impact of the tons of manure deposited on the roads and the visible suffering of horses?

Inventors and entrepreneurs seized the opportunity to change from animal power to mechanical traction. They were not driven by altruistic motives but pursued personal fortune in the quest for new systems. Innovation and experimentation continued throughout the last decades of the nineteenth century. Although not particularly successful, even accumulator cars performed a ‘valuable pioneering

258 Buckley, History of Tramways, p.36.
function in awakening decision-makers to the possibilities of electric traction.260 In the central areas of London, an open-conduit system - deemed environmentally acceptable although technologically more difficult to install and more expensive than surface-contact - was adopted to complement overhead systems in the suburbs. Other forms of traction failed to attract the capital needed to improve the prototype. The reasons for this could be attributed to external causes, among them timid investors and inferior materials.

Several cities did consider surface-contact traction but rejected it on the grounds of cost and unreliability. Local and geographical circumstances also played a part.261 The debates were characterised by indecision and fraught with opposition from many sides. Although Wolverhampton was not alone in its long deliberations before finally adopting surface-contact traction, it was the only town in the UK where the system lasted for the best part of two decades (see chapter 3). Since it was also the first adopter in the UK, it was expected by contemporary observers to go down in history as the pioneer of the surface-contact system.262

A professional journal had concluded rather testily that overhead was the only viable solution despite the artificial obstacles of law, prejudice and vested interests. Championing overhead traction, the journal commented that 'it was bitterly opposed in some quarters, but has won by utility and unobtrusiveness, thanks to English neatness and pride'. The journal considered the excess of scroll work on support columns in an effort to placate environmentalists as 'a mistake and intrusive'.263 Clearly, these views were not universally supported.

260 Buckley, History of Tramways, p.53.
261 Mom, The Electric Vehicle, p.9.
262 The Tramway and Railway World, Volume 10 (12 September 1901), p.483.
263 The Electrician, Volume 51 (24 April 1903), pp.28-29.
Generally, the coming of tramways with their colourful cars added to a feeling of well-being for townspeople.264 Great crowds were drawn to systems' opening ceremonies, usually performed by important public figures. Great excitement was generated by the press 'with the attractions of a novelty and the thrill of a new experience'.265 But the opposition still felt they were taking up physical space, and dominating roadways at the expense of carriages. The next chapters consist of case studies of the towns where the reasons behind the adoption of surface-contact traction are explored.

CHAPTER 3 – WOLVERHAMPTON: AN INDUSTRIAL CITY

'Victorian Wolverhampton was proud, wealthy, perhaps slightly vulgar, but above all vigorous'.

3.1 Introduction

I have chosen Wolverhampton as a key focus because all of the elements which fuelled the debates about traction choices existed there before the final decision to adopt the controversial surface-contact system was made. In its relationship with Birmingham and the Black Country, Wolverhampton clearly considered itself to be different. The city fathers were unperturbed by the spectre of isolation, and were quite prepared to make independent decisions regarding transport. In this chapter, I trace the development of Wolverhampton and examine the societal issues that influenced its decision-makers. I also consider the city's economic development, urban form and political complexion of the key actors who guided the council through the procedure.

Wolverhampton was a former market centre slowly accumulating factories and other forms of industrial activity to become a thriving hub. Throughout the nineteenth century, expansion continued rapidly, not only in size but also in the complexity of its industries. The process resulted in the reinvention of itself as a vibrant Victorian city. By 1905, local industry had evolved and diversified, and produced a wide variety of artefacts. Resourcefulness and continued success was

expressed in a justifiable sense of civic pride in the 'good old town', an expression of affection and familiarity frequently used by its townspeople.

A hierarchical structure developed within the towns of the West Midlands. Birmingham tended to dominate its immediate Black Country neighbours, while the smaller surrounding towns were overshadowed by Wolverhampton, even though each developed its own institutions. The situation was unlike that in the Lancashire conurbation, where Manchester had a much greater influence on Salford and its satellite towns. Wolverhampton became an economic nucleus for the surrounding Black Country towns.

By the end of the nineteenth century, the British Electric Traction Company (BET) had purchased tramway operations in the adjacent towns. The company's grand plan was to combine all systems in the Black Country, including Wolverhampton, into one unified operation using overhead traction, but Wolverhampton strongly resisted any attempts by BET to interfere within its boundaries.

Initially, Wolverhampton had considered the installation of the standard overhead system, but not all councillors were persuaded, pointing to the visual intrusion of the wires. After a brief experiment with Kingsland mechanical traction, a small committee visited Paris to view the surface-contact systems in operation there. Consequently, it was decided to adopt the Lorain system, but in two separate phases as the technology was relatively unproven. The first phase received

cautious approval from an independent assessor, but before the second phase began, debates began in earnest within the council chambers about whether protection of the environment merited the extra costs involved. The controversy was fuelled by conflicts, tensions, and power struggles between the various actors. The consequent cautious approach to decision-making led to a network of technical, social and cultural interactions.\(^5\) Isolation from Wolverhampton’s Black Country catchment area, due to incompatibility with the BET network, added to the protracted disputes.

At the forefront of discussions was the aesthetic and environmental impact of an acceptable system. Schmucki suggests that much of the opposition to tramway electrification ‘functioned as a surrogate for other political and financial arguments’ rather than for aesthetic reasons.\(^6\) Primary source information about Wolverhampton indicates that there were indeed many forces at play. These are explored in the following sections.

3.2 The geological divide

Wolverhampton’s location played an important part in generating a sense of independence, which eventually became reflected in the traction debates. The city is situated at the edge of the Black Country, a collection of historic market towns and industrial villages to the north-west of Birmingham on the now largely defunct ‘ten yard coal seam’. Geologically and geographically, the city is not located entirely within the Black Country. The northern and western suburbs rest above rich fertile clay, while the southern and eastern suburbs overlie seams of coal.

ironstone and limestone. The dividing ridge forms a watershed between the River Severn to the north-west and the River Trent to the south-east.

Over time, Wolverhampton became recognised as the unofficial capital of the Black Country, a ‘shock city of the Industrial Revolution’. The city developed its own traditions and local culture, and had a particular identity of its own. Although only some fifteen miles north-west of Birmingham, it could not be described as a dormitory, but was a city in its own right with an independent economic life. As such, it became a regional magnet, drawing in commerce and economic activity, and exerting influence over a large area.

The exploitation of the coal seam and the resulting intensity of manufacturing led to the Black Country being described as ‘black by day and red by night’ by the visiting American consul in 1862. The appalling physical environment and the effect on its people are best described by a contemporary author:

Blackness everywhere prevails; the ground is black, the atmosphere is black, and the underground is honey-combed by mining galleries. By night, the roaring furnaces are seen for miles around, pouring forth their fierce throbbing flames like volcanoes. The hundred chimneys of iron-works display their blazing crests.

The process of industrialisation led to a great expansion of Wolverhampton in the eighteenth and nineteenth centuries. In the first half of the nineteenth century,

growth patterns tended to be dominated by resource-based industries. Small industries were established for the manufacture of iron, steel and brass goods. Skilled workmen were attracted from far afield. Merchants followed, some with agents in the colonies, in continental Europe, and India to market their goods. Consequently, agricultural activities declined in importance. The population rapidly increased, and a new spirit of enterprise developed.

Underlying geology played a major role in the demographically divided pattern of residential development of Wolverhampton. The pleasant western suburbs of Tettenhall and Penn, bordering the rich farming county of Shropshire, became the province of wealthy industrialists and professionals. In the south-eastern suburbs, mining areas suffered severe pollution from the associated heavy industries. Poor-quality housing predominated, and social services were practically non-existent. The prevailing winds ensured that the living environment in the west remained agreeable, while pollution and smoke from factories continuously affected the eastern areas and the rest of the Black Country.

The politics of the city reflected this division. The Anglican Conservatives representing wards in the west were anxious to do nothing which might detract from their environment, while the Liberals representing the eastern suburbs were more concerned with social injustice and the perceived need to improve the lives of the poorer members of the community. Even steam tramways were acceptable along the grimy southern route to Dudley, but an experimental trial was quickly dropped along the tree-lined route to Tettenhall, despite its popularity (see section 3.7).

Between 1876 and 1890, Wolverhampton and the Black Country were beset by an economic depression, caused by declining natural resources, inefficient methods of production, and increased external competition. Several ironworks in the city closed down, badly affecting the working-class east end where factories were located. As the century's end neared, however, many of the economic problems had been overcome by diversification into higher-skilled metal work, and the city began to grow in confidence once more.

3.3 Modelling Wolverhampton's development

As in other large towns in the UK, several slum areas developed during the industrialisation phase in Wolverhampton. Public transport was poor, and inevitably, heated exchanges occurred during council debates about priorities for solving the problems. Should resources be spent on alleviating poverty or providing a new transport system?

The growing population was crammed at maximum density into slum courts and alleyways near their workplaces. This process of central infilling caused overcrowding and made central areas unattractive to wealthier residents. One such area was the notorious Caribee island slum, which bordered the centre. It was described disdainfully as 'an open gutter where disease thrived, inhabited by the lowest class of humanity'. Caribee island was the epitome of 'the other', resonating with contemporary writers' equating of working-class areas with darkest Africa. Social segregation induced the fear of the 'unknown and irreligious masses

15 Smith, 'Industrialisation and Social Change', p.137.
16 Ibid, p.139.
17 *The Wolverhampton Chronicle*, 17 August 1849.
inhabiting these regions. Contemporary writers pandered to the fear of the masses by the middle classes, who 'panted for stories about the exploration of the dark city, mysterious and filled with all kinds of enormity'.

In Wolverhampton, there was a constant stream of unskilled Irish, Welsh and Russian Jewish immigrants, with limited financial resources. The immigrants lived in high-density ghettos with crowded tenements, narrow courts, and dark alleyways which constrained space. To satisfy the middle classes' craving for sensationalism, the press presented the inhabitants of these areas as a morally problematic and dangerous urban underworld. The trade magazine, *The Builder*, described the area as frightful, 'like the settlement of a tribe of Indians', and wondered how the civilized upper classes of Wolverhampton could allow such an area of abject poverty to exist. This was socio-economic and migrant segregation at its worst, and was to become a key factor in later debates about tram traction.

The growth of such areas may have reinforced the desire of the wealthier classes to maintain a distinct cultural identity. There was certainly fear and a feeling of menace to the established order generated by the explosion of population. In general, the higher echelons of society 'beheld a danger to security and to all pleasant things' in their presence. Of course, Wolverhampton was not the sole instance of the phenomenon. Other large towns were experiencing the same process. However, Wolverhampton's social segregation represents a prime

20 *The Builder*, August 1872.
example of Ward's two nations of rich and poor between whom there was scarcely any contact. 22

Housing patterns began to reflect social segregation. The wealthier townspeople migrated to large villas with gardens in the more rural suburbs. 23 In fashionable Tettenhall, they could escape to enjoy the country air. The inhabitants looked to Wolverhampton as the source of their wealth, but westwards to rural Staffordshire for their identity as village residents. One author writing about Tettenhall called this phenomenon 'urban schizophrenia, with frontiers no one but local people could see, but which had a profound effect on public transport, housing, and the social life of communities'. 24

In fact, segregation became even more marked as middle-class townspeople moved to the new residential districts. 25 They set up homes in more modest houses in regularly laid-out streets in Penn. 26 The provision of surface-contact trams through these upper- and middle-class suburbs enabled development without detracting from the environment. Both areas contrasted sharply with the wretched Caribee Island slums. However, development was quite unlike that experienced in other cities. In Manchester, for instance, the working-class areas stretched like a girdle around the commercial district. Outside that girdle lived the upper classes and the bourgeoisie. 27

The development of the urban spatial structure of Wolverhampton was complex and cannot be described easily by sociological models. The city is not organised into clear zones, but developed in a series of sectors. Certain areas became attractive for different reasons. Like many other cities, there was a central business district at the core, but as development occurred, activities expanded in a wedge from the centre (see Appendix 6).\(^{28}\) High-class housing grew linearly along an axis to the north through Chapel Ash to Tettenhall, with middle-class housing to the west in Penn. Heavy industry, coal mining and working-class housing was located in the east and south east. Development therefore was more in line with Hoyt’s sector theory of neighbourhood change.\(^{29}\) In this model, ‘different types of residential areas tend to grow outward along distinct radii, and new growth on the arc of a given sector tends to take on the character of the initial growth in that sector’.\(^{30}\) In Wolverhampton’s case, surface-contact tramlines followed those radii and enabled a corridor of growth to the more attractive suburbs.

Neither does the city’s pre-industrial imprint conform to either Sjoberg’s model or Burgess’s later modification. Development tended to be linear along well-established lines of communication rather than within a pattern of concentric zones.\(^{31}\) Topography and underlying geology were therefore significant factors in shaping the urban environment.

\(^{30}\) Ibid.
3.4 Demographic diversity – a profile

The Industrial Revolution produced a mass migration of people seeking employment into Wolverhampton and its suburbs, resulting in a rich demographic mix. Rapid expansion led to a feeling of dominance over the adjacent Black Country towns. In consequence, little consideration was given to their views about traction choices. As a result, the smaller towns and particularly Bilston, did not hesitate to encourage the British Electric Transport Company to frustrate Wolverhampton as the arguments in section 3.8 show.

Some of the population growth can be explained by inward migration from the surrounding countryside and other West Midlands towns, but new inhabitants also arrived from elsewhere. In 1851, 1 in 8.3 of the residents, approximately 6,000, was of Irish descent, and by 1871 this had grown to 1 in 5.7, approximately 12,000 people.\(^{32}\) The majority of the Irish immigrants became permanent residents, but many lodging houses also appeared for transients.\(^{33}\) The graph in Appendix 7 indicates the rapid population growth compared with other target towns. In 1899, Weber commented that of his seventeen great cities, only London, Wolverhampton and Portsmouth had attained consistently high growth rates in the mid-nineteenth century.\(^{34}\)

<table>
<thead>
<tr>
<th>Year</th>
<th>Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>1801</td>
<td>12,566</td>
</tr>
<tr>
<td>1811</td>
<td>14,836</td>
</tr>
<tr>
<td>1821</td>
<td>18,380</td>
</tr>
<tr>
<td>1831</td>
<td>24,732</td>
</tr>
<tr>
<td>1841</td>
<td>36,382</td>
</tr>
<tr>
<td>1851</td>
<td>49,985</td>
</tr>
<tr>
<td>1861</td>
<td>60,860</td>
</tr>
<tr>
<td>1871</td>
<td>68,291</td>
</tr>
<tr>
<td>1881</td>
<td>75,766</td>
</tr>
<tr>
<td>1891</td>
<td>82,662</td>
</tr>
<tr>
<td>1901</td>
<td>94,187</td>
</tr>
<tr>
<td>1911</td>
<td>95,328</td>
</tr>
</tbody>
</table>

Table 3.1 – Population statistics for Wolverhampton.\(^35\)

The suburbs also experienced population growth, but not to the same extent. At the end of the nineteenth century, Wolverhampton’s neighbouring industrial areas were yet to be absorbed into the main city. To the south and east were the grim districts of Heath Town, Bilston, Sedgley, Willenhall and Wednesfield, while to the north-west lay the leafy suburb of Tettenhall, bordering on Shropshire. Heath Town was swallowed up in 1927 while the remainder remained separate municipal entities until 1966, with the following populations:

The influence of Wolverhampton on its surrounding townships can be inferred from the size of its parliamentary constituency. In 1851, the municipality had a population of 49,985 whereas the parliamentary constituency comprised 119,748 people.\(^{39}\)

As the city grew, an academic source defined its Victorian identity as ‘proud, wealthy, perhaps slightly vulgar, but above all vigorous’.\(^{40}\) The sense of importance which Wolverhampton attached to itself is implied in Trainor’s reference to the resentments felt by the smaller towns in the Black Country.

\(^{37}\) http://www.historywebsite.co.uk/articles/Wednesfield.nineteenth.htm (accessed on 10 July 2009).

\(^{40}\) Albutt and Amison, Victorian Wolverhampton.
towards 'pretentious larger towns' such as the dynamic and progressive Wolverhampton. For Bilston townspeople, the proximity of Wolverhampton was 'more of an irritant and a drain on civic talent than a spur to initiative'. These feelings 'diminished as the smaller localities began to acquire their own institutions' and become more established. Through this process, the neighbouring towns acquired some of the urban characteristics and amenities that the larger and longer-established towns enjoyed.

Shopkeepers played a particularly important role in the development of urban social relationships in smaller manufacturing centres. In Bilston, around 45% of the middle class were shopkeepers in the mid-nineteenth century. However, there were many small shops in the mining areas of Wolverhampton run by miners and their wives. They were 'far more working class than middle class enterprises', but nevertheless played a vital role in the economic development of their working class communities.

By 1900, 'even Bilston enjoyed a town hall, public baths, a free library, recreation grounds, and a school for art and technical subjects'. Yet Bilston still looked to Wolverhampton for its representation in Parliament, justices of the peace and school boards. Although the smaller towns therefore had some degree of autonomy, they still had to acknowledge their 'relatively humble place in the urban hierarchy'. Bilston in particular suffered most from its chief adversary Wolverhampton, until it was eventually absorbed by its larger neighbour. Bilston

44 Morris and Rodger, 'An Introduction to British Urban History', in Morris and Rodger, p.32.
48 Ibid, p.264.
did, however, play an important independent role with its ally BET, in the surface-contact controversy at the turn of the century, when it remained firmly committed to the overhead system of traction.

3.5 The evolution of local government

Local government played a crucial role in the determination of traction choices. Decisions were made in the council chambers, usually on the advice of expert officials, although strong-minded individuals sometimes shaped the argument as happened in Wolverhampton. The city's political development followed a fairly typical pattern, except for the intervention of powerful councillors on key decisions.

Traditionally, the parish was the unit of administration and the focus of local affairs, with the body of parishioners meeting in the church vestry to raise any necessary money for highway maintenance and general improvements. The vestry therefore became an important centre of power in the decision-making process.

However, the rapid growth of towns during the Industrial Revolution generated new needs, such as improved highways, street paving, lighting, and better public health and transport facilities. Separate local authorities were set up with powers to deal with these issues, but these ad hoc arrangements eventually resulted in a confusing pattern of authorities with little overall coherence or direction.48

In recognition of this problem, new local authorities were established outside of London under the Municipal Corporations Act, 1835. They were usually created in the most active, expanding urban settlements. The municipal borough authorities

that were created were notably diverse. Indeed their functions were refashioned according to their political vitality and dynamism. In some towns, there was very little change. In others, there was an 'air of revolution'.

By 1841 there was a general feeling that Wolverhampton was sufficiently advanced to manage its own local affairs. However, the movement for change was not universally accepted. There was opposition on the grounds that incorporation would lead inevitably to an increase in rates, the burden of which at that time was mainly borne by businessmen and shopkeepers. Nevertheless, a series of meetings were held by prominent citizens, resulting in a petition to Queen Victoria in February 1847 to grant a Charter of Incorporation. The compelling reasons given were that Wolverhampton possessed the three necessary qualifications of wealth, intelligence and population. By that time, the population had grown to more than 40,000. On 18 March 1848, the Charter of Incorporation was granted.

In the mid-nineteenth century, the Black Country generally lacked an organised framework of local government. In fact, the want of financial resources, power and expertise greatly affected its ability to deal with worsening urban problems. Wolverhampton, however, began to emerge as an economically diverse and progressive town. The local politicians were by no means one-dimensional. As the town matured politically, a significant overlap began to develop between the leaders of local government and philanthropy. Some elites considered

52 Ibid.
53 Ibid, p.29.
'generosity with assets as well as time was a fundamental duty in making the conditions of human life as favourable as circumstances would allow.' The perceived duty to lead in pursuit of the common good was encased in firm confidence in the basic principles of the Victorian economy, society and polity. Some councillors held that the provision of basic infrastructure, such as water, sewers, road improvements, and lighting, was sufficient to fulfil their duties. Others believed that it was their duty to contribute to the social, moral and intellectual advancement of the townspeople. Although the process was less than smooth, Wolverhampton's municipal gospel was eventually considered to be a 'model of civic achievement', much admired by surrounding towns. During later debates, moral and economic issues were prominent once again. Such beliefs set councillors on a collision course when expenditure on tramway systems was being discussed and became even more pronounced when debates about surface-contact traction were raging.

Civic pride and idealism were to the fore in many other Victorian towns. Wolverhampton clearly had both in abundance. Policies engendered civic unity on the one hand, but a more sinister form of social control on the other. However, the overall effect was to promote among townspeople a community spirit towards their 'good old town'. Wolverhampton's city fathers were considered to be 'experimental, adventurous, and diverse'.

56 Trainor, Black Country Elites, p.133.
57 Ibid, p.279.
59 Briggs, Victorian Cities, p.185.
One of the illustrious residents, the poet John Corfield, had advocated as early as 1877 ‘snatching the lightning’ for the benefit of mankind (see Appendix 15). Once the Wolverhampton Electric Lighting Order finally received royal assent in 1890, a Lighting Committee was formed immediately afterwards, under the Chairmanship of the energetic moderniser Sir Charles Mander. The first electric lights were erected in 1893 and two years later, the lights in Queen Square and the surrounding streets in the city centre were switched on by no lesser person than Lord Kelvin, then President of the Royal Society. The power station in Commercial Road finally completed in 1894 included two generating units dedicated to tramways in anticipation of their electrification. Subsequently, in another example of technological embrace, Wolverhampton was to install an auxiliary generator at its destructor plant in Crown Street to provide 750 kilowatts of electricity from waste products.

As well as a time of notable technological development, the latter part of the nineteenth century continued to be a period of reform for local government. There was an awakening of public spiritedness, and a more active popular interest was encouraged in local government affairs. As towns increased in size, those with a population of at least 50,000 were designated County Boroughs under the Local Government Act, 1888. These were all-purpose local authorities, large enough to be able to run all local services including transport. In this category were not only Wolverhampton, but also Lincoln, Hastings, and Torquay.

60 'The story of electrical supply in the Wolverhampton area', chapter 1, p.1
http://www.historywebsite.co.uk/articles/electricity/Electricity.htm#menu (accessed on 10 July 2011)
62 The Tramway and Railway World, Volume 11, 13 Febr
63 Jackson, Local Government, p.49.
By the end of the nineteenth century, Wolverhampton Council had developed into a pluralist, politically mature entity. The social composition was as follows:

<table>
<thead>
<tr>
<th>Occupation</th>
<th>1888-1900</th>
<th>1900-10</th>
<th>1910-1919</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturer</td>
<td>33</td>
<td>27</td>
<td>27</td>
</tr>
<tr>
<td>Shopkeeper</td>
<td>23</td>
<td>20</td>
<td>23</td>
</tr>
<tr>
<td>Drinks trade</td>
<td>11</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>Professional</td>
<td>16</td>
<td>21</td>
<td>27</td>
</tr>
<tr>
<td>Administrators</td>
<td>6</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>Workmen</td>
<td>6</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Women</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Retired</td>
<td>5</td>
<td>7</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 3.3 - Occupational composition of Wolverhampton’s councillors (Figures are in percentages).\(^{65}\)

Thus, in common with many other large cities, there was a steady rise in the number of professionals on the council at the expense of shopkeepers and industrialists. The newcomers were lawyers, medical men, estate agents and accountants. The councillors were by now fairly evenly divided between the

Conservatives and the Liberal parties. By the turn of the century, the socialist influence was growing and there were five Labour members serving on Wolverhampton's council.66

For the councillors who were business men and shopkeepers, town politics involved a conflict of interest. They had to balance their business interests on the one hand against those of the ratepayers and townspeople on the other. Among the councillors, it was not unusual for families to become linked through marriage and business transactions.67 Social exchange and membership of the same church groups were frequent between councillors of similar political leanings.

The important position of the mayor with its trappings of grandeur was usually filled by men of wealth and high social standing. It was advantageous if they could 'give money to local charities and patronise the town's good causes'.68 Hospitals, schools, libraries and churches were amongst the beneficiaries. Many of Wolverhampton's mayors gave of their time and money, but Sir Charles Mander, the champion of surface-contact systems, was particularly renowned for his good deeds.

In order to deal with the rising workload, the council employed more than eighty paid officials by 1905. By then there were twenty committees each with separate responsibilities.69 (see Appendix 8). Foremost among the officials was Sir Horatio Brevitt, the Town Clerk and Solicitor from 1882 to when he retired in 1917. He regarded himself as the town governor and the leading man in Wolverhampton. Powerful public officials often had a considerable say in policy as well as

66 Trainor, Black Country Elites, p.256.
69 Smith, Ingenious and Daring', p.115.
administration. Brevitt frequently over-stepped the mark, declaring himself a public official, not a council servant. He strongly believed that he had the independence to decide which orders to carry out, and to the dismay of many councillors acted accordingly.\(^{70}\) He promoted the Wolverhampton Tramways Act of 1899 and represented the Corporation in litigation over the acquisition of the tramways. He was knighted on 13 January 1915 for services to the borough.

3.6 Early transport networks

The first horse-drawn omnibus in Wolverhampton appeared in 1833, when George Bayley introduced a service from the suburb of Darlaston to the city centre. He used a nine-seat vehicle alternating with a service to Birmingham.\(^{71}\) In 1835, John Doughty began a service from Birmingham to Wolverhampton, and in September 1836, the Midlands Omnibus Company commenced a similar operation, followed by the Birmingham Omnibus Conveyance Company in the same year. Others quickly followed, and by 1838, a service to Shifnal and Ironbridge in Shropshire was introduced by Rushton's Omnibus, operating twice a week, with other services to the neighbouring towns of Wednesbury and Willenhall.\(^{72}\) By the 1850s, regular local omnibus services and hackney cabs were radiating out from the centre of Wolverhampton. These services continued after the introduction of horse-drawn trams. To accommodate growth, the first cab stand was provided in 1845, although omnibus services had no recognised stopping places en route. The drivers relied upon requests from the public. The first cabmen's rests and shelters were introduced in 1874 to protect them from the elements.

\(^{72}\) Ibid, p.8.
Shortly after horse tramways appeared in London and other major towns, Wolverhampton Council received a letter dated 22 September 1876 from W Webb of Queen Victoria Street, London, stating that 'a group of influential gentlemen' were interested in laying tramways in the city. The letter requested a meeting between the council, Webb, and the group's engineer, Joseph Kincaid.73 Identical terminology was used in correspondence from a tramway promoter to Hastings Council in 1896.

A further letter dated 13 October 1876 proposed three routes, from Wolverhampton city centre to Tettenhall in the north west, city centre to Willenhall in the east, and from Five Ways to Bilston in the south east (see the map at Appendix 9). Subsequently, the Wolverhampton Tramways Company Limited, with registered offices at 3 King Street, London, was formed on 14 December 1876 with the aim of developing a network in the city. A share issue of £100,000 was raised to finance the purchase of horses and tramcars, and to enable construction to commence. The Company promoted the Wolverhampton Tramways Order 1877, which was confirmed on 23 July 1877, enabling the Company to construct three lines radiating out from the centre like the spokes of a wheel.74 The Order contained mostly standard clauses, one being that the Council was given compulsory purchase powers at any time within ten years after opening, and again after 21 years. A more noteworthy clause prohibited passenger traffic on the track in the High Street, thus preventing through-running across the centre. At that stage, the introduction of a tramway system was not controversial and indeed was welcomed.75 The original intention was to operate by steam power, but due to many local objections, the Order was granted for the use of animal power only. In

73 Note. Joseph Kincaid (1834-1907) was a successful promoter, responsible amongst other projects for the Highgate Hill cable tramway.
74 Williams, By Road and Rail, p.8.
75 Ibid.
December 1877, the Company's head office moved to 23 Queen Victoria Street, in London.76

The Wolverhampton Tramways (Extension) Order, 1878, enabled a further extension outside the boundaries from Bilston to Moxley.77 Construction on all lines commenced early in 1878 under the direction of the contractor, W T Mousley of Clifton.78 The offices and main depot were in Darlington Street, with another depot situated at Newbridge and a third at the Moxley terminus.79

On 30 April 1878, the Board of Trade inspector, General Hutchinson, visited and approved the line to Tettenhall.80 A trial run watched by many interested spectators took only 12 minutes for this one-mile five-furlong section. The public service began to great acclaim at 8 am on 1 May 1878 for a fare of 2d for the full distance. The tramcars were one-horse single-deck, manufactured by Stephensons and Hughes.81 A chain horse could be brought into service to assist on the climb up Darlington Street into the city centre. The cars were able to seat either 18 or 22 passengers.82 The route to Willenhall was completed in mid-May and opened to traffic on 6 June 1878, while the longest route to Bilston opened in mid-July. These routes were operated by Hughes two-horse double-deckers to accommodate passenger demand.83 By 1880, 8.55 route-miles of tramway were open to the public, comprising 1.825 miles of double-track and 6.725 miles of

76 Webb and Addenbrooke, \textit{A History of Wolverhampton}, p.10.
77 ibid.
78 Williams, \textit{By Road and Rail}, p.8.
80 Williams, \textit{By Road and Rail}, p.8.
82 Webb and Addenbrooke, \textit{A History of Wolverhampton}, p.10.
83 Turner, \textit{The Directory of British}, p.160.
single-track. 1,616,349 passengers were carried by 17 tramcars, and the Company owned 119 horses. 84

3.7 The steam tram experiment in Wolverhampton

As other towns began to experiment with and introduce other forms of motive power, Wolverhampton Tramways Company also considered a more efficient and acceptable alternative to its horse tram system. 85 Because it had been originally intended to use steam power, an experimental steam-traction system was introduced on the Tettenhall route between May and November 1881. The rolling stock comprised a Hughes locomotive hauling a pair of double-deck cars especially adapted for the purpose. 86

At the time, houses along the Tettenhall Road were substantial, belonging to society's professional classes, and the existing horse-tramway route acquired a prestige and status that made it the Company's premier line. 87 The newest cars were directed there, under the charge of the most senior drivers, who wore white bowlers to distinguish themselves from the others. 88

The route chosen as a testing ground for the steam tram was a section of Telford's original London to Holyhead trunk road, and as such was one of the widest thoroughfares in the city. 89 The Wolverhampton Tramways (Mechanical Power) Order of 1880 authorised the Company to have a six-month trial period. The trials

84 Board of Trade, Returns of Street and Road Tramways, Parliamentary Papers, (House of Commons Session 1880, Volume 64, No 264).
85 Williams, By Road and Rail, p.10.
88 Williams, By Road and Rail, p.10.
89 Neil Raven and Jon Stobart, 'Networks and Hinterlands: Transport in the Midlands' in Stobart and Raven (eds), p.82.
began on 4 January 1881, and were officially inspected by General Hutchinson of the Board of Trade on 28 January.90 In the middle of May, the Board of Trade issued a certificate of approval, and the steam tram began its revenue-earning experimental period on 18 May.91 Over the next six months, it travelled nearly 7,857 miles, and hauled over 70,360 passengers without incident.92

The steam tram operated alongside horse-drawn trams, also without incident, and appeared popular and successful. Nevertheless the Council refused a further six-month extension of the trials.93 Whether the elegant residents of Tettenhall Road objected to the noise and smoke, or whether its smooth efficiency compared to horse-drawn trams was opposed by the Company’s general interests (they made no attempt to introduce steam trams elsewhere in the city) is hard to determine. It is more likely that the cessation of the experiment reflected the increasing dominance over the development of Wolverhampton’s tramways wielded by the well-heeled residents of Tettenhall Road. The intrusion of steam trams was not welcome.

Despite the decision against it, Council minutes show that general opinion in the city was in favour of the steam tram, and Councillor Burkitt organised a petition in favour of its retention, eventually signed by 2,338 people from various echelons of Victorian Wolverhampton’s society.94 At a Council meeting on 21 November 1881, the motion to retain steam was defeated by 19 votes to 14, with fierce opposition led by Alderman Sir John Morris and Councillor Williams, who declared the steam

91 Williams, By Road and Rail, p.12.
93 Williams, By Road and Rail, p.12.
This contrasts with the ready adoption of steam traction in nearby Black Country towns, as well as five years later on another route in Wolverhampton itself through less salubrious areas, by the Dudley, Sedgley and Wolverhampton Tramways Company. The elite gentlemen in their own carriages disliked sharing the road with 'coke eating beasts'. The process demonstrates that the rich and powerful in Victorian society could still have a significant effect on the lives of their fellow citizens. And so the experiment was terminated.

3.8 A separate enterprise in Wolverhampton

Meanwhile, to the south of the city, the Dudley, Sedgley and Wolverhampton Tramways Company Limited was incorporated on 20 December 1879 to link the Black Country towns of Dudley, Upper Gornal and Sedgley with Wolverhampton. The Dudley, Sedgley and Wolverhampton Tramways Order, 1880 was enacted and the standard-gauge line opened on 7 May 1883. Services began with seven Ashbury horse cars, but the Company decided very early on to use steam because of the gradients and undulating nature of the roads, which were particularly severe on the approaches to Sedgley from both directions. In places, the tramcars had needed three horses to pull them. Steam traction at the time was a relatively familiar power source compared with electric traction, which was in its infancy.

95 Williams, By Road and Rail, p.13.
100 Turner, The Directory of British, p.55.
Recognising the importance of Wolverhampton's system, the gauge was constructed to match the standard gauge of the city. The other lines within Dudley, Stourbridge and Kingswinford were built to 3' 6" gauge.101 The adoption of standard gauge was surprising as there was no direct interconnection between the two systems. The Dudley, Sedgley and Wolverhampton network terminated on Snow Hill, just south of Queen Square which was the focal point of the Wolverhampton Tramways Company system (see map at Appendix 9).102

An order giving the necessary powers to operate with steam was obtained in 1884. Horse traction ceased on 8 November 1885 so that track laying could commence, and steam traction began on 16 January 1886.103 When operated as a steam tramway, the system used an unusual type of rail section with a centre grooved rail. The only other examples of this design were Liverpool horse tramways, and Hull and Doncaster overhead-traction electrical systems in the early 1900s.104

To begin with, five Kitson locomotives together with five top-covered bogie saloon cars operated the system, a further four locomotives being added later.105 The Company was unsuccessful, however, and went into liquidation in March 1888.106 It was purchased on 6 April 1889 by contractors Oppert and Fell, who sold it on 18 October that year for £44,000 to the Midland Tramways Company.107 This enterprise was reconstituted in 1893 as the Dudley and Wolverhampton Tramways

101 Webb and Addenbrooke, \textit{A History of Wolverhampton}, p.15.
102 Turner, \textit{The Directory of British} p.55.
103 Webb, \textit{Tramways of the Black Country}, p.12.
105 Webb and Addenbrooke, \textit{A History of Wolverhampton}, p.15.
106 Turner, \textit{The Directory of British}, p.56.
107 Ibid.
Company, but difficulties remained as the line was under-stocked and services were poor. Only a forty-minute service was possible between the two termini.\(^{108}\)

The Company went into voluntary liquidation, and the British Electric Traction Company (BET) purchased the assets from the receiver on 22 April 1899 for £18,900.\(^{109}\) The ambitious BET had already been active in the Black Country, crossing swords with Wolverhampton’s town clerk in March 1899. The town clerk asked ‘is it not your object in surrounding Wolverhampton with tramway schemes to force the Corporation to grant a lease to your Company?’ BET replied ‘the object is to prevent the Wolverhampton tramways from being crippled by the Wolverhampton Corporation’\(^{110}\). BET had reckoned without the city’s fierce independence. BET’s plan was to combine all systems for the whole of the Black Country into one great system, if the local authorities would agree to postpone their right to purchase the tramways ‘for the price of old iron’ for a few years.\(^{111}\) The intention was to install an electrically operated overhead system under one management, with one method of operation, and a common gauge. Extensions would be provided in all directions, with frequent services and convenient, comfortable and rapid communications.\(^{112}\) Although ambitious, the plan was not unrealistic given the ‘eighty square miles of a vast industrial centre of unsurpassed importance, between Wolverhampton and Birmingham, containing more than one million people’.\(^{113}\) Within the Black Country, there was no unified system. The network comprised fifty-four miles of tramway route with two different gauges, worked by three different methods, and owned by five separate companies.

However, Wolverhampton’s councillors viewed BET with suspicion as they stood in the path of the council’s plans to take over all operations within the city to their own specification. Politically, they wanted to keep the industrial giant at arm’s length.

In an attempt to force the city’s hand on the demise of the Dudley, Sedgley and Wolverhampton network, BET promoted the Dudley and Wolverhampton Tramways Order 1899. The order gave Wolverhampton Council the power to purchase the mile or so of track within its boundaries. However, relations between BET and Wolverhampton deteriorated, and BET refused to sell. Both BET and Wolverhampton Corporation attempted to obtain control of those sections outside the boundary on the Bilston and Willenhall routes, but after protracted negotiations and arbitration they were finally purchased by BET. Wolverhampton gave an undertaking not to acquire or work on any tramways outside their boundaries in the districts of Bilston, Coseley, Darlaston, Sedgley, or Willenhall without the consent of BET.

The dispute was considered by a Board of Trade appointed arbitrator, Sir Frederick Bramwell. Wolverhampton agreed to pay BET £22,500 plus the costs of arbitration. The settlement included all consumable stock on 1 May 1900, the date of transference. The council also agreed to pay £4,250 to the Dudley & Wolverhampton Tramways Company. The intention was to work the section with horse cars from the Wolverhampton Tramways Company, but this proved impossible because the centre-grooved rails only supported stock with centre-

116 Webb and Addenbrooke, A History of Wolverhampton, p.15,
117 Wolverhampton City Archives: L352, Report of Tramways Committee, p.323.
flanged wheels.119 BET appealed against the settlement and continued to press for running powers within the city. They eventually renounced all claims after a judgement by Justice Joyce on 29 November 1900.120 The scene was set for disagreements with BET which would continue for several years, culminating in Wolverhampton's independent and detached view of network operations in the adjacent Black Country conurbation, and the thwarting of BET's grand plan.

Not to be outdone, BET registered the Wolverhampton District Electric Tramways Company Limited (WDET) 17 December 1900, its express purpose being to acquire from its parent company the lines outside Wolverhampton's boundaries.121 In particular, WDET reconstructed the standard gauge section between Dudley and Wolverhampton to 3' 6" gauge and equipped it with overhead electric traction.122

3.9 Municipalisation

1 May 1900 was a momentous occasion for another reason. On that date, the Corporation-owned tramways began operations, and from that date the council was free to pursue its tramway policy. The previous private operator was put clearly in the shade, as the \textit{Express and Star} reported:

There was in some senses nothing short of a transformation. The passengers found on mounting the car that the driver and conductor were literally metamorphosed. They wore for the first time a uniform of blue

119 \textit{Webb and Addenbrooke}, \textit{A History of Wolverhampton}, p.23.
120 \textit{Wolverhampton City Archives: L07 The Wolverhampton Journal}, Nos 1-12, 1902, p.160.
121 \textit{Webb}, \textit{Tramways of the Black Country}, p.24.
122 ibid.
serge, with orange braid, from head to foot. They were smartness
personified. Inspectors wore a suit similarly cut, but with gold trimmings. 123

These were by no means the only improvements in working conditions. Wages
were increased and the long hours of work reduced, as happened in London. 124
Thus many of the so-called ‘negative’ estimates of the impact of municipalisation,
as adduced by Guyot, certainly applied in Wolverhampton. 125 He somewhat
sarcastically concluded that ‘municipal service must, above all, confer advantages
on its employees. Such undertakings of right belong to them’. 126 His right-wing
views and militant attitude towards socialism had been developed earlier in his
book The Tyranny of Socialism. 127 Operations were also improved. Three more
horse cars were purchased, and services were increased to every ten minutes on
the Tettenhall route and every fifteen minutes on the others. 128 The
Wolverhampton Tramways Company was eventually wound up in March 1901 as
by then all of its lines had been purchased either by Wolverhampton Corporation
or BET. 129

Wolverhampton took over its tramways as soon as it was able. This meant that
with its rapidly expanding population and low revenue from rates, it had a potential
source of income from municipal tramways as a means of subsidising its social
improvement and public health programmes. In Millward’s generalisation,
municipal enterprises were used as cash cows, where profit transfers were

123 Wolverhampton Express and Star, 1 May 1900.
125 Yves Guyot, Where and Why Public Ownership has Failed, London: Macmillan, 1914,
(Translated by HF Baker), p.143.
126 Ibid.
welcomed as a form of non-tax revenues, which had the virtue of obviating legislative approval.130

3.10 The introduction of surface-contact trams

Due partly to the controversy surrounding the form of electric traction to be installed, Wolverhampton was relatively late with the electrification of its tramways. Although there had been a system of horse-drawn tramways in Wolverhampton since 1878, other cities such as Leeds had introduced overhead traction as early as 1891, effectively a showcase for the American Thomson-Houston system.131 Even the nearby smaller towns of Walsall, Darlaston and West Bromwich had an overhead system by 1892 (the second in the country), serving parts of South Staffordshire. This eight-mile network was eventually purchased by BET in 1897.132

The increasing pressure from promoters to install electric traction led to Wolverhampton Council setting up a special committee in 1896 to consider the respective merits of overhead, conduit and accumulator systems.133 The Committee reported back to the full council meeting in July 1898 recommending the adoption of the overhead system. After much discussion, the recommendation failed to be endorsed on the grounds that councillors wished to explore all possibilities further.134

131 Richard J Buckley, History of Tramways from Horse to Rapid Transit, Newton Abbot: David & Charles, 1975, p.60.
133 Webb and Addenbrooke, A History of Wolverhampton, p.25.
134 Ibid.
In October 1899, the Electric Car Syndicate approached Wolverhampton Council with a proposal to install a modification of the Kingsland mechanical surface-contact system on a 200 yard experimental line.135 The Kingsland employed no electro-magnets or other equipment on board, the trams being propelled by a series of ratchets operated through an electrical impulse.136 The cars were therefore considerably lighter.137 The system was widely used in Dresden in Germany. Representatives of the technical press visited the experiment in May 1901. They concluded that the worst aspect was the noise produced by the tappets hitting the driving wheels, but also pointed out that current leakage was likely to be considerable.138 Costs were estimated to be £6,500 to £7,500 per mile compared with £5,000 to £6,000 for overhead wires and £10,000 to £12,000 for conduits. Although the experiment lasted for more than a year, Wolverhampton Council decided not to proceed with full installation because of fears about the safety of having a third rail, although the danger from studs being left live would only occur in the case of a derailment.139

In parallel with the trials, the Tramways Committee had again recommended the overhead system in October 1900, thereby pre-empting the decision about the Kingsland system. On this occasion, the council endorsed the recommendation, and authorised an invitation for tenders for the installation of overhead equipment along the route from Ettingshall Road to Tettenhall, via New Hampton Road.140 This was a cross-city route of some 4 miles. The reasons given were that 'overhead traction was economical and efficient; moderate cost of construction;

\begin{itemize}
\item 135 Webb and Addenbrooke, \textit{A History of Wolverhampton}, p.55.
\item 136 W Noble Twelvetrees, 'A Report on Surface-contact Traction', \textit{The Engineering Review}, Volume 12 (December 1905), p.19.
\item 137 \textit{The Electrical Review}, Volume 42 (28 January 1898), p.360.
\item 138 \textit{The Electrician}, Volume 47 (17 May 1901), p.131.
\item 139 Ibid.
\item 140 Wolverhampton City Archives, L352, Council Minutes, p.397.
\end{itemize}
cheap to operate; simplicity of working; easy to repair; small disturbance to streets; and could be combined with street lighting by fitting lamps to support poles.

Contracts were placed for nine tramcars to be fitted with overhead trolley booms and the Lighting Committee was given permission to attach street lamps to the traction poles.

However, uncertainty entered the deliberations in March 1901 when Sir Charles Mander, the chairman of both the Lighting and Tramway Committees, drew attention to the Dolter surface-contact system, then currently operating in Paris. Consequently, the committee visited Paris to inspect the system. As a result, tenders were invited for the construction of both an overhead and a Dolter system, but the committee deferred acceptance of any of the tenders subject to further consideration.

At this point, the Lorain Company arrived on the scene. The Tramway and Railway World had already been suggesting:

> Some of the more important cities in the world absolutely forbid the erection of trolley poles and wires in the streets. They are cumbersome, crude and sometimes even dangerous. Lorain system in operation in Washington is the answer.

Senior members of the Lorain Company themselves also put pressure on the decision makers, insisting that their system was 'at the cutting edge of new

141 Wolverhampton City Archives, L 352, Council Minutes, p.854.
142 Webb and Addenbrooke, A History of Wolverhampton, p.25.
143 Ibid.
144 Wolverhampton City Archives, L 352, Council Minutes, p.397.
propulsion techniques, employing fully developed methods at the frontiers of knowledge.’ Since it was the first adopter in the UK, Wolverhampton was expected by contemporary observers to go down in history as the pioneer of the surface-contact system.

In the following month, representatives of both the Lorain and the Dolter systems were invited to present their relative merits to a special meeting. Subsequently, the committee recommended the installation of the Lorain system (see Appendix 10). Because of continuing fears about an untried system, a full council meeting debated an amendment that it ‘should not endorse any experiments until further independent experts had investigated mechanical and commercial aspects and directly recommended it’. Angry exchanges ensued and the amendment was lost by 25 votes to 18.

Eventually, the council decided to accept an offer to equip 11.375 miles of single-track from the Lorain Company. A contract was signed between D Coolidge (President) and PM Boyd (Secretary) of the Lorain Steel Company of Ohio and CEC Shawfield, the electrical engineer of the Corporation, on 26 July 1901. Exercising caution with an unproven technology and in an apparent move to appease the dissenters, the contract stipulated that an experimental length of seven-eighths of a mile of double-track be installed on Bilston Road within three months of signing. Provided no problems developed after operating with three cars, Wolverhampton would instruct the company to install the remaining sections

146 Wolverhampton City Archives, L6213p, Papers relating to the contract between the Corporation and the Lorain Steel Company.
149 Wolverhampton City Archives, L 352, Council Minutes, p.436.
151 The Electrician, Volume 51 (24 April 1903), pp. 44-46.
within thirty days. If following a Board of Trade inspection the system was not approved, the company would be required to remove it and the contract would terminated.152

The contract contained other stringent clauses. The Council was to operate the system commercially for one year, at the end of which they would decide whether to accept or reject it. Commercial success was defined in terms of the reliability and safety of the system, the comparative consumption of electrical energy per car mile, the cost of operation, and the cost of maintenance, against similar considerations for overhead.153 The contract acknowledged that due allowance should be made for the greater expense of maintaining and operating surface-contact. In case of a dispute about commercial success, five arbitrators were to be appointed: the borough electrical engineer and a party chosen by him; a representative of the Lorain Company and a party chosen by him; and a party nominated by the Board of Trade, all with equal voting rights.154 The cost of installing 11.375 miles of single-track was £20,475 and the cost of three specially built tramcars £3,000.155 The Lorain Company must have been convinced of the eventual success of the operation given the capital sums risked. They possibly also regarded the installation as a potential loss-leader in the hope of winning further contracts.

Installation of the experimental section began in December 1901, under the watchful eye of Lorain's European representative, Earl P Wetmore.156 Applying unsubtle pressure on the council to complete the whole network, he proclaimed:

\begin{flushright}
152 \textit{Wolverhampton City Archives}, L6213p, 'Construction of Electric Tramways: Contract between the Corporation and the Lorain Steel Company'.
153 Ibid.
154 Ibid
155 Ibid.
156 \textit{Wolverhampton City Archives}, L 07, \textit{The Wolverhampton Journal}, Nos 1-12, 1902.
\end{flushright}
'Wolverhampton has lagged behind for too long. Its antiquated omnibuses and obsolete horse-trams are a crying disgrace'.157 Tests were carried out between 6 February and 7 March 1902, during which time the Board of Trade inspectors, Colonel Yorke and Mr Trotter declared they were prepared to grant a licence to operate Lorain traction for twelve months if the council so desired. The Board of Trade informed the Town Clerk that if under Section 41(4) b of the Wolverhampton Corporation Act 1899 they considered the system a danger to passengers or the general public, they might direct operation to cease or to be continued only subject to conditions to be imposed.158

Continuing his doubts about the Lorain installation, Councillor Thorne pressed for an appraisal by an independent electrical expert during the trials.159 He opposed the involvement of the borough electrical engineer, CEC Shawfield.160 Consequently, H Lea was appointed. Lea found no inherent problems, but felt unable to predict ultimate success or failure after such a short experiment. He recommended completion of the 11.375 mile single-track network, but stressed that the fullest possible records must be kept.161

3.11 Networks of power - the middle classes

The part played by Wolverhampton's middle classes in subsequent debates about extending the network was crucial. In the nineteenth century, British towns were 'substantially the creation of their middle class, and in turn provided the theatre within which that middle class sought, extended, expressed and defended its

157 Wolverhampton City Archives, L07, The Wolverhampton Journal, Nos 1-12, 1902.
158 The Tramway and Railway World, Volume 12 (13 March 1902), p.193.
159 Wolverhampton City Archives, L352, Council Minutes, p.331.
160 Ibid, p.310.
161 Wolverhampton City Archives, Letter from H Lea to City Council, 7 March 1902.
This was certainly true in industrial cities such as Wolverhampton where despite being only 3% of the population, wealthier residents exercised disproportionate power and influence through their representation on the council and involvement in municipal decision-making. The existence of middle-class residents clearly affected the social atmosphere of a town, and engendered feelings of superiority on the one hand and resentment among the lower classes on the other.

But despite society's stratification, by no means all members of the middle and upper classes lacked empathy with the lower classes. In Wolverhampton during debates about traction choices, a section of the wealthy industrialist councillors showed great concern over the plight of the working classes. They had different priorities, and failed to see how a more expensive but aesthetically pleasing surface-contact solution would benefit the poorest sections of society. In their view, the money would have been better spent on improving housing and alleviating poverty. While such protestations might reflect the genuine concerns of the higher classes, sceptics would point out that philanthropic gestures actually did little to alter the social structure. In fact, philanthropists' continued aloofness simply reinforced the existing power relationship.

One historian has suggested that Black Country towns 'developed and retained frontier characteristics that would impede the emergence of a local social system

164 Ibid, p.687.
165 Wolverhampton Chronicle, 14 October 1903.
166 Ibid.
167 Trainor, Black Country Elites, p.351.
and complicate enormously the tasks of social leaders'. In practice, that was not entirely the case. The first official visit made by Queen Victoria after the death of her consort was to Wolverhampton, much to the chagrin of the greater cities of Birmingham, Liverpool and Manchester. Such a visit would not have been made if the social system was only in the early stages of evolving. Nevertheless, the press reacted with 'abusive astonishment', declaring that the area comprised 'unrelieved environmental ugliness and human brutality'. While such views may reinforce the frontier stereotype, they have to be set against evidence of the gradual development of a sophisticated social and political system.

Society tensions continually spilled over into debates about the provision and form of tramway systems. Public transport in Wolverhampton had progressed steadily from omnibuses to horse-drawn trams, and finally to electrification of the tramway system. There was a fleeting but unsuccessful attempt to introduce steam trams, but the serious controversy about the form of electric traction was also a battle between opposing political powers within the same class.

3.12 Religious influences

In Wolverhampton, as in other cities, politics and religion were closely intertwined, with the result that decisions about technological change were susceptible to both political and religious interests. Sectarian issues caused deep political divisions, and surfaced where economic decisions were involved on issues such as tram traction. To understand the depth of feeling generated, it is important to set these events in context.

168 Trainor, Black Country Elites, p.23.
170 Wolverhampton Chronicle, 14 October 1903.
As the nineteenth century progressed, great changes had occurred in people’s attitude towards religion. In the villages, religion ‘reflected and reinforced notions of hierarchy’.171 In the cities, community ties were loosening and the notion of social position and religious affiliation were diverging as a result. Briggs cites how the religious census of 1851 revealed that the mass of the working population in towns and cities did not attend church, and had little belief in religion.172 Instead, reason began to replace faith, strongly held beliefs were questioned and in some cases crumbled, and were replaced by new ideas based upon science and technology.173 There was an increasing feeling of isolation from nature, particularly for city-dwellers. This led to sharp divisions within religious denominations which inevitably began to influence technological choices174.

Before 1835, most towns were in the hands of ‘self-selecting Anglican Tories’,175 but Liberal nonconformists with strong Methodist links were slowly increasing their presence among the elite.176 After local government reform, the situation changed somewhat, though democratisation was no easy process. By the end of the century, Primitive Methodists and Catholics had also ‘gained minor shares of representation’ within the Liberal and Tory bodies of opinion respectively.177

Wolverhampton however, with its strong non-conformist tradition, was an exception to the decline in religious belief that was taking place elsewhere.178

Douglas A Reid attributes this phenomenon to ‘local factors, such as evangelistic

171 Briggs, \textit{Victorian Cities}, p.63.
172 Ibid.
173 Trainor, \textit{Black Country Elites}, pp.184-192.
174 Ibid.
176 Trainor, ‘The Middle Class’ in Daunton (ed), p.703.
177 Ibid.
178 Briggs, \textit{Victorian Cities}, p.68.
blitzes on the exploited workforces of the Black Country, which affected regional patterns. It is certainly true that Charles Wesley preached in Wolverhampton on several occasions. Indeed, nonconformist religion took such a hold that in the last years of the nineteenth century, Wolverhampton has been described as a civic gospel town wherein religion became a support for civic co-operation rather than the basis of strife. However, the suggestion that non-conformism was the only religion in town is not entirely borne out by the facts, particularly as far as the debates about traction choices were concerned. Even before the advent of Irish immigration in the mid nineteenth century, Roman Catholicism was a strong force, to the extent that a Catholic cathedral existed there between 1743 and 1765, serving not only Birmingham but also the entire West Midlands region. Catholicism remained a force and religious diversity, especially within the council, ensured lively discussion and frequent dissent about key issues.

In the 1890s and the early years of the twentieth century, divisions were evident in the political composition of Wolverhampton's Council. Developments included the growth of the Labour party, which brought 'new techniques, new aims, and a new style'. Towards the end of the nineteenth century, the Radical Liberals and the Labour Party sought to end what they viewed as the easy-going alliance of Conservatives and conservative Liberals on the Council.

By 1900, three significant groupings had developed on the Council in line with what were now customary political and religious affiliations. There was an Anglican

Conservative group consisting of men with high social status, whose businesses

182 Jones, Borough Politics, p.12.
183 Ibid, p.38.
were located in the wards they represented. Thus ‘Anglicanism and Conservatism went together and the Church Party was the Conservative Party’.184 The second group were men of similar high social status, but Liberals belonging to a Methodist Congregational church. The third grouping represented occupations of a lower social standing, such as shopkeepers, who were mainly temperance reformers belonging to Baptist and Primitive Methodist chapels.185 Politically, these councillors were Radical Liberals who sought to overturn a social order based on privilege and property.186

Many of the issues raised were rooted in the plans of these temperance reformers, mainly the Radical Liberals, to improve social conditions in the industrial eastern suburbs of Wolverhampton.187 The Radical Liberals argued consistently at annual council elections that drink was the cause of the appalling social conditions prevailing there. They strongly opposed the choice of surface-contact traction on the grounds of expense when that became an issue.188

However, the first major issue to inflame passions was education. There was a fight between:

the ill assorted union of the forces of the Protestant Church of England with those of what is alleged to be the elder branch of the Christian faith whose foundations are laid in Rome, aided by the equally strong ever dominant power of the ‘trade’, pitched against what is termed ‘Chapel influence’.189

184 Jones, Borough Politics, p.138.
185 Ibid, p.139.
186 Ibid.
187 Ibid.
188 Wolverhampton Chronicle, 14 October 1903.
189 Wolverhampton Express and Star, 2 November 1903.
These divisions were reflected in the debates about the method for propelling trams, which followed soon afterwards. On the one side were the champions of the surface-contact system, the Anglican Conservatives supported by the Catholics, while on the other were the non-conformist Liberals, whose stated aim was to check extravagance and achieve efficiency. To that end, the Liberals argued that the system was too costly to install and maintain, and that it would burden the ratepayers far more than an overhead system. They preferred to spend money improving conditions in the socially deprived eastern suburbs. Thus sectarian issues were very divisive, especially when they concerned spending public money.

3.13 Corruption and freemasonry – were they factors in the decision-making process?

In the nineteenth century, crime was generally considered to be the province of the lower classes. However, the middle classes by virtue of their positions in society were able to perpetrate crimes against property of much higher value. This was especially true of public servants acting against local authorities. Such crimes were perceived as ‘threatening the generally respected structure of urbanised society’.

Corruption in municipal authorities took many forms. In the USA, administrative ‘machines’ run by powerful politicians overspent on public works to supply their supporters with jobs, as well as to line their own pockets. The malleability of municipal officials was notorious. As a result, there was greater reliance on

190 Jones, Borough Politics, p.40.
191 Ibid, p.41.
193 Ibid.
competitive bidding.195 Companies often achieved extensions to their systems by resorting to bribery. While this practice was less prevalent in the UK, it might have been an additional reason why long-term franchises did not emerge in British cities.196 In the UK there was also competitive bidding, but eventually some cities realised that the monopolistic nature of tramway operations called for a more effective regulatory system.

Contemporary writers who were in favour of the overhead system expressed concern about Wolverhampton council's decision-making process. At a meeting of the Municipal and County Engineers in Wolverhampton in 1902, a Mr Green presented a controversial paper claiming that the corporation had until eleventh hour intended to install overhead wires, having previously seen many such systems during their visit to Paris.197 He concluded 'great must have been the attractions offered by the Lorain Company to change the council's minds'.198 In fact, there is no hard evidence to suggest that any form of 'persuasion' took place; nevertheless, suspicions were aroused.

Prior to the First World War, most senior officials were local men, or long-term migrants, with strong business and professional involvements in the locality. There were often social connections also. Doyle refers to the Masonic links between councillors and officials in Wolverhampton.199 Whether such associations had any effect on the policies of the Council is difficult to judge as the main function appears to have been social cohesion, 'providing opportunities to meet and forging social links between individuals which might help them to unite on matters of

197 \textit{The Tramway and Railway World}, Volume 12 (10 July 1902), p.198.
198 Ibid.
199 Doyle, 'The Changing Functions' in Daunton (ed), p.296.
What is clear from the following table, however, is that no Labour councillors were freemasons:

<table>
<thead>
<tr>
<th>Year</th>
<th>Conservative</th>
<th>Liberal</th>
<th>Labour</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1888-89</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>1903-04</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>1919-20</td>
<td>9</td>
<td>1</td>
<td>0</td>
<td>10</td>
</tr>
</tbody>
</table>

Table 3.4 - Wolverhampton councillors who were Freemasons.

Jones concludes that Freemasonry was strong among both council members and officials, and they tended to help each other and stick together. But given that in Wolverhampton between 1888 and 1926, the Council's constitution consisted of 12 Aldermen and 36 Councillors, it seems unlikely that such a small percentage of freemasons could exert much influence, unless they were the chairmen of important committees.

3.14 The controversial extension of the system

The Fine Art and Industrial Exhibition in Wolverhampton in May 1902 was a catalyst for tramway action. The event followed a series held since the Great Exhibition at Crystal Palace in 1851. The Great Exhibition was an expression of the UK's progress and power, and was intended to enhance the nation's
international standing. Since the Industrial Revolution, the UK had gradually risen to dominate world trade and was now the richest country in the world. Individual towns soon realised that similar exhibitions would enhance their reputation. Major events helped develop a separate urban identity, and played an extremely important role in reinforcing a sense of civic pride and achievement.202

The Wolverhampton Exhibition was an enormously significant expression of the city’s self-image as an important international centre of industry, technology and creativity.203 It was the largest exhibition in the UK since that held at the Crystal Palace fifty years earlier. Thirty-two acres of the West Park were transformed by several enormous pavilions, representing not only the Midlands but also the rest of the country. International pavilions included exhibits from Russia, Japan and Canada. The intention was to promote confidence in the image of the city, as well as increasing trade and wealth. Opened on 1 May 1902 by the King’s brother, the Duke of Connaught and his wife, it was considered by the press to be a resounding success.204 More than 1.5 million visitors attended before the end in November. It was subsequently described by the Earl of Dartmouth as the awakening of Wolverhampton.205

Both the Council and the manufacturers of the Lorain system viewed the Exhibition as a great opportunity to showcase the tramway’s surface-contact system.206 The influential *Tramway and Railway World* trade magazine predicted that ‘when the tramways are open they will form a feature of the greatest interest to all connected

204 Ibid.
205 Ibid, p.301.
with tramways who visit the Exhibition'. The Lorain company clearly recognised the commercial advantage and ensured that a direct route from the railway station to the exhibition site, a total of six route-miles, was completed on time and opened on the same day. The public reaction 'gave an additional cause for rejoicing'. Unfortunately for the company, no further orders were generated despite the enthusiasm of the technical press. But the newly installed surface-contact system certainly fulfilled Wolverhampton’s apparent desire to be different.

Figure 3.1 – The art nouveau façade of the Industrial Hall. One of the many fine pavilions built for the Exhibition. None of them have survived.

After the Exhibition, serious concerns resurfaced about the attitude of BET. During a council meeting on 16 June 1902, Alderman Craddock, the acting chairman of

210 A Contemporary picture postcard
the Tramways Committee, accused BET of thwarting and opposing the council at every opportunity. Mr Lycett, the BET representative, had made it clear that the company would not spend any money on any portion of their lines in the neighbouring Black Country towns unless the Corporation agreed to equip the routes to Willenhall, Bilston and Dudley within the city boundaries with the overhead system. Lycett raised again the question of isolation and the interchange of through traffic. With the support of the council, the town clerk replied to BET that Wolverhampton was not 'playing with the Lorain system', and believed that it would prove successful. To accede to the terms of BET would be to stultify themselves in the eyes of the country. Wolverhampton would not be held to ransom, and installation of the complete system would continue. Although BET was a powerful enterprise, Wolverhampton council was clearly not overawed.

The twelve-month maintenance period began on 17 April 1902. Shortly afterwards, CEC Shawfield reported on the Lorain system after the first year of operation. His assessment was carried out according to five previously agreed headings: safety to people and animals; reliability; consumption of electrical energy per car mile; cost of working; and cost of maintenance. With regard to the dangers of the system, the report concluded that the risks were more apparent than real. The main problem was studs left live, the result of scrap iron collecting and causing short-circuits. The incidents were at known crossing points, and occurrences were carefully controlled by inspectors or police on point duty. Even so, the average level of incident was six per month (or seven per track-mile).

211 The Tramway and Railway World, Volume 12 (July 1902), p.213.
212 Wolverhampton City Archives, Council Minutes, June/July 1902, p.759.
213 Wolverhampton Chronicle, 14 October 1903.
214 Ibid.
215 Wolverhampton City Archives, L07, The Wolverhampton Journal, Nos 1-12, 1902.
216 Wolverhampton City Archives, L388, Report on the Lorain system.
217 The Electrician, Volume 51 (24 April 1903), p.44-46.
This compared favourably with incidents caused by falling wires in overhead systems in Liverpool where there were 10.16 per track-mile, but less so with Sunderland (4.07) and Bolton (3.54).218 No deaths to either people or animals were reported in the twelve-month period, although seven horses received shocks and fell, causing bruising, and two pedestrians received mild shocks.219

The number of car-miles lost per 1000 miles was only 1\(\frac{1}{2}\), a rate which compared very favourably with the reliability of overhead systems. Consumption of energy per car-mile cost an extra 0.41 pence, or 22\% more than overhead power, but there was no difference in working costs. There was an additional cost of maintenance of 0.813 pence per car-mile (representing 33\% more) when compared with fifteen towns using overhead systems. This translated to £1250 per car-mile per annum.220

Although more expensive to operate than overhead traction, the Lorain system offered some advantages of simplicity and economy over earlier surface-contact systems.221 Table 3.5 shows a comparison with overhead for the first year:

218 The Electrician, Volume 51 (24 April 1903), p.44-46.
219 Ibid.
220 Ibid.
221 The Tramway and Railway World, Volume 11 (13 February 1902), pp.65-76.
<table>
<thead>
<tr>
<th></th>
<th>Cost in pence per car-mile</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lorain surface-contact system</td>
<td>Overhead</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Annual repairs and maintenance</td>
<td>Annual provision for future</td>
<td>Annual repairs and maintenance</td>
</tr>
<tr>
<td>Track equipment</td>
<td>0.165</td>
<td>0.404</td>
<td>0.216</td>
</tr>
<tr>
<td>Car equipment</td>
<td>0.135</td>
<td>0.095</td>
<td>0.064</td>
</tr>
<tr>
<td>Electrical energy</td>
<td>2.310</td>
<td>-</td>
<td>1.900</td>
</tr>
<tr>
<td>Total</td>
<td>3.109</td>
<td>2.296</td>
<td></td>
</tr>
</tbody>
</table>

Table 3.5 – Report by CEC Shawfield on the first year's operation of the Lorain system.\(^{222}\)

The deliberately simple comparison presented by Wolverhampton’s chief tramways engineer in the above table gives a false impression. The additional cost of the Lorain system of 0.813 pence per car-mile made no allowance for interest payments and the sinking fund to pay off any loans, making any direct comparison very difficult.

Following Shawfield's report, a decision had to be made regarding the extension of the system. The *Wolverhampton Chronicle* reported in great length, at times verbatim, an extraordinary and heated debate in full council in October 1903.

\(^{222}\) *Wolverhampton City Archives*, L388 Report to Wolverhampton Tramways Committee, March 1903.
lasting for almost five hours. The Tramways Committee had requested a mandate to equip all further routes in the borough with the Lorain system. The Chairman of the Tramways Committee, Sir Charles Mander, moved that the request be approved.

When surface-contact systems were being considered, those involved with the decision-making process - mainly the more influential members of the governing party - seemed unconcerned about the prospect of isolation from adjacent towns, despite the objections of shopkeepers and tradesmen who were very definitely worried by it.223 But there were many other reasons why a resolution took so long. The champions of the surface-contact system believed that it would avoid the unaesthetic cluttering of the streets. Opponents had numerous objections. It would be costly to install and maintain: it would add extra burdens for the ratepayers; it would be dangerous to people and animals; and cyclists and carriages would find avoiding the plates a nuisance.224 Other opponents argued that as no other town in the country had adopted the system, it would be a costly and risky experiment, and would soon become obsolete. The Council was urged to rely on tried and trusted British methods of traction.225 The Lorain system was viewed as an 'American gamble' as it originated in that country (see Appendix 11).226 The question of whether to adopt a surface-contact or overhead system was felt to be one of the most momentous public issues ever to be considered by the Council.227 One councillor said 'I never remember being present at a meeting of this Council at which I have heard language so strong'.228

223 Wolverhampton Chronicle, 14 October 1903.
224 Ibid.
225 Ibid.
226 Ibid.
227 Jones, Borough Politics, p.42.
228 Ibid.
One of the main opponents of the surface-contact system was GR Thorne, a Liberal councillor who was elected mayor for the year 1902-03. He eventually replaced Sir Henry Fowler as MP for Wolverhampton East in 1908. Like Fowler, he was a solicitor by profession, but had a strong social conscience and believed that 'every citizen should do his utmost to improve the place in which he dwelt'.229 To that end he was 'zealous in connection with the establishment of electric trams with a view to improving the means of transit in the Borough'.230 Thorne was something of a philanthropist, believing strongly in the cause of education, and showing great sympathy with the working-class section of the community.

Although a strong supporter of electric trams, when the matter of traction technology was being discussed he firmly believed that the cheapest system should be adopted, particularly in view of Wolverhampton's heavy rate burden. He was also concerned that trade could not progress unless there was interconnection with adjacent towns. He strongly opposed any system that resulted in isolation.231 However, Alderman Sir Charles Mander was equally vociferous in his support of a surface-contact system, pointing out that any other choice would be playing into the hands of BET, who were 'fighting tooth and nail to take over the Wolverhampton system'.232

Mander suggested that the extra cost of surface traction, estimated to be £729 for the whole of the borough, was a 'mere flea bite' compared with receipts of more than £50,000.233 He accused the local newspaper, the \textit{Express and Star}, of misrepresenting facts in their attempts to influence councillors against the Lorain

\begin{footnotes}
\footnote{Jones, \textit{The Story of the Municipal Life}, p.305.}
\footnote{Ibid.}
\footnote{Webb and Addenbrooke, \textit{A History of Wolverhampton}, p.44.}
\footnote{Ibid.}
\footnote{Wolverhampton Chronicle, 14 October 1903.}
\end{footnotes}
system. He also had the BET in his sights, accusing them of undue influence over the neighbouring suburbs of Bilston and Sedgley, which at that time lay outside the boundaries of Wolverhampton, and had been equipped with overhead traction by BET. Turning the tables, he suggested that those small towns had 'sold their birthright for a mess of pottage' and they were responsible for the lack of interconnection between the systems. He implied that if those towns had persuaded BET to equip their trams with skates, inter-connection would not have been a problem. If they wished to take advantage of Wolverhampton's facilities, they should apply pressure on BET. Further heated exchanges took place on the question of isolation and the impact on trade. Wolverhampton's population at that time was more than 100,000, but there was a danger of isolating a further 80,000 people in the surrounding towns, a considerable potential market.

In the subsequent debate, Councillor White moved an amendment that the Tramways Committee should reconsider their recommendation on the grounds that communication with surrounding towns was absolutely necessary. He stressed that Wolverhampton would be cut off from Bilston, Sedgley, Willenhall and Dudley, and the council was 'building a wall around itself. They must break down those walls and give the greatest facilities that could possibly be got'. Other councillors were convinced that isolation would inevitably result in shop closures, empty houses, and a decline in economic prosperity.

A subsequent author has asserted that the 'rapidly burgeoning towns like Wolverhampton could make provision for local undertakings without worrying unduly about any unexplained benefits from links with neighbouring towns'.

234 *Wolverhampton Chronicle*, 14 October 1903.
235 Ibid.
However, contemporary dissenters viewed tramway isolationism as nothing short of disastrous. Shopkeepers and the Tradesmen's Association urged the council to adopt a system compatible with others in the Black Country. The council responded that if the Association felt so strongly, they should have complained earlier. It was not until later in the twentieth century that a more regional transport focus was adopted, eliminating any political tensions and local rivalries.

In view of the intercommunication problems between the neighbouring towns, the full Council Meeting also considered the cost of installing an overhead system combined with the surface-contact technology already installed. The consensus was that the additional costs incurred by a dual system would be too great, and the only practical policy was to extend the Lorain system. On intercommunication, Wolverhampton had no powers to operate outside its boundaries. Supporting councillors insisted that the onus was on outlying districts to ensure there would be tramcars to meet up with the Wolverhampton vehicles. In addition, no serious disadvantage had been observed on Bilston road, where transfer between the systems was necessary. Tram return statistics had shown a steady increase in receipts as shown in Table 3.6 regarding the Bilston Road route where passengers had to change trams at the boundary. BET's Black Country services operated on the overhead system from that point onwards.

237 *Wolverhampton City Archives*, L352 Council Minutes and Reports, 1902-03, p.819.
<table>
<thead>
<tr>
<th></th>
<th>Car-miles run</th>
<th>Receipts</th>
<th>Receipts per car-mile</th>
<th>Number of passengers carried</th>
</tr>
</thead>
<tbody>
<tr>
<td>August 1902</td>
<td>6,487</td>
<td>£ 292 d</td>
<td>10.83</td>
<td>70,247</td>
</tr>
<tr>
<td>August 1903</td>
<td>9,799</td>
<td>485 8</td>
<td>11.89</td>
<td>97,096</td>
</tr>
<tr>
<td>Increase</td>
<td>3,312</td>
<td>192 14</td>
<td>1.06</td>
<td>26,849</td>
</tr>
</tbody>
</table>

Table 3.6 – Comparison of receipts for the months of August 1902 and August 1903.238

The percentage increases, ranging from 9.8% for receipts per car-mile to 65.8% for total receipts, are even more impressive given that the period only partially covered the Wolverhampton International Fine Art and Industrial Exhibition, which ran from May until November 1902. Overall, the number of passengers carried increased by 38.2%.

Notwithstanding the economic argument, the question of class status came to the fore. Councillor Sharrocks contended that so far, only the convenience of the upper classes in the western suburbs had been considered. 'What was good for Tettenhall and the Waterloo Road was equally good for Wednesfield and Willenhall, where the masses lived and worked'.239 He suggested that the working classes should have the same comfort and convenience for travel to their places of employment as the upper classes. If a dual surface-contact and overhead system was introduced, preferential treatment would be given to the better-class

238 \textit{Wolverhampton Chronicle}, 14 October 1903.
239 Ibid.
roads and streets to the detriment of the inhabitants of the poorer districts. The former would continue with surface-contact, while the latter would suffer the intrusion and dangers of overhead wiring.\(^\text{240}\) Everyone should ‘all join hands in working together for the best interests of Wolverhampton at large’, not for just the privileged few.\(^\text{241}\)

As an alternative, the Council also considered a proposal to equip BET’s overhead-powered trams with skates to allow them to run into Wolverhampton. However, it was pointed out that the cost would be £225 per tram, and the tramcars would have to carry the additional skate weight of 25 hundred-weight over their whole system for the sake of a mile or so into the centre of Wolverhampton. Further discussion raised the spectre of company monopoly if lines were leased to BET. Wolverhampton was happy to refer the matter to the Board of Trade, but only on the basis of two broad principles. These were that the borough ‘absolutely controls its own traffic, and all earnings within the borough stay within borough’.\(^\text{242}\) In no circumstances would competitive arrangements be allowed as it would be prejudicial to the borough’s own undertaking. Needless to say, BET failed to take up the offer.

In support of the Lorain system, Mander offered the following comparative working costs: Wolverhampton (Lorain) 6.75 pence per car mile; Manchester (overhead) 6.95 pence per car mile; Bradford (overhead) 7.026 pence per car mile.\(^\text{243}\) At face value, the results were persuasive, but they omitted maintenance provision and extra capital costs of installation. They were also based on one particular month and were therefore selective and grossly unrepresentative.

\(^{240}\) *Wolverhampton Chronicle*, 14 October 1903.
\(^{241}\) Ibid.
\(^{242}\) *Wolverhampton City Archives*, L352 Council Minutes and Reports, 1903-04, pp.933-941.
\(^{243}\) *Wolverhampton Chronicle*, 14 October 1903.
Other councillors opposed to the Lorain system sarcastically referred to Alderman Mander as the 'oracle of the Chamber, whose authority should not be contradicted, a master of etiquette and deportment'. Alderman Price Lewis accused Mander of playing with townspeople's money. He suggested that those who had faith in the Lorain system should show it by instituting a guarantee fund to meet any losses that might be incurred, adding 'you'll put your townspeople's money at stake, but not your own'.

Price Lewis continued that he was perfectly content to see the Lorain system extended along those routes already laid down, but pleaded for overhead traction on other lines to the suburbs to prevent isolation.

Councillor Reade felt it was not incumbent on residents of neighbouring authorities to pressurise their councillors to effect the desired inter-communication with the Lorain system. That responsibility lay with Wolverhampton. Reade declared that the surface-contact plates were a great nuisance to cyclists and carriage-owners. They caused 'a dangerous jarring to the wheels when passing over them'. He proposed that the overhead system should be installed on future routes, so that 'the two classes of people referred to would be saved from the annoyance'.

Reade, who was a Liberal shopkeeper, then described the dual system in Bournemouth, a smaller resort town on the south coast. Within the centre, a conduit system was installed, but the outskirts had overhead wires. Reade attacked the extension of the Lorain system because in his view it imposed a heavy burden on the ratepayer:

244 *Wolverhampton Chronicle*, 14 October 1903.
245 Ibid.
246 Ibid.
it frequently happened that when matters of this kind were taken in hand by men of easy circumstances and in possession of great wealth, they could not find that consideration for struggling tradesmen and shopkeepers and hardworking artisans, who had to get their living and reside in the town, that was desirable.²⁴⁷

He hoped that the Council would consider the classes of ratepayers who had to work hard for their money, and come to a decision similar to that adopted by Bournemouth.

It was all to no avail, however. The overall technical conclusion was that the Lorain system fulfilled all conditions.²⁴⁸ Mander, the supremely powerful Chairman, won the day and Wolverhampton resolved to extend the Lorain system throughout the borough. As a result, five dissenting members of the Tram Committee, who remained unconvinced of the reliability of surface-contact, resigned their positions: Alderman Lewis, and Councillors Bantock, Parkyn, Weaver and White. To reassure the continuing doubters, the tramways general manager vowed to make the system a success. He would not 'starve it of engineering as had occurred on other surface-contact systems'. He had experimented, introduced improvements and would continue to manufacture spare parts in-house.²⁴⁹

A further attempt in Council to reverse the decision was lost on 12 October 1903, but still the doubts persisted.²⁵⁰ In an attempt to frighten the Lorain Company to complete the system on even more favourable terms, the council advised that the

²⁴⁷ Wolverhampton Chronicle, 14 October 1903.
²⁴⁸ The Electrician, Volume 51 (24 April 1903), p.46.
²⁴⁹ Wolverhampton City Archives, L 388, Report on Lorain Surface-contact System to the Tramways Committee, March 1903.
²⁵⁰ Wolverhampton City Archives, L352 Council Minutes and Reports, 1903-04, p.980.
installation did not meet the full conditions of contract and that they would appoint
counsel and experts if the company decided to proceed to arbitration. Secretly, the
council feared that arbitration might find in favour of the company, and litigation
would in any case be a long expensive process.251 A conference was held at
which a settlement was reached and the network was completed.252

For the year ending 31 December 1902, Wolverhampton recorded a profit of
£8,682 with the Lorain system.253 The remaining horse traction lines continued to
make increasingly unsustainable losses as follows:254

\begin{itemize}
 \item Year ending 31 March 1901 \quad £143 15s 3d
 \item Year ending 31 March 1902 \quad £696 17s 10d
 \item Year ending 31 March 1903 \quad £2084 19s 1d
 \item Year ending 31 March 1904 \quad £1273 19s 8d
\end{itemize}

In general, questions of economy became central in local political argument.255
Across the spectrum, councillors had different priorities and were frequently at
odds with each other. On the one hand, there were those councillors who believed
they had a duty to improve living conditions, and on the other were those with
grandiose schemes for town embellishment.256 The method of calculation of
perceived benefits became enormously important. During the debate about
extending the Lorain system, Alderman Gibbons saw no reason why the council
should not adopt the more economical overhead traction in the neighbouring
districts, ‘where it was working so successfully’.257 He believed that the Lorain

\begin{itemize}
 \item 251 Jones, Borough Politics, p.41.
 \item 252 Wolverhampton City Archives, L 388, Council Minutes, p.659.
 \item 253 The Electrician, Volume 51 (10 July 1903), p.512.
 \item 254 Wolverhampton City Archives, L352, Council Minutes and Reports 1903-04, pp 661-682.
 \item 255 Briggs, Victorian Cities, p.373.
 \item 256 Ibid.
 \item 257 Wolverhampton Chronicle, 14 October 1903.
\end{itemize}
system would ‘hold its own’ in the centre where it had already been installed, but it
would never make a profit elsewhere. To replace the system in the central areas
would simply add to the overall costs.258

However, a paper by Twelvetrees in 1905 suggested that Wolverhampton’s
surface-contact system was a financial success, although working costs were
higher. He carried out a comparison between Wolverhampton and an average of
thirty-nine other tramway undertakings, and concluded that the Lorain installation
was a commercial as well as an engineering success.259 Somewhat of an
enthusiast, Twelvetrees acknowledged that the Lorain system was less than
perfect, but nevertheless urged other authorities to consider it as an alternative to
conduit and overhead traction. It is unlikely, however, that he took full account of
the need to set aside funds for asset depreciation. In common with other
undertakings at the time, his statistics therefore offer a distorted view. In the UK,
the amount set aside for wear and tear averaged only 1.1\%, while around 2\% was
kept for a sinking fund.260 Although inadequate, any profits would have been
severely threatened if sufficient funds had been set aside.

In fact, for the financial year 1904-05, the Local Government Board criticised the
general practice of failing to set aside sufficient finance for renewals.261 The Board
was equally concerned by ‘the custom of holding the tramways responsible for
only a third of the expense of maintenance of that portion of the streets which they
occupy’.262 The practice of cross-charging from one account to another by local
authorities masked actual losses and increased apparent profits.

258 \textit{Wolverhampton Chronicle}, 14 October 1903.
260 \textit{The Statist}, 30 June 1906.
261 Guyot, ‘Where and Why’, p.141.
262 Ibid.
<table>
<thead>
<tr>
<th></th>
<th>Wolverhampton</th>
<th>Average of thirty-nine undertakings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percentage of Costs to revenue</td>
<td>59.3%</td>
<td>66%</td>
</tr>
<tr>
<td>Percentage of Gross Profit to</td>
<td>6.9%</td>
<td>6.08%</td>
</tr>
<tr>
<td>Average Capital</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Passengers per Car Mile</td>
<td>9.4</td>
<td>8.9</td>
</tr>
<tr>
<td>Journeys per Head of Population</td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>per Annum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Revenue per Car Mile</td>
<td>10.69d</td>
<td>9.75d</td>
</tr>
<tr>
<td>Average Fare</td>
<td>1.15d</td>
<td>1.12d</td>
</tr>
<tr>
<td>Total Operating Costs per</td>
<td>0.69d</td>
<td>0.78d</td>
</tr>
<tr>
<td>Passenger</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Units per Car Mile</td>
<td>1.58d</td>
<td>1.34d</td>
</tr>
<tr>
<td>Repairs and Maintenance per</td>
<td>0.844d</td>
<td>1.03d</td>
</tr>
<tr>
<td>Car Mile (including electrical</td>
<td></td>
<td></td>
</tr>
<tr>
<td>equipment)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Management</td>
<td>0.77d</td>
<td>0.92d</td>
</tr>
<tr>
<td>Total Operating Costs per Car</td>
<td>6.55d</td>
<td>6.75d</td>
</tr>
<tr>
<td>Mile</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3.7 - Reproduced from WN Twelvetrees, 'A report on surface-contact traction'.

After the Lorain system had been extended, Wolverhampton's income increased to £43,822 in 1906/07. Total expenditure was £24,537, leaving a book profit of £19,285. The undertaking made a contribution to the renewals fund of £5,300, an interest payment of £7,742, and a loan repayment £4,129, leaving an actual profit of £2,114. On the face of it, Wolverhampton's tramway operation was financially sound. Lessons had clearly been learned since the earlier calculations by Twelvetrees. By comparison with Wolverhampton's 6.55d per car mile, the Griffiths-Bedell system in Lincoln was costing slightly more at 6.98d per car mile in the same year.

3.15 Aesthetic amelioration

By 1904, most towns in the UK had adopted the overhead system despite aesthetic objections. To overcome these, designers introduced modifications to support poles with the object of making them more attractive and therefore acceptable. Poles 'attained a certain elegance and blended gracefully into the urban scene'. They were also adapted for street-lighting purposes (see Appendix 12).

There were conflicting views on the impact of surface-contact traction. Wolverhampton's Lorain system was described as inconspicuous. 'Nothing meets the eye except a one inch up-stand of studs, and section pillars which the trolley has anyway'. Road users viewed the studs differently. They broke cab axles and damaged springs, which resulted in uncomfortable rides for the carriage-owning community when their vehicles passed over raised studs.

264 The Electrical Review, Volume 60 (15 March 1907), p.1006.
265 Ibid, p.971.
266 McKay, Tramways and Trolleys, p.102.
To enhance the urban scene, Wolverhampton adopted decorative street furniture for power supplies to the tramways. The equipment for isolators and supply junctions was housed in 'Lucy boxes'. These were green cast-iron boxes about one metre high, sited on the city's pavements. The name was derived from the manufacturer, the Lucy Foundry in Oxford. The equipment enabled a section of tram route to be isolated or bypassed so that maintenance could be carried out while running continued. The Board of Trade required isolators for the Lorain system every half mile. Many have survived and are now preserved in situ for posterity:

On one side is the pre-1898 Wolverhampton coat of arms and the other side has the post-1898 coat of arms. One side or the other might be a later replacement. The box is marked 'Callenders Co Ltd London and Erith'.

![Figure 3.2 – Typical example of a decorative ‘Lucy box’ in Wolverhampton.](image)

Despite the best efforts of the tramways department to protect operations, the aftermath of the First World War had resulted in a shortage of materials. In addition, the Lorain company had long since ceased manufacture and spare parts were unavailable. These factors, combined with extra war-time demands on the

268 The story of electricity supply in the Wolverhampton area, chapter 7, p.2
http://www.historywebsite.co.uk/articles/electricity/Electricity.htm#menu (accessed on 7 October 2010).
system, meant that the network was in a badly worn state and required complete replacement.269 In 1920, the council again debated whether overhead wires should replace the Lorain system in a meeting lasting more than five hours.270 This time the pro-Lorain lobby, led once again by Sir Charles Mander, lost the argument because the costs were far too high. Conversion to overhead wires was finally carried out in 1921 and the Lorain studs disconnected.271 The on-board Lorain equipment weighed more than 1 tonne, and on removal the lighter tramcars tended to pitch and roll quite badly.272 The last trams to be purchased worked only on the overhead system, but they had a very short working life as a programme of conversion to trolley buses began in 1923.273

3.16 Conclusions

An analysis of the social structure shows that Wolverhampton Council was dominated by industrialists, who had accumulated their wealth by dint of their entrepreneurship and innovation. Decision-making rested with them and their closely allied religious groups. This elite group had ‘significantly expanded the town’s institutions while learning to cope with a relatively strong factory base and labour movement’.274 Despite the keen and sometimes acrimonious debates about surface-contact traction, a sophisticated political structure had emerged, with a mandate for initiative, and a fair amount of independence’, and strong leadership had developed within the main factions.275

269 \textit{Webb and Addenbrooke, A History of Wolverhampton}, p.64.
270 Ibid, p.71.
271 \url{www.wulfrunian.net/wolves.htm} (accessed on 11 April 2012).
272 Ibid.
273 \textit{Webb and Addenbrooke, A History of Wolverhampton}, p.81.
274 \textit{Trainor, Black Country Elites}, p. 374.
275 \textit{Millward, Private and Public Enterprise}, p.40.
Wolverhampton was at the forefront of the Industrial Revolution, and consequently the working classes tended to live near their mines and factories in areas subject to heavy pollution. A large percentage of the population was categorised as socially deprived. Social segregation, increasingly facilitated by new transport systems, imparted both strength of feeling and a sense of belonging to wealthier residents. They wished to live in neighbourhoods with their social equals and not to mix with inferiors. But that was not the only dynamic. The wealthy in general ‘showed a propensity to migrate westward in search of better land and purer air’. In Wolverhampton, the prevailing winds ensured that the western suburbs were free from smoke and pollution.

In general, the voice of religion was influential in determining and shaping ideas, and as such, influenced debates in the council chamber. It gave a sense of cohesion to the community, and a reason for being in the growing towns and cities. In Wolverhampton the main opposition during traction debates came from churchmen councillors, who desired the least-cost, most economically viable solution. Their strongly held beliefs persuaded them that money would be better spent on helping the socially deprived. Religious background therefore helped to focus the decision-making process.

It is unlikely that population size alone had a direct impact on the forms of technology chosen. Wolverhampton was one of the larger cities in the UK, and allowed steam trams prior to electrical traction, but only in the less desirable, more polluted districts. However, there were smaller towns in the UK which developed both horse-drawn and steam traction. Population size in itself therefore could not have been the determining factor.

\[276\text{ Cannadine, Lords and Landlords, p.396.}\]
Wolverhampton council was cautious in proceeding with an electrification programme, and remained sufficiently proud and independent not to follow its fellow Black Country towns into a headlong rush for an overhead system. The council also had to fight the commercial intentions of the BET who were pressing for a unified system throughout the Black Country. From the beginnings with the setting-up of a special committee in 1896 through to the final decision in 1902, the path was littered with indecision and referrals back and forth between committee and council. Within that time scale, several traction schemes were considered, including overhead. The final decision to adopt surface-contact traction was not taken lightly, and was the result of several complex interactions between factors such as the environment, aesthetics, and a variety of political issues. Opposition to surface-contact encompassed an irrational dislike of foreign inventions and a strong sense of nationalism as well as civic rivalries.

The result was by no means a techno-economic solution. It was neither the easiest in terms of engineering knowledge at that time, nor was it the most economically viable, despite Twelvetrees' assertions to the contrary. Rather, it was a solution in which the strength of personality of key players in the process played a part. The initial experimental stage did not attract much opposition except on economic grounds. After that phase was completed, there was a threat of litigation by the manufacturers and licensors of the Lorain system hanging over the council. Some councillors feared the outcome as the agreement to proceed with full implementation depended on assessments of success which were open to interpretation. A judgement in favour of the council was therefore by no means certain. A substantial minority of councillors felt embittered at the devious way they had been tricked into adopting surface-contact traction. In the end, it seems likely
that the supporters of the Lorain system had been led into a situation from which they could not extract themselves.

Trades Associations had a powerful voice in some towns, and they had a certain amount of influence in Wolverhampton. Their objections on the key question of isolation from adjacent networks was clearly recognised and debated, and the final decision to proceed was not unanimous, but the persuasive powers of the Chairman of the Tramways Committee, often operating his personal agenda, reigned supreme. Mander was determined to commit the council to the Lorain system, regardless of the consequences. After full council approval, responsibility for installation was passed to officials, and on completion, the tramways general manager pledged to do everything in his power to make the system a success.

As I have argued in this chapter, the outcome was the result of a complex set of political and other considerations. Clearly, in Wolverhampton's case, aesthetic values were considered to be important, but masked other issues as Schmucki suggests. However, with such a long and successful traction history, surface-contact could hardly be considered a failure.

277 Schmucki, 'The Machine in the City', p.1076.
CHAPTER 4 – HASTINGS: A SEASIDE TOWN

‘A strong odour of sulphur and goat’s skin, with behind the scenes the cloven hoof of the arch-fiend, tramways’.¹

4.1 Introduction

This chapter investigates the urban development, demography, and the political climate of Hastings to analyse whether there were any common factors between it and the other towns which adopted surface-contact traction. Early transport developments are also included as well as the creation of the Omnibus Company which preceded the tramways.

Seaside towns were generally much smaller than their urban counterparts. They were accordingly more dependent on landowners’ finance and enterprise, and offered ‘greater scope for the wielding of aristocratic power in an urban context during the second half of the nineteenth century’.² In the St Leonards district of Hastings, development was heavily dependent upon the landowning Burtons, without whom it is unlikely the area would have existed. Even so, there were marked differences in the origins and development of each town.

Social groupings and identity were also important. Smaller towns, like Hastings and the ancient cathedral city of Lincoln, had a higher proportion of middle-class residents compared with industrial cities such as Wolverhampton. In both it was more than 6% compared with Wolverhampton’s less than 3%.³ The higher proportion not only affected the social atmosphere but also enabled the middle

¹ Hastings & St Leonards Observer, 10 September 1904.
classes to wield a disproportionate influence when choices about the mode of mass transport were being considered.\(^4\)

The main opposition in Hastings centred on the need for any tramway system at all. Over a thirty year period at the end of the nineteenth century, several attempts were made to introduce trams but all met with failure due to the opposition from the wealthier sections of society. The strongest objections came from the elegant St Leonards area, where influential residents feared that the physical intrusion of trams would affect their lifestyle. There was also strong opposition on economic grounds from both hoteliers and the health sector, who were outraged by the possible loss of earnings if visitors to the town were deterred by the noise and visual intrusion of overhead-powered trams.

Eventually, overhead traction was reluctantly accepted, but not along the elegant Frontline. As a consequence, two separate sections were constructed with no interconnection along the promenade. It was to be another year before the Dolter surface-contact system was installed as a compromise.

During the controversy, political in-fighting and religious opposition served to delay the decision-making process. The debates did not end after the installation of the unpopular Dolter system. Opposition from the media, symbolic gestures such as posters and parades, and the threat of direct action through strikes by employees of the Hastings Tramways Company, also created tensions. Throughout the controversy, freedom of expression for all sides in the debates was particularly important. Over time, the aesthetic argument, such as it was, against overhead traction became closely bound with economic reality. This chapter therefore

investigates whether aesthetics were surrogates for other factors when tram traction was being considered.

4.2 The development of Hastings

The wealthier sections of society were vociferous in raising objections to trams in Hastings. As in Wolverhampton, they inhabited quite distinct areas and jealously guarded their lifestyle. Urban growth was influenced and constrained by the town's topography, which also impacted on its demographic distribution. 'High, wooded, well-drained hills tended to attract the most wealthy of residents, while the working classes and those few necessary industries tended to congregate on the lower-lying land'. The land rises inland from the shore, and the area consists of a series of steep ridges reaching heights of more than five hundred feet in places, dissected by valleys running down to the sea. The original settlement of Old Town was located in the Bourne valley, but as the town grew, development moved further west to the Priory valley. Eventually, this area became the town centre. In the late eighteenth century, Hastings 'moved quietly with increasing self importance, from fishing village to watering place and eventually seaside resort'.

It had become fashionable for the wealthy to spend the summer by the sea in the belief that bathing in seawater was good for health. Although fishing was still the main industry, change was taking place. The nature of the town became more introverted, primarily concerned with the people who lived there, 'the rich and the poor, the poets and politicians, the artists and soldiers, the famous and the infamous, and the ways in which they changed Hastings'. The conservative

5 Cannadine, Lords and Landlords, p.411.
nature of the population shaped their class interests and they became resistant to anything which might upset the status quo. This was reflected in their opposition to tramway development.

The main battleground in the debates about surface-contact traction lay in the suburb of St Leonards to the west of Hastings proper. Concepts of grandeur and harmony were central to the planning of the well-known London architect, James Burton, who designed and created St Leonards between 1827 and 1837. His equally famous son, Decimus Burton, added further buildings in the 1850s and 1860s. The Burtons purchased the area from the wealthy Eversfield family estate, and a local Act in 1832 gave commissioners legal powers to manage the new town.

St Leonards was conceived as an elegant, custom-built seaside resort for the wealthy to rival Brighton and Eastbourne. With the arrival of railways in 1851, St Leonards quickly became popular with royalty and aristocracy. Queen Victoria was a frequent visitor, and other notable residents were Princess Sophia, the author Sir Henry Rider Haggard, and Robert Tressell, author of *The Ragged Trousered Philanthropists*. Tressell modelled his book on the wide social divisions between the relative poverty of Hastings' old town and St Leonards.

The architectural style of the St Leonards area was particularly attractive, being in the Classical and Gothic styles, in which the Burtons specialised. Houses and mansions were clearly intended to attract only visitors of the better class. It was a model new town: clean, ordered and refined, with roads and walkways laid out in

8 http://www.1066online.co.uk/hastingshistory.htm (accessed on 11 April 2010).
10 Ibid, p.100.
the grand manner. St Leonards was entirely separate from surrounding areas. The town centred on a large picturesque park area designated for residents only. It contained an Assembly Hall, which became the focus of all social activity including balls, receptions, banquets and card parties.11 Despite its attractions, a contemporary writer considered the town 'a trifle dull' compared with Eastbourne, although that might be construed as sour grapes as the writer was extolling the virtues of the latter.12

Even within the small suburb of St Leonards, there was the marked social segregation that typified such developments. The lower classes were only represented by retinues of servants. The area known as Mercatoria on the eastern edge was the original service area of Burton's town, containing the tradesmen's and laundrywomen's quarter.13 The area which is now the corner of Mercatoria and Norman Road was originally called Lavatoria Square: it was here that the washerwomen lived and worked. A map of St Leonards is shown in Figure 4.1.

11 http://www.1066online.co.uk/hastingshistory.htm (accessed on 11 April 2010).
13 http://www.1066online.co.uk/hastingshistory.htm (accessed on 11 April 2010).
St Leonards was administered separately from Hastings proper by a Board of Commissioners, who received money from special rates levied on the residents. Eventually, the land in between Hastings and St Leonards was developed, and in 1875, they were officially amalgamated.15 By then, a huge disparity in rates had arisen between the two, and residents looked jealously at the much lower amounts paid in Hastings proper. Despite St Leonards' higher rates, the commissioners decided they could no longer afford to provide services at an acceptable level.16 Consequently, pressure from residents forced the amalgamation and provided the opportunity to equalise rates and improve services.

Development of other districts in Hastings was also rigidly controlled. Quite apart from St Leonards, much of the town was preserved for the more sedate and

14 http://www.1066online.co.uk/hastingshistory.htm (accessed on 11 April 2010).
15 http://www.1066.net/burtons/intro.htm (accessed on 11 April 2010).
16 Ibid.
respectable longer-stay visitors, on whom the hoteliers depended. The pattern of growth caused its own problems. It occurred not in a steady and sustained fashion, but rather in a series of spurts, followed by periods of virtual stagnation in concert with national building cycles. During the peaks, a larger labour force was needed than could be employed in the troughs. The periods of unemployment caused great hardship and poverty for many. At the turn of the twentieth century, the town was therefore demographically and socially divided.

Wealthy residents did bring benefits to the wider community. In 1891, the 507 men employed as coachmen or grooms to people of independent means comprised the second highest employment category in the town.17 Private carriage ownership therefore played an important role in the local economy, and when the nature of the town began to change, the impact was dramatic. The decline of Hastings’ popularity as a fashionable resort for invalids and the wealthy, combined with the growth of the motor car, resulted in a change in social mobility. The wealthy were able to travel further afield to the more glamorous and warmer resorts of continental Europe. By 1910, the number of private carriages to be seen on the sea front had fallen significantly. Hastings was becoming a more traditional British summer-holiday resort, ‘even rather vulgar as the lower-class holiday crowds grew’.18

Although the area of Hastings remained constant at 3,083 acres for more than seventy years from 1801, population growth followed the pattern of many other towns at the time.19 The largest percentage increases occurred in the years

17 Marchant,
\textit{Hastings Past}, p.112.
18 Ibid.
19 \url{http://www.visionofbritain.org.uk/unit/10142568/cube/TOT_POP} (accessed on 15 September 2012).
following the arrival of the railways in 1851 and the merger with St Leonards in 1875. Population details are as follows:

<table>
<thead>
<tr>
<th>Year</th>
<th>Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>1801</td>
<td>3,318</td>
</tr>
<tr>
<td>1811</td>
<td>4,080</td>
</tr>
<tr>
<td>1821</td>
<td>5,786</td>
</tr>
<tr>
<td>1831</td>
<td>8,976</td>
</tr>
<tr>
<td>1841</td>
<td>9,500</td>
</tr>
<tr>
<td>1851</td>
<td>14,016</td>
</tr>
<tr>
<td>1861</td>
<td>25,929</td>
</tr>
<tr>
<td>1871</td>
<td>37,842</td>
</tr>
<tr>
<td>1881</td>
<td>49,755</td>
</tr>
<tr>
<td>1891</td>
<td>58,546</td>
</tr>
<tr>
<td>1901</td>
<td>60,264</td>
</tr>
<tr>
<td>1911</td>
<td>62,036</td>
</tr>
<tr>
<td>1921</td>
<td>64,142</td>
</tr>
<tr>
<td>2001</td>
<td>85,027</td>
</tr>
</tbody>
</table>

Table 4.1 – Population statistics for Hastings.²⁰

The expansion of Hastings can be explained in part by London’s close proximity, which enabled wealthy landowners and commuters to take advantage of improved transport links.²¹ Indeed, such was the extent of Victorian commuting that a contemporary author described Hastings as ‘in reality, an isolated suburb of London’.²² By the end of the nineteenth century it became a virtual dormitory town, where many rich merchants and stockbrokers lived. Unlike other towns and cities, particularly Wolverhampton and Manchester, there is no evidence in Hastings of what Briggs described as a ‘shopocracy’²³, wherein shopkeepers played a particularly influential role in local politics.

Hastings’ polycentric structure is a poor fit with any urban model. The town comprises four entities. The Old Town consisted of the former fishing village with easy access to the harbour. In the late nineteenth century, a new town centre was

²¹ Cannadine, Lords and Landlords, p.62.
constructed to the west. Prior to that, St Leonards was developed as a separate entity for the wealthy wishing to enjoy the climate. In later years, new housing estates were built on the edges of the town. The spatial layout therefore follows a combination of planned development superimposed on organic growth.

4.3 The political dimension

Trams were adopted as a symbol of technological progress and civic pride and reflected on a town's identity. Politicians therefore played a crucial role in the debates about tramway development as decisions rested within the council chambers. The political framework of Hastings showed distinct characteristics. In 1835 Hastings became a borough under the Municipal Corporations Act. To achieve that status, towns had to be recognised as active and expanding urban settlements, a requirement which Hastings clearly fulfilled. In 1888, Hastings was elevated to county borough status under the Local Government Act. By then, the area between Hastings and St Leonards was developing by the process of infill as the town became more popular with commercial people from London. In 1897, the Local Government Board approved the extension of Hastings' boundaries to include the outlying villages of Ore to the east of Old Town, and Hollington to the north of St Leonards.

Hastings Council was fairly evenly balanced between the Tories and the Liberals, a balance that reflected the physical divisions of the town. In the last election before the town's boundaries were expanded in 1897, the Tories held 13 seats,

25 Hastings & St Leonards News, 16 April 1897.
the Liberals 10, and there were 7 Independents.26 By 1903, the majority party was still the Conservatives with 21 seats to the Liberals' 19. Included within these totals were 8 Conservative aldermen and 2 Liberals.27

In the following year, the balance of power changed, with 22 Liberals and 18 Conservatives elected. An editorial in \textit{The Mail} heralded the result as a sweeping condemnation of Tory municipal policy. ‘Hastings is disgusted with Tory mismanagement, muddling and extravagance. Prior to the election, the town was ruled by expensive Tory party partisans.’28 Political differences were reflected in other towns also. Wolverhampton’s city fathers were ‘experimental, adventurous, and diverse, while others such as those of Hastings and Torquay were considered to be ‘solid, uniform and pacific.’29 These distinctions became crucial in the early years of the twentieth century in Hastings at the time of the heated tram debates in the town.

\subsection*{4.4 Early transport developments}

To begin with, transport services were welcomed. The first recorded omnibus began operations in 1869 when a ‘handsome three horse omnibus, after the model of those introduced in London in 1862, commenced running between the Fishmarket and the railway station, leaving the latter on the arrival of each train and returning in time to meet the up trains.’30 By 1876, the service had been expanded to include the sea front, known locally as the Frontline. The service was

26 Hastings & St Leonards Chronicle, 1 November 1897.
27 Hastings & St Leonards Mail, 7 November 1903.
28 Ibid, 5 November 1904.
29 Briggs, Victorian Cities, p.185.
30 Hastings & St Leonards Chronicle, 5 March 1869.
operated with two vehicles by George Kerridge, but his horses suffered from the epidemic referred to in section 2.4 when four of them died.

To spread the risk, soon afterwards Kerridge floated the idea of a publicly owned omnibus company, canvassing support from leading residents and town officials. By the end of November 1877, the Hastings and St Leonards Omnibus Company had been founded, and on 9 April 1878 services commenced between the Fishmarket and the Archway in St Leonards, along the Frontline.

As the 'mini explosion' in tramway schemes gathered pace in the late 1870s, the first attempt to introduce horse-drawn trams in Hastings occurred in October 1877. By then, many towns in the UK, including Wolverhampton, had already gone through the legal processes and in some cases installation was underway. A local solicitor, FG Phillips, acting on behalf of an unnamed existing promoter, applied to the town council for their consent to an application to the Board of Trade in the ensuing session of Parliament. The application was for a Provisional Order authorising the construction of a tramway. The line was to run from the Bo-Peep Hotel along the Frontline to the Memorial, where it divided with one line proceeding to the Fishmarket, and the other along Queens Road to the Pleasure Gardens. The proposal was for a 3'6" gauge tramline.

In support of the application, the promoters claimed that the proposed system had been thoroughly tested, and quoted the Select Committee of the House of Lords and Commons, which in 1871 had conducted a 'most elaborate enquiry' under the chairmanship of Lord Eversley. The committee had concluded that 'wherever

32 Hastings & St Leonards News, 26 October 1877.
tramways have been formed they appear, with few exceptions, to have given
general satisfaction, and to have afforded great accommodation to the public'.

The promoters added a long list of towns in the UK, the United States, and
continental Europe, where tramways had been successfully introduced.

The House of Lords and Commons Select Committee had ruled in favour of the
adoption of steam power where appropriate, and the promoters therefore stated
that ‘it is a matter for consideration whether steam power should be employed in
Hastings’. On the other hand, the Select Committee also highlighted ‘one of the
greatest drawbacks attributed to the use of steam, namely the danger to horses’. In
a town such as Hastings, dominated by the wealthy horse-owning community, it
is unlikely that steam traction was ever a serious contender, and indeed the mere
suggestion of steam power on the attractive streets strengthened the opposition to
trams.

Despite the apparently strong arguments in favour of trams, opposition was soon
galvanised by the wealthy carriage owners. Referring to speculators’ plans ‘to spoil
our beautiful sea-front’, a letter to The News insisted that a tramway would make
carriage driving a nuisance instead of a pleasure, and would destroy the town’s
prosperity since wealthy visitors would cease to visit. Tramways were permitted
elsewhere because of the ‘necessity for providing for the humbler classes a ready,
cheap and convenient system of intercommunication’; as a result, ‘those who
owned carriages and horses were compelled to give up their individual enjoyment
for the benefit of the mass of the population’. Hastings was ‘a place where the

33 Hastings & St Leonards News, 26 October 1877.
34 Ibid.
35 JS Webb, ‘The British Steam Tram’, paper presented for the Walter Gratwicke Memorial Lecture,
36 Hastings & St Leonards News, 2 November 1877.
rich enjoy a drive with the least possible interference, and a tramway would drive away those whose wealth and patronage have made Hastings a charming resort of fashion, of beauty and of the highest intelligence in the land'.

Other opponents cautioned potential investors to compare returns from omnibus companies. George Kerridge quoted dividends from the London & General Omnibus Company of 12½% compared with 1½% from the corresponding tramways company. As he was an omnibus operator in Hastings himself, he clearly had a vested interest in opposing any competition. Others warned that newly laid roads would be torn up, horses thrown, wheels of carriages broken, and ‘the best three-mile carriage drive in the country along the sea front ruined’.

An editorial in The News attempted to take a more balanced view, urging rational discussion in which residents would consider the greatest good, not simply the prospect of a successful investment. However, the newspaper also pointed out the implications for existing competing omnibus and train facilities. It advised people to consider the impact on the employment of cabmen if such a scheme were to be approved, pointing out that hundreds of families depended on it for their livelihood. Arguing that the advantages would need to be sufficient to justify an interference with the established order of things, the newspaper concluded that the public need of a tram ‘is not urgent’.

Comparisons were also drawn with other towns. A town of a very different character, Swansea, ran a steam tram along the bay as well as cabs and omnibuses. This was the Swansea & Mumbles (Oystermouth) railway, which

37 Hastings & St Leonards News, 2 November 1877.
38 Hastings & St Leonards Observer, 27 October 1877.
39 Ibid, 3 November 1877.
40 Hastings & St Leonards News, 2 November 1877.
began operations on 17 August 1877, just two months previously.41 There were plans to extend the tram system further. But despite being twice as large in terms of population, Swansea only had one quarter of the omnibuses that Hastings possessed. The newspaper's conclusion was that 'the traffic of a dirty mining and commercial district affords scarcely a parallel to a tidy watering-place'.42

Realising they were fighting a difficult battle, the promoters emphasized the advantages of tramways over omnibuses. They offered greater comfort, and whereas the latter could charge any fare they pleased, tramway fares were regulated. In an attempt to appease the influential members of society, the promoters stressed the benefits for the ratepayers too. Under the Tramways Act, 1870, operators were compelled to contribute at least one half the cost of road maintenance, estimated to be £500 per annum per mile. The poor state of roads in Hastings had been a major concern for some time between the council and the ratepayers. It was also suggested that tramways reduced accident rates, although this claim was disputed by opponents in other towns.

On 2 November 1877, the promoter placed an application for a tramway before the Urban Sanitary Authority of Hastings Borough Council, accompanied by a report from the Roads Committee. The application was unanimously rejected. The Observer newspaper wondered what could have induced the applicants to seek permission for 'such a wild, almost childish scheme' best suited to large business towns. 'The idea was preposterous and would kill Hastings' commercial prosperity'.43 Not surprisingly, The Observer fully supported the Council's decision and praised them as acting like a shrewd body of businessmen, thereby meeting

41 HA Whitcombe, 'History of the Steam Tram', Locomotion Papers No.9, Surrey: The Oakwood Press, 1954, p.44.
42 Hastings & St Leonards News, 2 November 1877.
43 Hastings & St Leonards Observer, 3 November 1877.
with the 'hearty and unanimous approval of the whole borough'. The following week, a single headline appeared, 'Exit Tramway', with no further comment.\footnote{Hastings & St Leonards Observer, 10 November 1877.}

The wealthy residents along the sea front welcomed the decision and continued to guard jealously their right to parade daily in their carriages without disturbance from rails sunk into the road. In keeping with Hastings' role as a health resort, many invalids stayed to recuperate on doctors' orders, bringing much wealth to the local economy. There was a feeling that the advent of tramways would curtail this important enterprise, severely affecting the incomes of local tradesmen and bath-chair men.

During this episode, the views of the 'humbler classes' went unrecorded. There is no evidence that they were even consulted. The weight of the argument appears to have come solely from the wealthy residents and visitors, who fought hard to retain their lifestyle. On the other hand, it is difficult to gauge the benefits to poorer people of such a scheme, unless it would have been to increase their leisure activities. There were no obvious industrial or commercial advantages. Perhaps the more influential residents along the proposed route resented the possible intrusion of the humbler classes into their select area, a class phenomenon observed in London and elsewhere.

Strong class tensions continued between the carriage-owning community and the 'humbler classes'. As an example, the solidly anti-socialist and eventual Liberal Prime Minister Lord Rosebery said 'tramways were the inconvenience of the opulent and the luxury of the poor. You may always measure exactly the extent of
the democracy of a country by the extent of its tramways.45 However, Rosebery’s view reflected his middle-class attitude towards democracy, neither wealthy nor poor. The carriage-owning community enjoyed recreational riding for leisure and health reasons. The activity enabled wealthy people to display their status in society with their expensive carriages and horses.

A more determined effort to introduce trams occurred in mid-1879. The promoter J Kincaid sent an open letter to the Town Clerk, TG Meadows. Kincaid requested the Council’s permission to present a Bill in Parliament for a system of horse-drawn trams in Hastings and its immediate area. In anticipation of strong opposition to the scheme, the letter stated:

\begin{quote}
\textit{it would be almost unprecedented were the proposal to meet with no opposition from the carriage riding section of the inhabitants, but as we have successfully encountered such opposition in other places, we hope to do the like in Hastings. The proposed tramway will be laid out as to afford a maximum of accommodation, with a minimum of interference with the susceptibilities of a class to which I have referred.}46
\end{quote}

The proposal was similar to the earlier one, for a single tramway from the Bo Peep Hotel, continuing along the Frontline to the Memorial and thence along Queens Road and St Andrews Road. However, from there it diverged from the earlier proposal by continuing along St Helens Road to the junction with Downs Road.

The intention was to provide a service for residents of the recently developed

Blacklands area of the town. Trams were to fulfil a latent demand there, a prime example of urban expansion before transport facilities were in place.

Anticipating any opposition, the proposal made it clear that the tramcars would be 'light and elegant and drawn by one horse on a single line. The rails were to be laid to the unusual gauge of three feet, and the operation would comprise an extreme width of only 5'6" so as to leave ample space for ordinary traffic'.

Omnibuses catered for passengers travelling to the east of the Memorial.

The News described the proposal in detail, but pointed out that the recent formation of the omnibus company would no doubt be raised as an objection. Nevertheless, a notice of application to the Board of Trade for a provisional order to construct street tramways was served on the borough council. Plans and sections of the proposed route were deposited on 29 November 1879. It was intended to lay the provisional order before the Private Bills Office of Parliament by 23 December 1879 under the 1870 Tramways Act. A new undertaking, the Hastings Tramways Company Limited, was proposed. Any objections to the scheme were to be lodged by 1 January 1880. The total length was 2.8 miles of single track, including 0.3 miles of passing places. The application was signed by Kincaid's solicitor and parliamentary agent, W Webb of 23 Queen Victoria Street, London EC (the same address as the Wolverhampton Tramways Company), and AL Sayer, a local Hastings solicitor.

47 Hastings & St Leonards News, 21 November 1879.
48 Ibid.
49 Lewes, East Sussex County Council Archives, Hastings Tramways Deposited Plans, file QDP/449, 29 November 1879.
50 Ibid, Hastings Tramways, file PAR/365/22/7, 29 November 1897.
The proposal immediately produced a flood of letters to the newspapers from objectors. One pointed out that Hastings was not a commercial centre, where tramways had become a necessity. Traffic was both private and by visitors who enjoyed ‘a clear drive of over two miles’. Another letter suggested that Hastings was not a business centre, but a pleasure and health resort which depended for its prosperity on visitors and winter residents rather than the conveniences a tramway would provide to the local population. Others pointed out that Hastings’ streets were too narrow and tramways would reduce the space available for private carriages to the point where ‘the nobility and gentry would go elsewhere where they would be free from this annoyance’. A further letter suggested that trams would ‘vulgarise the town’.

Despite the opposition, the tramway promoters, Messrs Sayer, Webb and Kincaid, were invited to explain the scheme at a Council in Committee meeting on 21 November 1879. It was resolved after a proposal by Councillor Huggett, seconded by Councillor Brown, that further consideration was necessary. After this meeting, The Observer urged its readers ‘to keep their minds unbiased, and to give a fair and full consideration, free from prejudice, to the proposal, which on the face of it, appears likely to promote the welfare of the locality’.

However, the influential residents were not finished, and called a meeting at the Royal Victoria Hotel on 22 November 1879. It was attended by more than 600 people, who expressed a ‘strong and unanimous opposition to the project’.

51 Hastings & St Leonards News, 21 November 1879.
52 Hastings & St Leonards Observer, 29 November 1879.
53 Ibid.
54 Ibid.
56 Hastings & St Leonards Observer, 22 November 1879.
57 Ibid, 29 November 1879.
decided to mount a petition against it. Within two days, 916 property owners had signed the petition, representing an annual rateable value of more than £64,000, a considerable sum at the time.58 Noting the powerful interests of the ratepayers, the Council were persuaded that a tramway would be in no way desirable in the town.

Other strong objections followed, including one from a resident of Wolverhampton who was a frequent visitor to Hastings. He claimed that the tramway installed there three years previously was a ‘great nuisance’, causing not only blockages but also loss of trade to shopkeepers as customers’ carriages were prevented from ‘drawing up to make their purchases’.59

Due to the strength of opposition, at a Council in Committee meeting on 3 December 1879, a letter was read from Sayer stating that ‘the promoter has withdrawn his proposal for this year and would not proceed with the application for the present time’.60 The full Council met on 5 December 1879 when further discussion took place. Alderman Dr Croucher said that the opposition to the scheme had been so powerful that ‘he hoped it would prevent any further application of this nature. Any Company might rest assured that the inhabitants would not lose any opportunity in endeavouring fairly and legally to oppose all such schemes’.61 \textit{The Chronicle} noted that the strong opposition generated ‘should deter any other body from again introducing the subject for the next ten or twenty years’.62

58 Hastings & St Leonards News, 12 December 1879.
59 Hastings & St Leonards Observer, 6 December 1879.
60 Lewes, East Sussex County Council Archives, Hastings Council Minutes, file DH/B 19/16, 3 December 1879, p.784.
61 Hastings & St Leonards News, 12 December 1879.
62 Hastings & St Leonards Chronicle, 10 December 1879.
The Observer noted that 'it is not probable that the people of Hastings can ever be educated into accepting a tramway system'. There were signs, however, that support for tramways was increasing among council members. Sayer himself became mayor a few years later, and both the existing mayor and his deputy, Aldermen Winter and Gausden, spoke in favour, though it was not until 1891 that a further attempt was made. In the meantime, omnibuses and private carriages continued to dominate the non-pedestrian movement of people in the town.

4.5 The Hastings and St Leonards Omnibus Company

Other forms of transport provide useful insights into how divided Hastings' society became, a situation which was to continue for many years. While initial attempts to introduce horse-drawn trams were being debated, moves were afoot to form the publicly-owned omnibus company mentioned in section 4.4. Kerridge, the private operator, was experiencing financial difficulties with his services. A report in The Observer gave notice of intent, claiming that the mayor, several councillors, professional and influential tradesmen and others, desired to become shareholders. It was proposed to have two or more omnibuses operating throughout the day from Silverhill, West Marina Station, St Andrews, and the Fishmarket, thus almost shadowing the suggested horse tramway. The Observer suggested that the service would 'doubtless be a boon, not only to visitors but also to businessmen who live a distance away from their places of occupation'. This clear support by The Observer for an enhanced omnibus service contrasted starkly with its vigorous opposition to the introduction of horse tramways.

63 Hastings & St Leonards Observer, 6 December 1879.
64 Ibid, 13 October 1877.
65 Ibid.
The first public meeting on 30 October 1877 was adjourned because of lack of support, and the difficulty in raising £1,000 from shareholders to enable the company to be set up. However, a prospectus detailing the objectives was published the following month, stating that the company would be formed for the purpose of establishing an efficient omnibus service between Hastings and St Leonards to fulfil a public need.66 The company was registered on 16 November 1877. By the end of that month, 58 shareholders had been attracted, and the company confidently expected to pay a fair dividend. Clearly an omnibus system was considered a great advantage to Hastings while a horse tramway was not. Many of the shareholders were local businessmen, whereas the investors in the tramways company would have come primarily from elsewhere, as tramway subscribers tended to operate nationally. The influential residents did not welcome the imposition of an outside solution to their apparent transport problem.

The omnibus company soon encountered difficulties. The operation had proved expensive and a consequent comparison with the London and General Company revealed that each horse was costing 2s 6d per week more to feed in Hastings. As a result of these financial problems, no dividends were paid to shareholders for the first six years of operation.67 The problem was solved when Skinners, a local private carriage operator with expertise in the management of large stables of horses, agreed to amalgamate and form a new company.68 A new board was constituted and further routes were opened, so that by 1885, a dividend of 25% was achieved.69

66 Hastings & St Leonards Observer, 24 November 1877.
67 Mewett, Hastings Omnibus Company, p.11.
69 Ibid, p.13
However, the omnibus company faced serious competition from other quarters. Apart from Skinners, another operator named Dick Russell had extensive stables and several hundred horses.\(^{70}\) By 1885, there were more than fifty one-man operators, all controlled by the Hackney Carriage Regulations.\(^{71}\) As competition increased, the private operators formed a rival undertaking called the Hastings Suburban Omnibus Company, and services began on 31 May 1886. The company was poorly run as the board lacked business expertise, and debt soon accumulated. In April 1887, the suburban service was absorbed by the Hastings and St Leonards Company.\(^{72}\)

In St Leonards, the wealthy residents continued to oppose omnibuses. They resented their intrusion and increasing numbers. A petition was organised, stating that omnibuses impeded carriages and damaged the roads. The town's gentry clearly wanted to safeguard the 'best carriage drive on the South Coast', and as they represented a rateable value of £44,462, their views had to be taken seriously.\(^{73}\) Other protesters claimed that the invalid trade was being badly affected as the omnibuses disturbed their peace. The Council gave serious consideration to the objections, but eventually resolved against the petitioners.

As opposition to omnibuses increased, other sections of the community made comparisons with the benefits of tram systems. Omnibuses were 'uncomfortable for passengers and destructive to public roads, while trams would be smaller, lighter and cleaner'.\(^{74}\) The feelings were not universal. The wealthy residents and long-term summer visitors to the Frontline were determined that neither form of

\(^{71}\) Ibid.

\(^{72}\) Ibid, p.16.

\(^{73}\) Ibid, p.17.

\(^{74}\) Ibid, p.19.
transport would spoil or impede their right to enjoy recreational trips along the Frontline in their private carriages, as the numerous letters to the local newspapers indicated.75 The scene was set for a battle which continued for several years.

The Omnibus Company, anxious to placate opposition and also fearing the inevitability of trams, began to investigate the introduction of motor buses. The Board was keen to modernise its operations, having for some time been criticised on the grounds of cruelty for using horse-drawn vehicles in the hilly areas of the town. After visiting an embryonic commercial motor show at Crystal Palace in 1903, the Board were so impressed that they purchased the Milnes Daimler motor bus show model. A service began in March 1903 and was so successful that three more were ordered before the end of the month. A novelty was that buses would only stop at pre-arranged places, unlike horse-drawn vehicles which stopped on demand.

The introduction of these new-fangled vehicles re-energised the anti-Trammites, who displayed posters proclaiming: ‘motor buses are coming – what need of trams’.76 Hastings was clearly at the forefront of motor-bus operation. Deputations arrived from many towns in England, including London and Preston. Under a banner headline ‘A Double-Decked Motor Omnibus – How to Meet Obnoxious Tramway Schemes’ a periodical \textit{The Car} praised Hastings’ far-sighted Omnibus Company and concluded that motor-bus services would do more to quash the tramway scheme than any amount of public antagonism.77 The euphoria was short-lived. Although some costly horse-drawn buses were withdrawn, the

75 Hastings \& St Leonards Weekly Mail, 21 January 1899.
76 Mewett, Hastings Omnibus Company, p.23.
77 The Car, April 1903.
Company soon encountered further problems orchestrated by religious groups, when an application for a licence to run omnibuses on Sundays was made to the Town Council in January 1904. A petition in favour was presented to the Council in March, but in April, the Council decided to let the company make the decision as Sunday running did not offend the bye-laws. A strong Sabbatarian movement developed, with the backing of the influential Lord's Day Observance Society, which declared that 'it would be disturbing to God to run motor buses on the Sabbath'.

Organised Sabbatarianism had reached its peak in the mid-1850s, but clearly prevailed in Hastings much later. The hold of religion over leisure and work activities was twofold. Firstly, there was the moral injunction against all labour on the Sabbath except those tasks necessary for the welfare of society. Secondly, there was the legal framework enshrined in acts of parliament which detailed all permitted activities. The restriction on transport was particularly oppressive in some towns, where the middle classes saw it as a means of retaining urban public order. By the 1880s in the UK, only Blackpool had overcome the opposition to Sunday tram services.

For several months, debates raged in Hastings, and a petition was raised in opposition and presented to the Council. The campaign against was led by the Lord's Day Observance Society and church leaders. In May, the company organised a vote amongst its shareholders, and not surprisingly, those in favour of Sunday services won by 537 to 443. In June 1904, one of the most outspoken

78 Hastings & St Leonards Observer, 3 September 1904.
79 Mewett, Hastings Omnibus Company, p.25.
81 Ibid.
82 Hastings & St Leonards Observer, 3 September 1904.
critics, the Reverend Gilbert Muir denounced the Town Council, suggesting that councillors and others who voted in favour were 'the enemies of God's Sabbath and as such were the enemies of man'.⁸³ The company made no further announcements until Saturday 27 August, when the directors announced that Sunday services would commence the next day, between the hours of 10 am and 10 pm. Although the service proved very popular with a large section of the community, with more than 10,000 people taking the opportunity to travel, the company's action immediately inflamed the opposition.⁸⁴

The Reverend T Scott, a Congregational minister, insisted that Sunday motor buses would 'make it easy to be tempted away from religious instruction, and therefore care was needed to safeguard the morals of young people'.⁸⁵ The tooting of horns was said to disturb worshippers at many of the town's churches, and others objected to the noise made by the motor buses. The same arguments were to be levelled against Sunday tram services two years later.

Petitions against Sunday motor-bus services were quickly organised both by the clergy and the Lord's Day Observance Society. Church leaders declared motor buses to be 'a terrible nuisance, morally wrong, and highly detrimental to the town's prosperity'.⁸⁶ They predicted that 'large numbers of our best visitors, for whom a quiet Sunday is a chief attraction, will go elsewhere if they are rudely disturbed'.⁸⁷ There were already a number of empty houses along the seafront.

⁸³ Hastings & St Leonards Observer, 18 June 1904.
⁸⁴ Ibid, 3 September 1904.
⁸⁵ Ibid.
⁸⁷ Hastings & St Leonards Observer, 3 September 1904.
The petition was signed not only by Anglican clergy, but also by ministers of the Wesleyan, Congregational, Baptist, and Primitive Methodist churches.88

The Lord's Day Observance Society took a different line, their petition pointing out that more than 3,000 ratepayers and influential residents were opposed to the service.89 The Society also stressed that drivers and conductors were entitled to their day of rest on a Sunday. An analysis of the petition by the omnibus company discovered surprising anomalies among the signatories. 1,045 gave the same address, 621 were from the same family, and 109 appeared to have the same handwriting!90

In a letter to \textit{The Observer}, the Reverend A Hodges expressed his heartfelt sorrow that the Company had allowed a public desecration of the sacred day of rest, and urged reconsideration 'to uphold the sanctity of the Lord's day of rest and worship'.91 The formidable Reverend J Awdry Jamieson referred to 'the riff-raff who are likely to patronise the omnibuses', and said he would infinitely prefer 'six day trams to seven day omnibuses if the tram people could give a solemn pledge not to operate on Sundays'.92 It was to be another two years before he fought the same battle with the tramways company.

Other correspondents characterized the users of the service as domestic servants, lads and loafers and saw no justification in catering for them. Furthermore, according to them the better-class residents would be driven away, thus affecting the town's prosperity and respectability. Some complainants even suggested that

\begin{flushleft}
88 Hastings & St Leonards Observer, 3 September 1904.
89 Mewett, Hastings Omnibus Company, p.26.
90 Ibid.
91 Hastings & St Leonards Observer, 3 September 1904.
92 Ibid.
\end{flushleft}
'young people were thinking of nothing else but amusement' and Sunday working would simply play into their hands. Correspondents in favour of Sunday services detected in petitions and protests against them a 'strong odour of sulphur and goat's skin, with behind the scenes the cloven hoof of the arch-fiend tramways'. A more balanced view posed this question: if the rich could get about unchallenged in their motor cars and private carriages, why should the poor not have a ride in humbler vehicles? In this view, the wealthy were trying to deny the working classes their right to leisure pursuits.

Clearly, there were those amongst the citizens of Hastings who saw positive and progressive advantages in the introduction of Sunday services. They would encourage leisure activities such as visits to cemeteries, and the opportunity to meet with family members in other parts of the town. The opposition, however, viewed such activities with some dismay, and wanted to cling to custom, conviction and sentiment, objecting fiercely to anything which failed to serve their own interests. In their view, public transport became a secularising force that helped change Sundays from a day of rest to a day of restless activity, carrying passengers to theatres, parks, and local amusements.

These debates showed a deep division in Hastings' society between on the one hand those who represented traditional conduits of power, either through the Church, or in the form of property or by payment of rates, and on the other hand, the lower classes who were becoming more politically aware. The Liberals approved of Sunday services and were generally seen as politically progressive, a

93 Hastings & St Leonards Observer, 3 September 1904.
94 Ibid, 10 September 1904.
95 Ibid.
stance similar to that taken by the party during debates in Wolverhampton. Sceptics pointed out, however, that a senior member of Hastings council, Alderman Bradnam, was the chairman of the omnibus company, and councillors Prior and Glenister were fellow directors and shareholders. They were therefore bound to support the scheme because greater profits and bigger dividends would ensue. The Council eventually compromised by deciding that Sunday motor-bus services would commence only after lunch. The decision was welcomed as a moral victory for the Church.

By the summer of 1904, the Omnibus Company was fêted and praised as being a model for Europe at a luncheon in its honour in London. However, within a few months, opponents of the motor bus, mainly the supporters of trams, were already considering them to be old-fashioned. As soon as trams were introduced, the Omnibus Company's trading position quickly worsened, and by November 1905, it was decided to withdraw motor buses completely. They were reintroduced briefly in April 1906 and worked alongside the ten remaining horse omnibuses on the Frontline before trams were allowed to operate on the Dolter system. Unable to cope with competition from the trams, the Hastings and St Leonards Omnibus Company was finally wound up in May 1906. The fleet of eleven motor buses was sold for £7,000, a considerable loss. 84 horses were sent for auction, with 60 being sold and 24 withdrawn. The demise of the omnibus company had a social impact. Many of the younger employees had already joined the tramways company, but the older ones were considered unemployable and became dependent on charity from a public appeal.

97 Hastings & St Leonards Observer, 10 September 1904.
98 Mewett, Hastings Omnibus Company, p.27.
99 Ibid.
100 Hastings & St Leonards Observer, 17 September 1904.
101 Mewett, Hastings Omnibus Company, p.32.
After the initial attempts, the question of tramways in Hastings did not surface again until a council meeting on 1 May 1891, when Councillor Pigott moved that 'the Council take into consideration the advisability of permitting the construction of a tramway between the Baths and West Marina'.102 Charles Chadwell, an engineer and tramway promoter, had approached him with details of a scheme and asked that it be put before council. Chadwell's scheme involved battery-operated trams, running on a single track of 4 feet gauge along the Promenade itself, parallel with the Frontline.103 After some debate, it was decided by nine votes to three to refer the proposal to Council in Committee.104

Chadwell claimed economic benefits for his system, quoting costs of 4½ pence per mile for accumulator power compared with 5½ pence for steam and 9 pence for horse traction elsewhere105 (Hastings never adopted horse-drawn trams). Experiments with similar accumulator-driven tramcars had been carried out in Brussels, Berlin and Paris, as well as London, from 1884 onwards, but met with little success. Average traction costs in those cities were found to be 5 pence per mile compared with 6½ pence per mile for horse traction.106 Strong objections were raised on the grounds of safety as passengers were concerned by acidic smells given off by the batteries, damage to clothing from spills, and overheating. Consequently, Brussels abandoned their scheme in 1890, although London

102 Hastings & St Leonards Observer, 2 May 1891.
103 Ibid, 9 May 1891.
104 Ibid, 2 May 1891.
105 Ibid, 9 May 1891.
106 London, The Institution of Engineering and Technology (IET), The Electrical Engineer, Volume 5 (21 March 1890), p.221.
tramway companies persisted for some time in view of the perceived economic
benefits.107

In support of the project, Councillor Pigott believed that a tramway along the
Frontline would relieve traffic congestion.108 Others thought that omnibuses would
be badly affected and the omnibus company's shareholders, several of whom
were councillors, would face financial ruin. Writing in \textit{The Observer}, 'Asmodeus'
estimated that omnibuses carried 'upwards of a million passengers every year in a
town of only 60,000 inhabitants. The service has become a local institution, which
is so much a public necessity that it may not be shelved or broken up at the
solicitation of a strange tramway promoter'.109 In fact an inspection of
'Asmodeus's' statistics reveal that with an average of fewer than 3,000 passenger
journeys per day, only a minority of Hastings' population were travelling by
omnibus on a regular basis. Sociologically, the service was patronised by a select
group of townspeople.

In common with the earlier scheme, Chadwell proposed to form a company which,
with the approval of the Council, would apply to Parliament for powers to
construct, maintain, and operate the tramway. However, it was to differ from the
earlier schemes by using electrical propulsion by means of accumulator batteries.
When fully charged, these had a maximum range of 36 miles, which translated to
a half day's work in Hastings. When each tramcar had exhausted its supply, it
would be returned to depot to recharge. Despite opposition, Chadwell persisted.

107 IET, \textit{The Electrical Engineer}, Volume 5 (21 March 1890), p.221.
108 \textit{Hastings & St Leonards Observer}, 2 May 1891.
109 Ibid.
revealing that he had recently completed 76 tramline miles in the north, operated partly by steam and partly by horse.110

Supporters of the proposal likened it to Volk's electric tramway in Brighton, and envisaged that it would provide a great attraction for visitors. A visitor to the town prophesied that 'when St Leonards sweeps round the bay to Bexhill, as it is bound to do eventually, the slow lumbering omnibus of the present decade will not satisfy the visitors on the four mile front'.111

Chadwell was asked to appear before the Council in Committee and explain his proposal. Although not exactly innovative, the chances of success for Chadwell's scheme in such a conservative town as Hastings were limited in the extreme. Not surprisingly, he failed to dissuade the Committee from recommending rejection, a decision endorsed by the full Council on 3 July 1891. Much heat was generated in a subsequent debate, with Councillor Pigott accusing the committee of disgraceful behaviour and incivility towards Chadwell.112 He suggested that no tramway would be approved in Hastings until the Council contained fewer members of the omnibus company. While neither supporting a tramway nor objecting to it, Councillor Stubbs insisted that if there were to be one, it should be the property of the corporation, and under its control. Thus the opening shots were fired in the debate about municipalisation.113

In September 1895, the residents of St Leonards wrote to the town council about 'the deplorable state of roads between the swimming baths and The

110 Hastings & St Leonards Observer, 9 May 1891.
111 Ibid.
112 Hastings & St Leonards News, 10 July 1891.
113 Hastings & St Leonards Observer, 4 July 1891.
The communication was referred to the Roads Committee for a report. Nothing appears to have been done, but in October 1896, Charles Chadwell had craftily written to the council extolling the virtues of a tramway system and pointing out that a tramways company would be responsible for maintaining the roads under the Tramways Act, 1870. Chadwell’s letter was ignored, and the borough engineer presented a report to the Council in Committee on 4 May 1897 recommending improvements along the same section of road between the pier and the South Colonnade, but without trams. His recommendations were accepted.

With time, objections to trams began to wane in some quarters, and an editorial in *The Hastings and St Leonards News* supported the ‘easy-gliding, artistic-looking trams, propelled without noise, a decided improvement on heavy, lumbering, road-destroying and road-impeding omnibuses’. Such a romantic view of trams influenced certain sections of the community. At a meeting of townspeople shortly afterwards, a resolution in favour of a tramway was passed.

Chadwell continued to press for an order to promote a tramway. A letter was received in support of his action from solicitors Tahourdins and Hitchcock. It was discussed by the Council in Committee on 16 February 1897 and it was resolved to pass it to the council's solicitors, Langham, Son and Douglas. Hastings Council was feeling the pressure building from other possible tramway promoters, and on 5 February 1897, the full council gave a remit for a committee ‘to give more

114 Lewes, East Sussex County Council Archives, Hastings Council Minutes, file DH/B 18/2, 19 September 1895, p.183.
115 Ibid, file DH/B 18/3, 15 October 1896, p.76.
117 Hastings & St Leonards News, 15 January 1897.
118 Ibid, 22 January 1897.
careful consideration to tramways than previously, and for six members to form a Special Committee on Tramways in order to collect information and report back to the Council'. However, the committee was given instructions to 'decline to entertain the idea of a tramway in any form along the sea-front'.120 The Tramways Committee was inaugurated on 18 March 1897 with the mayor in the chair.121 It was resolved to send a questionnaire to the town clerks of Glasgow, Blackpool, Swansea, Dover, Portsmouth, Southampton, Plymouth, Leamington, Edinburgh, Belfast, Leeds, Manchester, Douglas and Sheffield.122 On 9 April 1897, the town clerk issued the questionnaire requesting answers to the following questions:

1. Have you tramways in your principal streets?
2. If so, do they belong to the Corporation, or are they in private hands?
3. What is the motor power – horse, or electricity, cable or overhead wires?
4. What is the width of the roads in which the tramways are laid?
5. Are the tram lines single or double?
6. Do omnibuses in addition ply through any of the streets in which trams are laid?
7. Are the trams worked at a profit?
8. What is the fare for any given distance?
9. In what substance are the trams laid?
10. If you have any sketch or detailed plan of a line, could you oblige the Committee with a copy?
11. At what expense per mile are the trams run, including interest etc on capital outlay for plant etc?

120 Lewes, East Sussex County Council Archives, Hastings Council Minutes, file DH/B 18/3, 16 February 1897, pp.207-208.
121 Ibid, file DH/B 18/3, 18 March 1897, p.220.
122 Ibid.
12. What was the average cost say per mile, or any less length, of construction of the tramways?

13. If the trams are in private hands, what is the estimated proportion of cost of maintenance of the roads along which they run, which is borne by the owners?

14. What was the cost of obtaining the necessary Act of Parliament, or Provisional Order, and was there any opposition?

15. The committee will be glad of any other general information on the subject which you are in a position to supply, and may be useful.

This was a very comprehensive questionnaire, covering many areas of concern, but at the same time indicating that the council was not going to rush into the adoption of new technology without careful consideration of all facts. Several other town councils adopted a similar set of questions for circulation before reaching a decision on the form of traction.

Simultaneously, another player appeared on the scene. This was William Martin Murphy, an Irishman who had visited the United States and took a leading role in the construction of electric tramways in Dublin, Belfast and Cork, and also in Bournemouth, south London, and much later in Torquay. In 1897 he formed the Hastings, Bexhill and District Light Railways (Electric) Company Limited, which was registered through the Provincial Tramways Company.¹²³

¹²³ Mewett, Hastings Tramways Company, p.5.
The Provincial was one of three major nationwide promotional companies floated in 1871 and 1872, originally focusing on horse tramways. Their stated *raison d'être* was 'for the purpose of acquiring and working tramways in several large provincial towns, generally through the organisation of local companies, but under one central management and control, whereby greater efficiency and economy will be obtained'. By organising local companies, the Provincial sought to alleviate the problems of parliamentary control and of local suspicion, which was certainly rife in Hastings. But as Ochojna implies, there was an ulterior motive to their operations. He suggests that 'the company was designed to guarantee for its promoters a flow of future business, but in tramway promotion and construction rather than tramway operation'. Profits were generated by the former rather than the latter.

Murphy applied to the Light Railway Commission and deposited a parliamentary bill for powers to construct a system of trams in the town. He proposed the construction of 12 route-miles of 3'6" gauge tramways from Hastings to Bexhill, from the Memorial to Ore, from the Memorial to Silverhill, and from Silverhill to the Frontline to link with the Bexhill line. Thus Murphy's plans conformed closely to Ochojna's characterisation of Provincial's tramways routes as 'not speculative, following existing omnibus routes for the most part, and running mainly from the suburbs to the central business districts'.

125 Provincial Tramways Company Prospectus (June 1872).
126 Ochojna, 'The Influence of Local and National Politics', p.139.
128 Ochojna, 'The Influence of Local and National Politics', p.140.
His application provoked strong opposition from the Conservative members of the council. Townspeople were split into two factions, the progressive Trammites who supported the introduction of modern forms of transport, and the anti-Trammites who strongly opposed such schemes. The latter, who included some wealthy residents of the Frontline, distributed posters insisting that trams would destroy the town’s image and cause its deterioration as a health resort. Aesthetics and the beauty of townscapes were becoming closely entwined with political and moral attitudes within Hastings’ influential classes. At one end of the spectrum were the style and fine buildings which constituted the urban fabric. At the other end were the intrusive and lumbering trams. In support of the anti-Trammites case, emotive language was displayed on large posters, urging townspeople to defend the town:

Ratepayers beware! Will you allow Hastings and St Leonards to be disfigured by trams? Never were you threatened by a more insidious foe. Picture the town disfigured by trams. Imagine your beautiful seafront invaded by them. Picture the danger of overhead wires during our annual gales and all the miseries of a tram infested borough.

At a public meeting on 7 June 1897, further objections were raised by the London, Brighton and South Coast Railway who insisted that a tramway running from Hastings to Bexhill would seriously affect their trade. Bexhill, a neighbouring town of some 10,000 people, enthusiastically welcomed Murphy’s proposal. The Bexhill Council believed that a tramway would generate development and enable workmen from the poorer areas of Hastings to travel there, which in turn would

generate houses, shops and other infrastructure. In support, Bexhill pointed out that the London, Brighton and South Coast Railway Company had refused to provide a station in the town. Although progressive by comparison with the much larger Hastings, the residents of Bexhill clearly felt isolated, and watched with amazement as Hastings went through contortions in its deliberations. Nevertheless, in the face of such determined opposition, Murphy withdrew his proposal.

Although Hastings Council had publicly stated that a tramway would ruin the town, they were persuaded by their Trammite members that 'the Council should give a more careful consideration to the question of local tramways than it has so far done'. Consequently, at a meeting of the Special Committee on Tramways on 17 August 1897, the Town Clerk read out all the information thus far obtained, and Alderman Tree gave particulars about the working of trams on the Continent. It was resolved that the information be tabulated and referred to the Chairman, and that Alderman Tree and the Borough Engineer should compile information about the working of different systems on the Continent for presentation to the Committee.

The consequential report by the Borough Engineer, PH Palmer, referred to Hastings within the general context of tramway construction as 'not difficult, but straggling, with extremities more than three miles from the centre'. The Special Tramways Committee met on 27 September 1897 to consider the survey results. There was an overwhelming response, and the towns which provided information

132 Ibid.
133 Lewes, East Sussex County Council Archives, Hastings Council Minutes, file DH/B 18/3, 17 August 1897, p.364.
included Brussels and Liege in Belgium, Hanover, Hamburg, Berlin, Dresden, Elberfeld and Reimscheid in Germany, Milan and Genoa in Italy, Paris and Rouen in France, Budapest and Vienna in the Austro-Hungarian Empire, and from the UK Blackpool, Bristol, Birmingham, Walsall, Wednesbury, Edinburgh, and Dover. Many cities in America also responded. A summary of the report is shown in Appendix 13.

Reimscheid was particularly interesting because it was a small town of similar size to Hastings, and built on a hilltop with factories and a railway station on the surrounding flatlands. An electric tramway, powered by overhead wires, enabled trams to climb the steep grades of more than ten per cent, and was 'a resounding technical and commercial success'.135 Topographically, the operation of a tramway system in Hastings presented the same problems.

Apart from Murphy, another promoter was also pressing for the introduction of a tramway system. At a Council in Committee meeting on 20 August 1897, a letter was read from a Mr Barber, submitting his plans for laying down tramways in the town. The letter generated much discussion and divided opinion about whether construction should be allowed to pass into the control of a private company. It was resolved that consideration should be delayed until the next committee meeting.136 In the meantime, however, Barber informed the Council in Committee on the 28 September 1897 that he wished his proposal 'to stand over for the present'.137 Clearly, interest was growing, and it was fortunate that the council had had sufficient foresight to set up a comprehensive investigation of their options.

Sensing that the Committee's recommendations might eventually go against them, the anti-Trammite group enlisted several influential businessmen to their cause, including members of the medical profession. They presented the Council with a petition which referred to the damage that they claimed a tramway would cause to the invalid business and to Hastings' reputation as a renowned health resort.138

The petition ventured into the realms of the absurd by suggesting that a field hospital would have to be built in case of disaster, and that all tramway users would have to be issued with rubber gloves to avoid shocks from the electrical equipment. Although the anti-Trammite group's feelings were heartfelt, sections of their argument displayed evident ignorance of tramway operations.

Nevertheless, the Committee recommended the construction of a tramway system using overhead wires, but acknowledged that they were unsightly. In their favour, it was pointed out that such a system would be cheaper to install, easier to operate, and less difficult to maintain. To overcome any objection on aesthetic grounds, it was suggested that ornamental support poles would be provided, which could also be used as lamp standards, thus simultaneously introducing street lighting. Such benefits had by then become standard practice in Europe.139 The Committee clearly hoped that such ornate and decorated columns and brackets would blend elegantly into the urban scene.

Although a Council majority now supported Murphy's proposal, the depth of feeling generated by the anti-Trammites led to an inquiry, held on 8 June 1898, and chaired by Lord Jersey. In reporting on the outcome of the inquiry, The Weekly Mail called it a miserable farce, because:

138 Mewett, Hastings Tramways Company, p.7.
in deference to the thoroughly self-seeking desires of a few members of the privileged class to which he belongs, the President of the Commission abruptly closed proceedings and intimated that in effect that he did not think of sanctioning an enterprise which would certainly benefit the whole town, while it might possibly prove a source of inconvenience to a handful of individuals whose wealth enables them to furnish themselves with private conveyances, and places them above considerations of economy.140

Some anti-Trammites had hardly dared to hope for such an outcome, and proclaimed that the rights of the Omnibus Company were to remain inviolate. Others continued their fight against omnibuses also, but there was a general feeling that the movement for trams had been effectively stifled and silenced forever. Calling themselves ‘progressive reformers’, the Trammites refused to capitulate before such an ‘arrogant doctrine’, insisting that ‘the monopolists will not be left undisturbed in the enjoyment of their monopolies’, and using emotive terms such as ‘hyper-sensitive’ and ‘super-aristocratic’ against such democratic contrivances as the electric tram.141

It was not that straightforward, however. In view of the depth of feeling, a Committee vote on the possible construction of three alternative lines was carried by a majority of 12 to 4. Overhead traction was acknowledged to offer a ‘cheaper, more convenient and more expeditious method of locomotion’.142 The result was a reversal of earlier Council policy and a setback for the anti-Trammites who severely criticised the decision. It encouraged Murphy to submit a new scheme on

140 Hastings & St Leonards Weekly Mail, 7 January 1899.
141 Ibid.
142 Ibid.
behalf of the Provincial Tramways Company. His proposal comprised only two routes, from Ore through the town centre to Silverhill, and from West St Leonards via Bexhill town centre to Cooden Beach. The proposal carefully avoided the contentious stretch along the Frontline, and consisted of two separate schemes with no interconnection.

A further problem then arose. The Council decided to explore the possibility of a municipally-run tramway. The decision was unsurprising as several other councils had already taken similar steps as part of a general trend towards municipal ownership. In the meantime, Murphy's proposal was considered by the House of Commons Tramway Committee who unexpectedly rejected it on the grounds that it would be harmful to the prosperity of the town. The committee supported the anti-Trammites' view that a tramway system, with its noise and general disruption, would harm the image of Hastings as a seaside watering-place for the wealthy and convalescents. A banner headline in the Hastings & St Leonards Observer captured the triumph of the tramway's opponents: 'Mr Murphy vanquished; Trams ruinous to a health resort'.

It was obvious that the Observer was strongly anti-tram. The pro-tram lobby were quick to point out that its proprietor, Fred Parsons, was also chairman of the 'horse-focused' Hastings and St Leonards Omnibus Company. In the event of the introduction of trams, his Company's profits would inevitably suffer. In opposition, a new local journal appeared, the Weekly Mail and Times, which accused Parsons of secretly funding the anti-tram movement (see Appendix 14).

144 Hastings & St Leonards Observer, 15 September 1898.
145 Hastings & St Leonards Weekly Mail and Times, 25 March 1898.
By now, Hastings' townspeople were becoming impatient with delays and demanded immediate action. Outlying suburbs formed District Committees, and a mass open-air meeting was called. But the problem of the Frontline reappeared. Opposition to overhead wires had not disappeared: residents now declared that such a system would blot out the sun. Murphy entered into negotiations with the Council, offering again to provide ornamental support poles, but to no avail. Matters did not rest there. At a public meeting held on 15 December 1898, more than 800 people attended, with several speakers both for and against a resolution empowering the Council to proceed with a Bill. When a vote was taken, less than fifty people opposed it. The Weekly Mail dismissed the opposition as self-interested privileged individuals, with little concern for the well-being of the great majority of residents. The newspaper also predicted the doom of 'that fat monopolistic body, the Omnibus Company, paying 17½% dividends to its few shareholders at the expense of the general public'.

Regardless of the enormous majority in favour of the resolution, Councillor Carless, a Liberal, exercised his right to call another poll. The Weekly Mail sarcastically commented that as a Liberal, Carless should have believed that the good of the many should not be subordinated to the interests of the few. He was supported by Conservative councillors, who insisted that the poll should only include owners and occupiers of property in the town. According to The Weekly Mail, they would have been prepared to carry their opposition to Parliament should they have been defeated.

146 Hastings & St Leonards Weekly Mail, 17 December 1898.
147 Ibid.
148 Ibid.
149 Ibid, 7 January 1899.
Before the ballot took place, a Tramways Support Committee was set up to combat the Anti-Trammites. Several councillors were members, including Dr Gray and Dr Lewis, and Messrs Boutwood, Baily, Wickens, and Bones, with Councillor Laite as the general secretary. The aim of the Committee was to assist in securing a majority in favour of the introduction of trams at the poll to be taken on 23 January 1899. To add to the confusion, Hastings Council decided to pursue further the possibility of a municipally owned tramway through a question on the ballot paper.

The poll was taken under the Public Health Act, 1875 but was based on the cumulative property principle established by the Sturges-Bourne Acts of 1818-19.\(^{150}\) The poll was so structured as to give men of means, most of whom were anti-Trammit, an advantage. Under this process, the greater the property wealth, the more value was attached to the vote through a weighting system. In some instances, one man could have as many as twelve votes, while others had no vote at all. Even the polling form was unusual in that voters had to initial the appropriate column and sign their name rather than place an X in favour. In addition, voting papers had to be kept at home until collected on the day of the poll. Those sent to the Town Hall were disqualified. Thus it was very difficult for people who worked to register their votes. *The Weekly Mail* was outraged, rejecting the process as anachronistic, and insisting that the law 'is completely antagonistic to the spirit of the times and will be repealed by the first Liberal government in power'.\(^{151}\)

In a similar fashion to Wolverhampton, opinions on the introduction of tramways were split on political lines, although the debate in the Black Country was more

\(^{150}\) *Hastings & St Leonards Weekly Mail*, 17 December 1898.

\(^{151}\) Ibid.
concerned with the type of system to adopt. In Hastings, it was a matter of whether to adopt any system at all. The anti-Trammites were mainly Conservative, while the proponents were the more progressive Liberals. Conservative councillors opposed included Messrs Bray, Ford, Langham, Stubbs, Tree, and Tharle, and one Liberal, Carless.

The opposition to the tramways published a nine-point manifesto against the introduction of trams prior to the poll.152 The points were:

1. Trams invariably lower the character of a locality and depreciate property.
2. Hastings' streets, with their steep gradients and narrow roads, are unsuited to trams.
3. Wealthy visitors in the spring and winter, and wealthy residents, would depart instantly when trams come.
4. Trams are noisy and would disturb the quiet and rest of summer season visitors.
5. Many cabmen and tradesmen reliant on horse-drawn vehicles would lose their employment.
6. Shop owners in outlying districts would lose their trade as residents would transfer their allegiance to town centre shops.
7. Accidents would increase.
8. The Front Line would be disfigured.
9. Trade in St Leonards not on the proposed routes would be diverted elsewhere.

152 Hastings & St Leonards Weekly Mail, 21 January 1899.
In support of objection 6, shopkeepers and tradesmen in the suburbs of Bohemia and St Leonards urged that trade would be badly affected as trams would enable people to travel more easily to the town centre to buy goods. To refute the claim, *The Weekly Mail* produced an extract from the Douglas Report on Kingswood, a suburb of Bristol:

The deputation was informed that one certain result which had followed the opening of the electric tramway line to Kingswood had been an extensive and marvellous development of the districts traversed by the line, there being every sign of a vigorous growth in population and trade. Indeed, the prospects of the whole neighbourhood of Kingswood and St George has [sic] brightened very greatly, as it is fully recognised that by the electric tramways system, a stimulus has been imparted to the district, the effect of which is daily observable and augurs well for the adoption of electric traction in other districts.

Despite the anti-Trammites' fears, support for the trams did come from some wealthy visitors who spent the winter months in Hastings. Calling the struggle 'between light and darkness simply despicable', one visitor accused the doctors, lawyers, parsons and journalists of 'stupidly opposing nearly everything calculated to benefit the place and the people'.

In response to the anti-Trammites' manifesto, *The Weekly Mail* produced an article drawing on experiences elsewhere, in order to dismantle their argument against trams. The newspaper accused 'the most excellent of citizens, gentlemen worthy of the highest respect and honour' of a lack of financial experience, travel and

153 *Hastings & St Leonards Weekly Mail*, 14 January 1899.
154 Ibid.
observation, and a 'crudity of thought and employing a worn out, hackneyed fallacy of argument'.

Before the voting took place on 23 January 1899, *The Weekly Mail* took one more opportunity to press for support. The newspaper referred to an inquiry that the Light Railway Commissioners had recently conducted in Ealing, 'that most charming London suburb principally inhabited by the class of people who patronise Hastings during its best seasons'. Prior to the inquiry, Ealing's Town Clerk had sent telegrams to other authorities to ascertain their views on the overhead systems already installed in their towns. The responses were unanimous in support of such systems. Instead of depreciating property values along the route, they reported that values had in fact increased. On both sanitary and economic grounds, overhead traction was found to be preferable to horse, steam, or any other tramway system. Although objections had been raised similar to those expressed in Hastings, 'all opponents had been converted'. The result of Hastings' poll was an overall victory for trams by 8340 against 4821, but municipal ownership received little support. Nevertheless, the result was hailed as 'a magnificent victory for the tramways.'

In parallel with Hastings' contortions, Bexhill Council began to worry that their own aspirations to have a tramway system in the town were now in jeopardy. They duly approached BET to construct a system from Cooden to Bo-Peep in St Leonards. The eastern section of the proposed system lay within Hastings Council area, but nevertheless, BET proceeded to prepare the Bexhill and St Leonards Tramroads Bill.

155 *Hastings & St Leonards Weekly Mail*, 21 January 1899.
156 Ibid.
157 Ibid.
158 *Hastings Weekly Mail and Times*, 21 January 1899.
Simultaneously, Hastings Council prepared the Hastings Corporation Tramways Bill, and both came before the House of Lords Tramways Committee on the same day. The Hastings Bill was lost, while the Bexhill Bill received approval. The *Bexhill Observer* triumphantly declared that ‘in view of the fact that their Lordships declined to allow the Hastings Corporation Tramways Bill, the result has therefore been all the more gratifying’.\(^{159}\) Clearly, there was much tension between the two towns.

Incensed by events, Hastings Council mounted a huge campaign against the Bexhill Bill at its next hurdle, and enlisted the assistance of Murphy to organize a vigorous opposition to BET. This was surprising in view of the fact he had previously been declared *persona non grata* by the Council’s anti-Trammites. The main thrust of the contra-argument was that one and a half miles of the Bexhill proposal lay within Hastings Borough, and that Bexhill had no right to control Hastings’ streets.\(^{160}\)

Confronted by such opposition to the Bexhill Bill, the House of Commons Tramway Committee rejected it outright. The *Bexhill Observer* referred to Hastings’ ‘old fashioned attitudes’ and declared: ‘it is only too plain that Hastings is so obsessively jealous of the rapid advancement of Bexhill that nothing comes amiss to the Corporation of that Borough in trying to put a drag on our wheels’.\(^{161}\)

After his appearance at the House of Commons, Murphy’s skills as a conciliator came to the fore. He called a meeting between the Bexhill Tramways Committee

\(^{159}\) Mewett, *Hastings Tramways Company*, p.5.
\(^{160}\) Ibid, p.10.
\(^{161}\) Ibid.
and BET representatives, after which Murphy was given the task of preparing a joint Bill for the two towns. The *Bexhill Observer* rued the fact, sarcastically referring to Murphy as ‘the pet of Hastings Council’.162

Murphy’s Provincial Tramways Company submitted the Bexhill and St Leonards Light Railway Order in March 1900 under the Light Railways Act of 1896. The order was confirmed on 6 June 1900.163 The Hastings Tramways Act, 1900 for the whole network, was confirmed on 30 July 1900.164 This act also enabled the creation of the Hastings Tramway Company. However, during the passage of the Bills, Murphy admitted under cross-examination that he had financed Hastings’ Council dispute with Bexhill which had killed off BET’s attempt to build a separate scheme.165 The conflict between towns and BET has parallels here with Wolverhampton, whose council strongly opposed BET’s attempts to ‘fight tooth and nail to take over the Wolverhampton system’.166

Although the Bills’ assent gave Murphy an *entrée* into Hastings’ network, there was still local resistance to the Provincial Tramways Company itself. Once again, the question of municipal ownership and operation was raised, with supporters pointing out that other towns were able to run their own tramways efficiently. Murphy was referred to as ‘the Irish capitalist, who did not come all the way to Hastings out of love for the people, but to make profits for his shareholders’.167

Similar views had been expressed by Manchester’s Special Committee in 1896, when advocates of municipalisation intoned that ‘tramways are a monopoly of a public necessity and as such should not be used to put large dividends into the pockets of shareholders’. The council put the question to the vote but failed to achieve the necessary two-thirds majority, and the motion was finally lost.

Meanwhile, Murphy continued to exert pressure on the council to allow trams to operate along the Frontline. The council finally relented, but stipulated that no work would commence until all construction planned under the 1900 Act was completed. They also insisted that overhead wires would be prohibited on the Frontline. The Hastings Tramways (Extension Act) 1903, which received Royal Assent on 21 July 1903, decreed that the Frontline would be operated by whichever system the Council chose, subject to approval by the Board of Trade.

With the continued refusal to allow overhead wires along the Frontline, the Traction Corporation of Westminster approached Hastings Council with their product, the Kingsland surface-contact system. The company reported that it had been successfully installed in Dresden where it was in daily operation, and invited town councillors to inspect the system there. In support, the company revealed that the installation was also being considered in two Indian cities. Once again, the council decided not to proceed.

4.7 The final stages

Hastings Council continued to agonise over the subject of municipalisation of transport operations. In September 1904, a motion was put to the council that a

168 McKay, Tramways and Trolleys, p.172.
committee of five members should be appointed to consider the establishment of a service of municipal motor omnibuses in the town.171 A heated discussion then took place, during which the proposer, councillor Shoesmith, extolled the virtues of municipalisation. Nevertheless, the motion was lost and it was resolved that operations of both tram and bus should remain in the private sector.172

Nationally, the rise in municipal trading was attributed to the possibility of monopolisation of services, the fear being that 'private companies cannot be trusted to exercise the powers of monopoly with discretion'.173 There was an economic argument in that 'tramways were the monopoly of a public necessity and as such should not be used to put large dividends into the pockets of shareholders'.174 These views were held by a minority of councillors in Hastings who declared that profits should be for the benefit of the public. Millward argued that such views might engender the desire for public control, but not necessarily the desire for public ownership.175

Emerging from the fog of uncertainty, Murphy seized his opportunity and in December 1904 announced that 'trams would arrive during 1905 and never yet had omnibuses, whether horse-drawn or motor traction, been able to live alongside tramcars'.176 Construction of the overhead network, with the exception of the Frontline, began on 7 December 1904, and the first tram service commenced on 31 July 1905. Immediately, omnibus services felt the pinch. Motor

171 Hastings & St Leonards News, 22 September 1904.
172 Ibid.
174 McKay, Tramways and Trolleys, p.172.
175 Millward, 'The Political Economy', p.325.
176 Hastings & St Leonards Observer, 5 December 1904.
buses were hopelessly outnumbered, with 'alien trams' following each other in quick succession.177

On the section of line between Bo-peep and Bexhill, Sunday services were operated from the start as permission was embodied in the Bexhill part of the Act178. However, in 1906, the question of Sunday tramway operation throughout Hastings was raised. As the Dolter section was yet to be installed, the Hastings section operated independently with no interconnection at this stage. Once again, both the Church and the Lord's Day Observance Society opposed the application, this time from the Tramways Company. Clearly, the road to salvation would not be achieved via a tram either! The council decided to test public opinion by organising a poll of the townspeople, which resulted in a victory in favour of Sunday services by 4,109 votes to 2,689.179 Consequently, the Council approved the application on a strictly annual basis for two years. If in the third year (1908) there was no opposition, no further permission would be necessary.

Even among the commercial services, opinions on trams continued to be divided, as evidenced by hoteliers' advertisements. One establishment was placed in 'an ideal situation, away from the noise of the trams' and another offered 'rest, comfort and pleasure', as it was 'beautifully situated off the tram route on a delightful part of the sea front'.180 Others viewed the trams as an advantage, describing their hotels as 'charmingly situated and convenient for electric trams', and 'convenient for trams and station'.181

177 \textit{The Hastings Mail}, 25 November 1905.
178 Mewett, Hastings Tramways Company, p.54.
179 Hastings & St Leonards Observer, 4 August 1906
181 Ibid.
Further evidence of the friction between the tramways company and the council surfaced regarding the rate assessment levied. As the system had been constructed under the terms of the Light Railways Act, rates were assessed at one quarter of an undertaking’s net annual value compared with the full value under the Tramways Act. In January 1907, the Hastings Tramways Company wrote to the Hastings Council complaining about their rate assessment. Only one quarter of the rate assessment of £45.10 shillings should have been charged, not the full amount. The company quoted the ‘Wakefield decision’, a court case which Wakefield Council lost when it attempted to charge the full assessment. Shortly afterwards, Wakefield Council approached Hastings Council for a £20 donation to fund an appeal against the court’s decision. Hastings council agreed to the donation on the dubious grounds that if the appeal was successful, they would have spent £20 to gain more than £34. Unfortunately for the ratepayers, the appeal was unsuccessful.

4.8 The installation of the Dolter system

While overhead traction was being installed elsewhere in the town, the council once again turned their attention to the problem of a system suitable for the Frontline. A week long demonstration of the Dolter surface-contact system was exhibited by a local businessman. The council noted this as a possibility, but due to the difficulties and delays in resolving the Frontline issue, the Provincial Tramways Company sold its interest in Hastings to a new undertaking, the Hastings and District Electric Tramways Company. Murphy continued as Chairman, and immediately gave notice to pursue overhead traction along the

182 Hastings & St Leonards Observer, 26 January 1907.
183 Ibid.
Frontline, but once again the Council opposed him and the proposals were withdrawn. 185

In an attempt to solve the deadlock, the tramways company informed the council that they were prepared to install the Griffiths-Bedell surface-contact system. 186

Previously, the council had approached its Lincoln City counterpart for its views on that system as the length installed there was comparable to the Frontline. 187

Eventually, Hastings Council decided in favour of the open-conduit system, but the tramways company rejected the decision on cost grounds, threatening arbitration through the Board of Trade if there were further delays. 188 Finally, the council authorised the tramways company to install the cheaper Dolter system.

How did this decision come about and is there any evidence of irregularity? The main reason for installing surface-contact was to placate the wealthy and influential residents of the Frontline. They clearly would have preferred no trams at all, but there was a strong economic case to complete the missing link between the two overhead systems. Viewed from the residents’ perspective, there was also an economic case not to complete the link because they feared the disturbance generated would harm the image of the town as a desirable health resort. On balance, and aware of the commercial pressure from the tramways company, the council decided to opt for the Dolter system.

With regard to the possibility of any irregularity, in the UK generally, municipalities customarily carried out checks on the financial and engineering soundness of

promoting companies. In order to ensure full scrutiny of the proposals, local authority officials or councillors were often made members of the company boards. Nevertheless, promoters and contractors, who were experienced businessmen, found local representatives to be easy prey.189 The Board of Trade doubted the integrity of some promoters, and 'there was a strong influence of irregular American financing built into their dealings'.190 The process sometimes led to abuses of power, including bribery, which with its hidden additions increased the overall construction costs.191 There is no doubt that corruption and sharp practice did occur. The notorious entrepreneur Henry O'Hagan in his autobiography boasted of his exploits to maximise profits from his tramway operations.192

O'Hagan suggested that 'if the act of parliament or provisional order was obtained, it was usual for the syndicate to sell it to a contractor or financier at a considerable profit over the cost of obtaining it'.193 Vesey Knox held the view that generally, 'promoters obtained their powers, capitalised them at whatever figure they thought the public would stand, floated their company, took their profits, and cleared out as quickly as they could'.194 The sale by the Provincial Tramways Company of their interest in Hastings supports Knox's views. However, there is no evidence that operations in Hastings were tainted by bribery or other forms of corruption.

Despite the lack of hard evidence, accusations of maladministration were aimed at the council by aggrieved residents during its dealings with the tramways company. A letter to the \textit{Hastings Times} alleged that the Hastings Tramways Company was

\begin{flushleft}
190 Ibid, p.139.
192 Henry O'Hagan, \textit{Leaves from My Life: Volume 1}, London: John Lane, 1929, p.54.
193 Ibid.
\end{flushleft}
'run by a set of schemers. Their schemes are magnificently done. They are very clever and achieve their aims in the same way as a clever burglary is carried out.' The council was accused openly and unsubtly of collusion with the company.

The missing link comprising the Dolter system between St Leonards, the Grand Parade and the Memorial was eventually opened on 12 January 1907.

Immediately, class tensions became even more apparent. The tramways company introduced early-morning workmen's trams between Bexhill and Hastings, travelling along the Frontline. There were two trams in each direction, commencing at 6.45 am from Hollington and 7.00 am from Ore, returning at 5.00 pm and 5.30 pm. Fares were half-price, and it was not long before other travellers took advantage. Consequently, the Council passed a bye-law, restricting cheap fares to artisans, mechanics and daily labourers. A further restriction was placed on luggage. Tools of the trade could not exceed twenty-eight pounds in weight.

The frontagers along the Frontline, where the Dolter system had been installed, soon complained that the early-morning services disturbed invalids at their rest. One resident complained that the service had cost him £500 per annum in rent because he had been forced to move home 'for the sake of a few workmen or rather their coppers'.

195 The Hastings Mail, 9 April 1905.
196 Hastings & St Leonards Observer, 16 March 1907.
197 Mewett, Hastings Tramways Company, p.58.
198 Ibid.
199 Hastings & St Leonards Observer, 16 March 1907.
An example of the propaganda against the Dolter system was a curious incident reported to have happened along the Frontline. An exceptionally large arc was said to have formed between the wheels and the rails of a tram, accompanied by a loud explosion.200 Many householders and shopkeepers ran out to see what had occurred, but the tram appeared to be proceeding normally. One householder reported that 'a ball of fire came through an open window, passed over her head to the opposite side of the room, and exploded against a wall'.201 A correspondent wrote to the \textit{Observer}, 'to the horrors of the trams must be added the Jovian power of forging thunderbolts and projecting them through houses as they pass'. The resident engineers of the Dolter company, Messrs Smyth and Willcox were asked to investigate, but not surprisingly decided the event was an illusion as there was no damage to either persons or property.202 The reported phenomenon did however reinforce the view of many that surface-contact systems were unsafe.

By far the greatest risk of accidents came from the tramcars themselves, whatever the method of propulsion. Foremost amongst these new dangers were derailments, head-on crashes, incidents with carriages and carts, and pedestrians walking across the tracks. Jumping off moving trams became a symbol of masculinity, and reinforced gender differences.203 Women's long wide skirts impeded such daring actions. Those that did attempt to jump off often met with accidents. The first tramway fatality in Hastings occurred when a young woman attempted to leave a moving tram but in the process fell and hit her head on a

200 \textit{Hastings \& St Leonards Observer}, 2 February 1907.
201 Ibid.
202 Ibid, 16 February 1907.
As regulations forbidding the practice were difficult to enforce, eventually dedicated stops were introduced.

Although there is no evidence to suggest that gender was an issue in the selection of traction systems, women as users clearly had an impact on the design of the tramcars themselves. Pender described the influence of female passengers on tramcar design innovations, especially with regard to staircases. It was difficult to climb stairs in Victorian dress, and contemporary standards of modesty had to be observed with seating arrangements. Seats had to be configured to allow women wearing bulky clothing to move around more easily, and decency boards were added to prevent the possibility of voyeurism. Around 1900, tramways were used mainly by men, but women also had an impact on the quality and nature of services. They wanted comfort, safety and accessibility. The frequent interruption of current on surface-contact systems became the subject of ridicule in Hastings' newspapers. While not instrumental in the abandonment of the system, the constant failure of lighting on board tramcars was particularly disturbing to women travellers.

As for surface-contact operation, the heavy cars often needed to be levered from a dead contact plate to a live one after stalling. Studs had to be restored to their down position using heavy hammers. Men not only had the hypothetical physical strength to drive heavy vehicles, but 'the male physique implied better mental

204 Hastings Chronicle, 18 April 1909.
205 Pender, 'British electric tramcar', p.28.
207 Ibid.
208 Mewett, Hastings Tramways Company, p.34.
readiness' however unlikely that might appear.209 This was not the realm of women workers.

In the protected public space of the tramcar, women had a certain level of freedom and emancipation. As passengers, they were on equal terms with men. These confined public spaces bore witness to some intriguing variations on accepted codes of social behaviour, and in particular interactions between men and women. Some ingenious party games were suggested by newspaper readers to pass the time during frequent breakdowns of the surface-contact system.210 The prettiest lady passenger was blindfolded and persuaded to walk up and down inside the tramcar. When the lights failed, as they frequently did with the Dolter system, she had to sit on the nearest lap. The added spice was the identification of the owner of the lap she was sitting on when the lighting system returned.211 There is no evidence that such party games happened, but if they had, it is likely that only lower-class women would have participated. These suggestions reinforce the view that the tram was neither a workplace nor a household, but a place where men and women met outside their traditional spheres.212 Surface-contact systems were providing an imagined set of social possibilities: inadvertently generating entertainment outside the social norms: the pleasure of non-conformity and breaking the rules; of the opportunity to forge new acquaintances; of slightly risqué actions; and of anticipation to see what might happen. The suggested male counterpart was the game of 'Jack's alright' in which the phrase was repeated by each passenger in turn. When the lights failed, the person saying it had to pay a

209 Schmucki, 'On the Trams', p.67.
210 Hastings \& St Leonards Observer, 19 January 1907.
211 Ibid.
212 Schmucki, 'On the Trams', p.70.
forfeit. This would have involved assisting the conductor to crowbar the tramcar to the next live contact plate.213

Residents continued to complain about the Dolter system, even through poetry.214 (see Appendix 15). The poem perfectly illustrates the noise and visual impact of surface-contact traction from their viewpoint. Each verse is completed with an onomatopoeic description of the passage of the trams. An alarming visual aspect of the Dolter system was indeed the sparks and flashes emanating from contact plates as trams passed over them. As the ‘fireworks’ were sometimes accompanied by loud bangs, horses never really became accustomed to them. Internal lighting was also problematic. At night, the trams were plunged into darkness by current failure at a stud. The poem ominously refers to the threatening possibilities of thieves ‘plying their trade’. Restoration of lights came after the tram moved to the next stud, either under its own momentum or having been levered forward by passengers and volunteers.

No problems with Sunday tram services occurred during the first two years of operation, but the Council had a change of heart in 1908. Recalling that they had an option to purchase the tramways company after twenty-five years, they recognised that Sunday operations would increase the company’s value, and hence the amount the Council would have to pay if they exercised their right. It therefore decided to withhold permission unless the company accepted a legal agreement to exclude Sunday operations in any future valuation.215 The company responded that such a request was illegal unless it was backed by an act of parliament. In an attempt to pressurise the company, the Council agreed but

\begin{itemize}
\item 213 Hastings & St Leonards Observer, 19 January 1907.
\item 214 Ibid, 16 February 1907.
\item 215 Ibid, 8 September 1909.
\end{itemize}
insisted that the company should submit an act to parliament and bear all the
costs and charges of the legalisation process.216 Relations between the parties
continued to deteriorate. The company replied that unless the Council consented
to Sunday services, they would cease running on Sunday 29 November 1909
except on the Bo-peep to Bexhill line, which lay outside Hastings' boundaries.217
The question of Sunday services was beginning to move from the religious arena
to the political.

Recognising that feelings against them were running high, the Council decided to
set up a sub-committee of five to negotiate with the company. Despite holding
several meetings, the sub-committee made no decisions. With council elections
due to be held within a few weeks, the tramway employees began to take the
initiative with their own series of meetings. They based their opposition to the
Council on an economic argument, pointing out that unless Sunday services were
approved forty jobs would be lost, resulting in a loss to the local economy of
£2,700 per annum. Over the seventeen years before the council could exercise
the right to purchase the company, the ban would result in a total loss of £46,000
in spending power.218 As the council continued to procrastinate, the tramway
employees set up a committee of five people who would interview prospective
electoral candidates to elicit their views on Sunday services.219 The intention was
to support only those in favour. Several meetings were held in the following weeks,
some attracting more than five hundred townspeople.

216 Mewett, \textit{Hastings Tramways Company}, p.54.
217 Ibid.
218 Ibid.
219 Ibid.
The Hastings & St Leonards Advertiser criticised the council in its pre-election editorial:220

Hastings Council are past masters in the art of how not to do things. No better example of this could be provided than the pretty mess they have got themselves into over the Sunday tram question. A more pitiable exhibition for a body of so-called astute business men managing the affairs of a large community would be hard to imagine.

The Advertiser accused the council of 'pig-headed obstinacy, with the vague and grasping idea that they are furthering the interests of a future generation of ratepayers'. The item concluded by calling the idea 'childish in conception' and scolding the council for behaving 'like stupidly obstinate little boys'.221 These were strong words from a newspaper that viewed itself as the voice of the people.

On election day, the tramwaymen formed a flying squad, calling at all polling stations. In the event, a pro-tramway candidate was elected, demonstrating the tramwaymen's visibility and force of argument throughout the town. The council now had several new members. Consequently, Sunday operations were approved, and both Church and traditionalists were defeated.222

The Dolter system proved neither satisfactory nor reliable, and within three years even the tramway company's employees became vigorously opposed to it. Teams were formed to replace studs remaining live after the passage of a tram, and sometimes to lever the car to the next contact. Over-cautious traders displayed

220 Hastings & St Leonards Advertiser, 23 November 1909.
221 Ibid.
222 Mewett, Hastings Tramways Company, p.56.
notices in their shop windows warning shoppers and visitors of the danger of
electrocution if they stepped on a live stud.223

In October 1910, employees held an extraordinary meeting at which they resolved
to oppose any potential councillor at the November municipal elections who
supported the continuation of the system.224 A committee of thirteen was
established with the power to interview prospective council candidates. The
committee threatened to mobilise opposition ‘tooth and nail by means of open air
meetings’ unless the candidates endorsed overhead traction.225 A resolution was
passed ‘that we, the employees of the Hastings Tramways Company condemn the
actions of the Hastings Council, in insisting on the use of the Dolter system on the
Frontline and that this meeting pledges itself to strenuously oppose the election of
any councillor who is not prepared to support the overhead system’.226

As the meeting was held in the tramway company’s office in Silverhill, there was
clearly collusion. It was also in the company’s interest to press for overhead
traction. In fact, the meeting was informed that the costly Dolter system would
soon affect the employees’ ‘splendid pay’ as £20,000 was spent on wages and
£6,000 on wayleaves each year.227 The company employed several hundred men
with the potential to vote in various electoral wards. It was time to let the council
see what tramway workers were made of!

223 Mewett, Hastings Tramway Company, p.37.
224 Ibid.
225 Hastings & St Leonards Observer, 8 October 1910.
226 Ibid, 15 October 1910.
227 Mewett, Hastings Tramways Company, p.38.
Throughout the town before the elections, a series of open-air meetings was held at which prospective candidates were interviewed. At one, the tram shed foreman RW Francis put forward the tramway workers' case:

The studs caused a great deal of strain on the drivers who had to continually look out for dead studs as well as keep a two and a half minute service. Car after car had to be pushed along for a considerable part of the going. After severe storms, water flooded the line and car after car had to go back to the depot at a time when the public needed them most. Overhead wires would be better in every way.\(^{228}\)

The Dolter stud controversy dominated the whole election campaign. Meetings were held in the suburbs of Bohemia, Ore, Halton and Hollington. The tramway employees 'have not allowed a week to pass without further endeavouring to convince the ratepayers of the desirability of returning only those councillors who supported their cause'.\(^{229}\) Even on polling day, the tramwaymen were 'whirring around the town from polling station to polling station in a motor car bedaubed in placards, relentlessly spreading their message right up to the close of voting'.\(^{230}\)

At the election, only two pro-overhead wires candidates were elected, but others received a fair share of the vote. The tramways company decided to await the council's reaction before promoting a parliamentary bill to replace the studs.\(^{231}\) As the council did nothing, employees then held a short but effective strike, but soon realised that the action was counter-productive in the longer run.\(^{232}\)

\(^{228}\) Hastings & St Leonards Observer, 15 October 1910.
\(^{229}\) Ibid.
\(^{230}\) Ibid, 5 November 1910.
\(^{231}\) Mewett, Hastings Tramways Company, p.38.
\(^{232}\) Ibid, p.39.
class had flexed their muscles, but in the end they achieved very little and within two years the influential and wealthy residents of the Frontline had galvanised themselves once more in opposition to overhead traction. Although the device was unsuccessful, it did achieve widespread publicity and intensified anti-Dolter sentiment, and threats of strike action increased the momentum for replacement.

Throughout its troubled life, the Dolter system in Hastings had a negative effect on dividend payments to shareholders. Two months after the introduction of the system in January 1907, the Hastings Tramways Company paid a dividend of 4%. By 1909, the chairman reported that there would be a large decrease in dividends due to the expense of maintaining the system. The chairman estimated that servicing had cost £2,562 during the previous twelve months. Surface-contact traction was draining their resources and he urged replacement by overhead wiring. He threatened that if replacement was refused, the company would be bound to seek council permission to increase fares. In the following year, no dividend at all was paid as the cost of running the Dolter system had consumed all profits. It was suggested that one Dolter tram cost as much to run as five fully loaded trams on any other part of the overhead system, even on the steepest hills. By 1910, 1,068 studs needed replacement.

A Board of Trade report by Major Pringle in 1912 showed a total expenditure of £6,538 over four years and three months of operation on two miles of double track, equating to approximately £384 per annum per mile of single track. Over the same period, the comparable figure for overhead traction was £103 per annum. The total number of studs installed was 2,108, but 4,648 had needed replacement.

233 Mewett, Hastings Tramways Company, p.36.
235 London, The National Archives, Board of Trade report, file MT 6/2299/1, 3 July 1912.
an average of 1,072 per annum. Moreover, the incidence of studs left live rose from 88 in 1908 to 243 in 1911 and 440 in 1912, more than one fifth of the total installed. Stud malfunctions had become common, and the Dolter system was an enormous drain on Hastings Tramways Company’s resources, and a major reason for their replacement.

Consequently, the Board of Trade had serious concerns and instructed Hastings Tramways Company to discontinue the Dolter system within six months of their letter dated 5 March 1913, and to find an alternative. The final straw for the Board of Trade occurred on 19 March 1914 when a ‘fine horse was killed by live studs’ and shocks were felt by the driver and throughout the tramcar.

Due to disagreement with Hastings Council about an acceptable replacement, the Company took no action. The Board of Trade reacted furiously and immediately instructed their solicitors to pursue a prosecution, hinting also at complicity by the Borough Council in failing to apply pressure to replace the Dolter system. The case was heard by Hastings magistrates on 23 July 1914, the charge being that the Company unlawfully used the Dolter system from 1 January to 19 March 1914. For two years, the Board of Trade had warned that the system was unsafe, a danger to the public, and unsatisfactory. Three horses had previously been killed and many people had experienced shocks. Acting for the defence, AD Thorpe complained that court action was unnecessary as plans were afoot to replace the system, pointing out that the Board of Trade was slow to bring the case to court.

236 London, The National Archives, Board of Trade report, file MT 6/2299/1, 3 July 1912.
237 Ibid.
239 Ibid, folio R 3848, file MT 6/2299/1, 28 March 1914.
240 Ibid, folio R 4017, file MT 6/2299/1, 28 March 1914.
However, magistrates found the case proven and fined the Company £5 with 9 shillings costs.241

As the First World War approached, the flashes emanating from contact plates as a tram passed were an added reason to replace the Dolter system as they contravened black-out regulations. It was feared that enemy submarines would take advantage of ready targets along Hastings' sea front.242 The eventual answer was to fit tramcars with Tilling Stevens 24 horse-power petrol engines and dynamos.243 They remained in service on the sea front until March 1921 when overhead wires were finally allowed.244

4.9 Conclusions

Whether aesthetic ideals were the driving force behind Hastings' reluctance to adopt overhead traction is debateable. From the first attempt to introduce trams in 1871 to the final acceptance in 1904, there was opposition from several quarters, mostly focusing on the economic impact on the town. The main arguments deployed were noise, safety concerns, reduction in property values, and visual pollution created by trams, some of which it was feared would drive away the many wealthy people who visited Hastings for health reasons. Landlords, hoteliers and even the medical profession were fearful that a reduction in the number of visitors would affect their livelihood.

As in Wolverhampton, commercial pressures were present, but of a different character. Hastings, along with Bexhill, formed an almost continuous coastal town

242 Mewett, *Hastings Tramways Company*, p.44.
244 Klapper, *The Golden Age*, p.78.
and tramway operators saw a strong commercial advantage in linking the two. However, they failed to recognise the depth of feeling from powerful residents opposing their plan. The section along the elegant Frontline developed into a battleground resulting in an unsatisfactory solution using the Dolter system to overcome visual intrusion.

Politically, Hastings was conservative, solid and secure in its values, and this was reflected in the debates about traction choices. For most members of the influential classes, no trams at all were preferable. The long-running debates are a prime example of the ability of powerful sections of the community to resist change. After the eventual introduction of overhead traction in 1905 throughout most of the town, controversy then centred on the Frontline section. The final installation of the Dolter surface-contact system occurred in 1907, but not before a prolonged and heated series of enquiries and public consultations had taken place. Hastings’ residents for the most part did not embrace the new technology with the same enthusiasm as elsewhere.

Religious divisions were not as obvious in Hastings’ council as they were in Wolverhampton, and played a lesser role in political debates about traction choices. However, the church did object strongly to Sunday operations. This served to emphasise the rifts in society. Religious groupings contrasted sharply with Wolverhampton where the non-conformists were in the majority. In Hastings, more than half of the congregations were Anglican in the 1880s. 245 In their fight against trams, the influential classes used local newspapers to air their opposition. The media played an important role, but frequently exaggerated the impact of trams on the town. The Observer particularly was not impartial as its

proprietor was also chairman of the omnibus company. He clearly had a vested interest in avoiding competition. Several councillors, including the mayor, were shareholders in the omnibus company at one stage and were able to delay and even surreptitiously oppose the adoption of trams.

After the Dolter system had been in operation for three years, disgruntled employees entered the political arena in order to persuade the council to replace it with overhead wires on the grounds that it was inefficient, unsafe and difficult to maintain. They infiltrated the public space with meetings, placards and posters, but with little success. Nevertheless, the working classes were becoming aware of their powers to influence traction choices.

Over a thirty year period, conflicts emerged between the tramways company and the council, wealthy residents and the council, newspapers and the council, newspapers and the tramways company, employees and the tramways company, the church and the tramways company, and even between newspapers themselves. The result was an intriguing set of competing interests.

Apart from those factors, the eventual demise of the Dolter system was aided by poor management and maintenance compared with Wolverhampton's Lorain system. The inability of the tramways company to run the system efficiently, either by choice or through neglect, led to health and safety issues so serious that the Board of Trade was forced to intervene and order the abandonment of surface-contact traction. The replacement of the Dolter system by petrol engine-powered tramcars staved off the intrusive overhead wires for a further six years, by when that form of traction had become acceptable to the Frontline residents.
CHAPTER 5 – THE OTHER SURFACE-CONTACT TOWNS

‘Lord Justice Moulton found it strange that opposing political parties should become identified with the conduit and surface-contact systems’.1

5.1 Introduction

This chapter considers the development of surface-contact traction in Torquay, Lincoln, and Mexborough. In particular, it looks at whether aesthetic considerations were at the forefront of decision-making, and if not, what the driving forces were that led to the adoption of one technological solution over another.

These towns were a surprising mixture with little in common with each other, and so offer contrasting contexts for traction decisions. Torquay was an up-market leisure centre similar to Hastings where wealthy people and invalids visited to ‘take the waters’. Lincoln was an ancient cathedral city and county town, but by the Industrial Revolution it was experiencing a slow and steady decline, partly due to its geographical location.2 Mexborough and Swinton were located in the South Yorkshire conurbation where coal extraction was the main occupation, and industrial pollution was rife.

The largest network of the three areas was in Torquay, an elegant town where visual intrusion of overhead wires was not welcome. Consequently, the Dolter system was installed. Initially, it was largely uncontroversial and was widely accepted, but familiar safety fears surfaced after the preliminary euphoria had subsided. A slightly different home-grown system, the Griffiths-Bedell, was installed in Lincoln after the city council inspected a demonstration at the

1 AG Gardiner, John Benn and the Progressive Movement, London: Ernest Benn Limited, 1925, p.387
company's Ilford works. This also was uncontroversial and comprised a short section following an earlier horse-tram route. The Dolter system installed in the Mexborough area was unsuccessful and after many problems with live studs, its closure was ordered by the Board of Trade after little more than a year.

The chapter also covers the debates surrounding the brief 'experimental' section of the Griffiths-Bedell system along the Mile End Road in east London. There, political issues were at the centre of the controversy, and they offer instructive contrasts with the other settlements where surface-contact traction was adopted.

5.2 The impact of local government reform

The local authorities in these three towns, and indeed in London and elsewhere, had control of the streets and were therefore at the forefront in the battles around traction choices. They developed in different ways. Municipal corporations created by the 1835 Act were regarded by central government as a cheap and efficient way of administering expanding towns. They provided a pragmatic response to the increasing urban problems without centralising responsibility. Devolved power enabled the newly enfranchised urban middle classes to influence and control the town environment and economy. In industrial cities such as Wolverhampton, the middle classes embraced the opportunity enthusiastically, frequently promoting urban improvement and developing unique forms of civic identity and raising the national profile of their cities. The impact on established

4 McHugh, 'Running an Unregulated Town', p. 71.
6 McHugh, 'Running an Unregulated Town', p. 72.
7 Ibid.
historic towns such as Lincoln was different. There, reform overthrew decades if not centuries of social and political leadership. Anglican and Tory patricians were replaced by commercial, Liberal and often non-conformist middle class elite, whose strategy was to safeguard ‘the development and prosperity of the town’s vulnerable industry while maintaining urban growth and economic diversity’.

Other towns too were developing their own distinctive political culture, although it was not until the Local Government Act, 1894 that urban districts were created. These were based on smaller towns. Their powers were rather less than those of county boroughs and municipal boroughs and were subject to the control of county councils for some services, including transport and highways. Mexborough and Swinton were in this group.

The 1835 Act excluded London, which continued to be governed by autonomous vestries except for the square mile overseen by the Corporation of the City of London. In 1855, Parliament established the Metropolitan Board of Works to facilitate an integrated approach to infrastructural needs. However, the vestries exercised considerable indirect power over the Board. In order to overcome accusations of a lack of financial supervision, incompetence and corruption, London’s local government was reformed. In 1889, the London County Council (LCC) was created with directly elected members and further local government legislation in 1899 saw the establishment of London Metropolitan Borough

8 McHugh, ‘Running an Unregulated Town’, p.72.
9 Ibid, p.76.
12 Jackson, Local Government in England and Wales, p.54.
Councils (MBCs) as a second tier of administration. However, many suburbs were not included within the new boundaries despite continuing housing expansion. Between 1889 and 1899, the vestries continued to be the second tier of local government. After 1899, both the LCC and the metropolitan boroughs had to agree on the financial arrangements for the provision of new tramways, particularly as the latter were the road authorities. Thus, ‘there were many instances of disagreements over the apportionment of costs’. This led not only to delays, but also in some cases to the abandonment of schemes. During the period of intense reorganisation, an element of civic pride was being engendered within the new London authorities, and a realisation that they now wielded considerable power. The next sections examine the development of the individual towns, and how topography, politics, and demographics became important elements in the process of traction choice.

5.3 Torquay – a seaside town

Until the end of the eighteenth century, Torquay was a very small settlement. The Lords Haldon financed the construction of the harbour in 1803. From 1823 onwards, they constructed high-class leasehold housing and financed other development, including a market, public baths, and major extensions to the harbour in order to attract the yacht-owning community. By virtue of their benefaction they became extremely powerful and influential in the affairs of the town. However, through his good deeds, Lord Haldon had burdened himself with

14 Jackson, Local Government in England and Wales, p.55.
15 Ibid.
17 Jackson, Local Government in England and Wales, p.52.
massive debts and was obliged to sell his estate to satisfy his creditors.\(^{19}\) From the mid-1880s the family's power began to wane as their debts increased. Torquay received its incorporation in 1892, and emancipation from the landlord Haldons gathered pace. By the beginning of the First World War, the Haldons had left the town entirely.\(^{20}\) Their gradual withdrawal from the scene created a political vacuum that resulted in several years of indecision when the question of tramway traction arose.

Torquay approximates to Burgess's model, with a horseshoe-shaped concentric pattern of development around the harbour, typical of many 'waterside towns' of northern Europe.\(^{21}\) The steep topography imposed a road pattern that tended to follow the line of contours. The lower part of the town, built round three sides of the harbour, was the economic centre, dominated by quayside activities.\(^{22}\) It was occupied chiefly by tradesmen's shops and houses. The next tier, approached by a winding road at each end, comprised handsome terraces where wealthier people lived. At the summit were upper tiers, with detached houses and elegant villas, towering one above another, on their rocky platforms.\(^{23}\) There was a sharp contrast in character between these quiet residential areas and the bustle of the harbour and town centre. During the nineteenth century, Torquay was transformed from a fishing village to a fashionable resort.\(^{24}\) Unlike Hastings, however, it was too distant from London (some 226 miles away) and other centres of population to experience the same growth rate, and it remained a quiet backwater until late into the Victorian era.

\(^{19}\) Cannadine, *Lords and Landlords*, p.386.
\(^{23}\) Ibid, p.4.
\(^{24}\) Ibid.
Torquay's largest increase in population occurred after links with the railway network were established in 1848. The connections enabled visitors from London and elsewhere to access the town. In 1900, the parishes of Cockington, Babbacombe and St Marychurch were absorbed, resulting in the large increase shown below. By that time, the area had grown to 1,465 acres. Neighbouring Paignton, which eventually benefited from a tram service, had a population of 1,575 in 1801, rising to more than 6,000 by 1891.

<table>
<thead>
<tr>
<th>Year</th>
<th>Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>1801</td>
<td>838</td>
</tr>
<tr>
<td>1811</td>
<td>1,350</td>
</tr>
<tr>
<td>1821</td>
<td>1,925</td>
</tr>
<tr>
<td>1831</td>
<td>3,582</td>
</tr>
<tr>
<td>1841</td>
<td>5,982</td>
</tr>
<tr>
<td>1851</td>
<td>11,474</td>
</tr>
<tr>
<td>1861</td>
<td>16,419</td>
</tr>
<tr>
<td>1871</td>
<td>21,657</td>
</tr>
<tr>
<td>1881</td>
<td>24,767</td>
</tr>
<tr>
<td>1891</td>
<td>25,534</td>
</tr>
<tr>
<td>1901</td>
<td>35,000</td>
</tr>
</tbody>
</table>

Table 5.1 - Population statistics for Torquay.\(^{25}\)

Torquay was not far behind Wolverhampton when horse-drawn omnibuses were introduced in 1842, although the wealthy continued to travel by bath or sedan chairs.\(^{26}\) A regular horse-omnibus service began operations in 1872 to the neighbouring town of Paignton.\(^{27}\) Several other enterprises sprang up over the following years. In 1876, Mr Speight of Leeds offered to construct, equip and work a tramway from Victoria Parade to Torre station via Union Street.\(^{28}\) The council rejected the offer on the grounds that the streets were too narrow to accommodate a tramway system, and the obstructions caused would disturb the wealthy residents in their pursuit of leisure-carriage drives.\(^{29}\) No further attempts were made.

\(^{27}\) Ibid.

\(^{28}\) Ibid.

\(^{29}\) Ibid.
made to introduce trams until the electrification debates began in 1901 when the
council was approached by two companies with a combined tramways and power-
generating project.30 However, caution played a part in the decision-making
process, and the council initiated a tramways sub-committee to investigate
possibilities. Surface-contact systems were preferred to protect the streets from
ugly overhead wires and poles, and visits were made to Paris to inspect the Dolter
system, and to Wolverhampton for the Lorain system.31 Nothing decisive ensued.

The lack of progress led other transport operators to seize the opportunity to
provide services. The Torquay and District Motor Omnibus Company was formed
by a group of local businessmen in 1903. They attended a trial of steam
omnibuses by Thomas Clarkson of Chelmsford and, duly impressed by their quiet
operation, ordered one sixteen-seater which went into service on 5 November
1903.32 By June 1905, a further seven were in service. Meanwhile, the Great
Western Railway introduced five Milnes Daimler buses at neighbouring Paignton,
some of which were double-deck.

To gauge the opinion of the general public towards trams, the council held a
postcard vote in December 1902. The result was a small majority in favour.33
Subsequently, a meeting of ratepayers and residents in October 1903 passed a
near-unanimous resolution in favour of electric tramways.34 Seizing the
opportunity, the Dolter Company offered to install their system at no cost to the
town.35 Dolter promoted the Torquay Tramways Company Limited as a subsidiary

\begin{itemize}
\item30 Barham, \textit{Torbay Transport}, p.7.
\item31 Ibid.
\item32 Ibid, p.11.
\item33 London, \textit{The Institution of Engineering and Technology (IET)}, \textit{Tramway and Railway World},
\item34 IET, \textit{The Electrician}, Volume 51 (16 October 1903), p.1062.
\item35 Barham, \textit{Torbay Transport}, p.11.
\end{itemize}
of the National Electric Construction Company (NECC). The latter company was simultaneously involved with the Mexborough system. There was some opposition to the Dolter system, but not as vociferous as it had been elsewhere.

The Torquay Tramways Act received parliamentary approval in August 1904.\(^{36}\) Construction began in October 1905 on the first four-mile section. Operations were inspected on 7 March 1907 by the Board of Trade, which considered the system to be largely untested, and consequently insisted on several modifications to the specification.\(^{37}\) The Western Evening Herald reported that only one stud was found to be faulty and it was not live anyway. The inside-cab lighting was good and steady, and the trams operated with a minimum of sparking. They were found to be practically silent and smooth running, and successful in every way.\(^{38}\) The system opened on 4 April 1907 and was one of the last electrified lines to be inaugurated in the UK, only four coming later.

Competition between the bus operators and the tramways company was keen, especially since two other bus companies had commenced operations. These were the Paignton and District Motor Omnibus Company which had two steam-powered Clarksons and two Milnes Daimler motor buses, and the Torquay Road Car Company with six second-hand Clarksons.\(^{39}\) However, the Torquay and District Motor Car Company sold its eight Clarksons to Harrogate while the tramways were being laid. They had been introduced three or four years previously, when it was uncertain whether tramways would be built.\(^{40}\) The buses were purchased for £6000 but sold for only £2500, a high cost of depreciation as

\(^{36}\) Barham, Torbay Transport, p.15.
\(^{37}\) IET, Electrical Review, Volume 60 (15 March 1907), p.598.
\(^{38}\) Hastings and St Leonards Observer, 9 March 1907.
\(^{39}\) Barham, Torbay Tramways, p.18.
some were between two and three and a half years old. The bus company was earning substantial dividends but was scared by the prospect of competition from the Dolter tram installation. The *Electrical Review* thought that the bus company’s action was somewhat precipitate in the light of the Hastings experience. The remaining bus companies decided to concentrate their services at the termination points of the tramway system, thus providing a co-ordinated transport system albeit with buses playing a secondary role to trams.

The Dolter Company was keen to extend Torquay’s system to neighbouring Paignton and offered to promote a Bill in Parliament. If it materialised, the company’s financial prospects would be considerably improved, as by then Dolter was experiencing financial difficulties. The town council was under agreement to allow extensions as soon as it was satisfied with the working of the system. However, defects frequently became apparent, mainly breakdowns caused by current loss, or studs remaining live after tramcars had passed. Although Dolter himself, accompanied by the Paris city engineer, visited Torquay to offer advice, the problems remained unresolved. Torquay residents were also aware of adverse comments made by Hastings townspeople who were becoming increasingly disenchanted with the Dolter operation along their sea front. Consequently, the Board of Trade granted licences for only a six-month period with the threat of complete withdrawal if no improvements were made. After further difficulties, the Board advised consent would not be renewed. Seizing the opportunity, the Tramways Company put forward plans for conversion to overhead

42 Ibid, p.186.
43 *Barham, Torbay Tramways*, p.18.
45 Ibid.
46 *Barham, Torbay Tramways*, p.31.
48 Ibid, p.31.
as well as extending the network.49 The council objected but the Board persisted and an arbitrator on the legal position was appointed. He decided against the council, who had to give way.50 The company adopted overhead traction without fresh statutory powers with Board of Trade consent, and conversion was completed in March 1911.51

5.4 Lincoln – a historic city

Briggs characterised Lincoln as an old cathedral city, which developed far more slowly than the rapidly growing industrial centres of the Victorian era. He likened it to a county capital, for centuries carrying out ecclesiastical or marketing functions. By the Victorian era, it was 'not so much as passing into eclipse but into torpor'.52 It had earlier been characterised as a sleepy city where bells rung, clocks struck, men drank, women talked, and children danced, eternally. Lincoln was set in a predominantly rural location, but the focus of investment and innovation was moving from traditional towns to rising industrial centres. Lincoln was situated too far east and remained peripheral to the process. In addition, the city was not part of an urban network such as the Black Country and possessed only basic communication systems.53

From the mid-nineteenth century, however, it began to develop as a centre for tourism, where 'architectural heritage became a source of pride and celebration'.54 The expansion of the railway network combined with increased leisure time and

50 Ibid.
51 Ibid.
52 Briggs, Victorian Cities, p.364.
53 McHugh, 'Running an Unregulated Town', p.73.
54 Martin Daunton, 'Introduction', in Martin Daunton (ed), The Cambridge Urban History of Britain Volume III 1840-1950, Cambridge: Cambridge University Press, 2000, p.50.}
spending power assisted tourism development. Lincoln was therefore far removed from the dynamic and enterprising city that industrial Wolverhampton had become. That said, Lincoln’s development was affected to some extent by the industrialisation process. As an agricultural marketing centre, it experienced limited growth, and answered to the demand for increasingly sophisticated farm machinery. Foundries produced diverse items such as agricultural implements, winches and stoves. Nevertheless, the iron industry remained vulnerable due to the city’s isolation from raw materials and markets.

Lincoln’s development was shaped by its topography. The original settlement, known as ‘uphill’, was built on an extensive plateau. The cathedral, castle, and better-class properties were situated there. ‘Uphill’ was sleepy, picturesque, historic and respectable, inhabited by the clergy and urban professionals. High Street ran down a steep incline from the commercial areas to working class centres in ‘downhill’ at the base of the hill. ‘Downhill’ was bustling, dirty, cramped and disordered, although not on the same scale as had occurred in the ghettoes of Wolverhampton. Socially, ‘uphill’ and ‘downhill’ were two different worlds with separate value systems and minimal interaction. It was to connect these two areas that Lincoln’s short section of tramway was constructed.

Detailed investigations of Lincoln, amongst other towns, have revealed the extent to which ‘walking cities’ survived in England into the nineteenth century. Their limited development, pre-industrial economies and high-status central areas fit

57 McHugh, ‘Running an Unregulated Town’, p.73.
58 Ibid, p.74.
better with Sjoberg's model than Burgess's. It was not until the 1880s that the wealthy 'merchant and professional class began to abandon the central business district as a place of residence'.

Similar to other smaller towns like Hastings, Lincoln had a higher proportion of middle-class residents. In Lincoln it was more than 6% compared with Wolverhampton's less than 3% (see section 3.11). As far as local politics were concerned, the middle classes were in the ascendancy. The predominant city councillors were solicitors and lawyers, who had a close knowledge of local and central government administration, national policy and local economics, by virtue of their professions. Social, business and familial connections and networks enabled them to exert influence and authority in the decision-making process.

Lincoln started from a higher base population in 1801 than that of either Torquay or Hastings. The larger increases happened around the turn of the century, and were mainly due to inward migration from the surrounding rural areas. Compared with the target towns, Lincoln's development was at a much slower rate, as follows:

61 David Cannadine, "Victorian Cities: How Different?" in Morris and Rodger (eds), p.118.
63 McHugh, 'Running an Unregulated Town', p.78.
64 Hill, *Victorian Lincoln*, p.306.
65 Cannadine, "Victorian Cities: How Different?" in Morris and Rodger (eds), p.118.
<table>
<thead>
<tr>
<th>Year</th>
<th>Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>1801</td>
<td>7,205</td>
</tr>
<tr>
<td>1811</td>
<td>8,589</td>
</tr>
<tr>
<td>1821</td>
<td>9,995</td>
</tr>
<tr>
<td>1831</td>
<td>11,217</td>
</tr>
<tr>
<td>1841</td>
<td>13,806</td>
</tr>
<tr>
<td>1851</td>
<td>17,536</td>
</tr>
<tr>
<td>1861</td>
<td>20,995</td>
</tr>
<tr>
<td>1871</td>
<td>26,723</td>
</tr>
<tr>
<td>1881</td>
<td>37,313</td>
</tr>
<tr>
<td>1891</td>
<td>41,491</td>
</tr>
<tr>
<td>1901</td>
<td>48,784</td>
</tr>
<tr>
<td>1911</td>
<td>57,294</td>
</tr>
</tbody>
</table>

Table 5.2 – Population statistics for Lincoln.66

The introduction of horse-drawn trams in Lincoln went relatively smoothly. In 1880, the promoters of the Lincoln Tramways Company applied to the city council for permission to construct tramways from the city centre southwards to Bracebridge, to Carholme Road in the west, the Arboretum in the east, and Burton Road in 'uphill'. The routes were authorised by the Lincolnshire Tramways Order of 1881. In fact, the only length constructed was a section from St Benedict's church to Bracebridge, a distance of 1.84 route-miles.67 The horse-drawn line was constructed to a 3' 6" gauge and opened on 8 September 1882. The operation was very successful, and within a few years dividends of 3½% were paid, rising to 6% by 1897.68

When track deterioration necessitated modernisation, the corporation exercised their right to purchase in 1902. By then the company had 10 tramcars and 24 horses, and was operating a ten-minute service at a fare of one penny for the whole distance. Three quarters of a million passengers were carried by horse-

66 Hill, Victorian Lincoln, p.306.
67 Parliamentary Papers, Returns of Street and Road Tramways: Board of Trade, London: House of Commons Session, 1895, Volume 68.
68 Hill, Victorian Lincoln, p.226.
drawn cars in 1902. The principal controversy centred on the valuation of the Lincoln Tramways Company. Eventually, John Young, the renowned General Manager of Glasgow Corporation Tramways, was appointed arbitrator to fix the purchase price. The decision about which traction system to adopt was less controversial. After a demonstration of the home-grown Griffiths-Bedell system at the company's headquarters in Ilford, the city council was impressed by its aesthetic appeal, which it saw as the ideal solution to preserve the urban fabric. The influential professional journal, *The Electrical Review*, was also impressed by the system, which they found comparatively simple and inexpensive, though it raised doubts about its durability. As the operating length was so short, it merely replaced the 1.84 route-miles of horse-drawn tramway, the journal foresaw no problems in Lincoln. The Griffiths-Bedell surface-contact system was installed in 1905 and eventually replaced by overhead in 1919. After four years of operation, the *Tramway and Railway World* carried a report comparing safety aspects of various surface-contact systems and concluded that there were few recorded cases of injury to horses or pedestrians in Lincoln. By 1915 the total number of passengers carried had increased to 1.75 million per annum.

5.5 Mexborough and district – small industrial towns

In view of their industrial nature, Mexborough, Swinton, and Rawmarsh were surprising choices for the installation of surface-contact systems. They were small adjacent mining towns, developed in a linear pattern along the transport axis.

70 Ibid.
72 Ibid, p.42.
between Sheffield, Rotherham and Doncaster. The roads and rail systems followed a narrow corridor along the valley of the river Don.75 The towns originally began as fishing and river transport centres, but pottery manufacture and coal mining expanded rapidly in the nineteenth century, followed later by steel-making. Industry transformed the valley, which became dominated by factory complexes and rows of terraced housing for the workforces.76 By comparison with the other four towns, the area developed slowly, and at the end of the century, the population of each was only around 12,000.77 Environmental and aesthetic concerns must have been low priority in an area blackened by colliery waste and industrial pollution. The political parties were evenly balanced. The Liberal party held a majority of four in 1894, but five years later the newly emerged Labour Party assumed power with a majority of just one.78

In the mid-nineteenth century, the area was poorly served by public transport. There was a sporadic horse-drawn omnibus service north to Doncaster and south to Rotherham, but as the community relied on the local coalmining industry for employment, townspeople had little opportunity for travel.79

Proposals for a tramway were submitted to Parliament in 1876 when a line connecting Parkgate at the base of Rawmarsh Hill to nearby Rotherham was mooted.80 Although the Bill was later withdrawn, it was revived in 1881 as the Rotherham, Parkgate and Rawmarsh Tramways Act, which set out to build a single line with passing places. However, the topography of the area proved an

75 Julia R Ashby, Trams, Tracklesses and Buses, Mexborough: Mexborough and District Heritage Society, October 1997, p.5.
78 Mexborough Trade Directory, 1899 yearbook.
80 Ibid.
obstacle. Animal power was soon recognised as unequal to the hilly sections. There were also financial burdens in the form of annual way-leave payments to the various councils, and a major bridge reconstruction at the Rotherham boundary. Consequently, the powers were allowed to lapse. Other plans continued to be put forward, but it was not until electrification at the turn of the century that any came to fruition.

The promoter, the Mexborough & Rawmarsh Construction Company, set up the Mexborough & Swinton Tramways Company which was incorporated in 1902. When the promoter went bankrupt, the National Electric Construction Company (NECC) took responsibility for providing a network. The NECC had an agreement with the Dolter Company to install a surface-contact system, similar to their arrangement with Torquay. Clearly, the NECC regarded themselves as champions of the Dolter system. Under the powers granted by the Mexborough and Swinton Tramways Act 1902, construction began in 1905. Running northwards from Rotherham Bridge, where it connected with Rotherham Corporation's system, the network passed through Parkgate, Rawmarsh, Ryecroft, Swinton, Mexborough and terminated at the Old Toll Bar at Denaby.

The Board of Trade granted consent for six months, and the first public service commenced on Wednesday 6 February 1907 between College Square, Rotherham and Parkgate. The service was extended to the company's Dale Street depot in Rawmarsh on the following Saturday. The whole line was opened on 3 August 1907, with cars running a 30-minute frequency between Rotherham and

82 Ibid, p.365.
85 Ibid.
Denaby and a 15-minute frequency between Denaby and the 'Ring o' Bells' at Swinton.87 In order to operate on the neighbouring systems, tramcars were fitted with both overhead trolleys and skates for power collection on the Dolter system.

Almost immediately, problems were experienced. The \textit{Yorkshire Telegraph & Star} reported that during an evening journey in Mexborough:

> at times we seemed to be travelling over sheets of fire with electric flashes blazing from beneath the wheels caused by skidding over the studs and not finding contact evenly. With the flash comes a swishing sound similar to the send-off of a burning rocket. The lights in the car dance in and out with frivolous frequency.88

The report commented that although such phenomena were perturbing, the element of danger was absent unless young horses were about. The writer added that these effects lent a spice of variety to the journey. However, not everyone was similarly enthused as several cases of injury to horses were reported.89 Nevertheless, the Board of Trade granted several renewals before consent without limit of time was given in February 1908.90

The Dolter system continued to prove unsatisfactory. By July 1908, the number of studs left live after the passage of a tram had become such a danger that the Swinton Urban District Council sent an urgent telegram to the Board of Trade.91 Consequently, the Board informed the company that in absence of an efficient

87Turner, \textit{The Directory of British Tramways}, p.105.
88\textit{Yorkshire Telegraph and Star}, 14 December 1907.
90Ibid.
91Hall, 'The Mexborough & Swinton Traction Company', p.368.
method of detection and dealing with them, it would consider withdrawal of
consent. Matters did not improve, and the Board ordered closure of the system
between 30 July and 29 August 1908.92 Conversion to overhead began
immediately under powers granted previously, but left the area without a tram
service for several weeks. The Board of Trade approved the overhead conversion
in December 1908.93 Compared with elsewhere, Mexborough’s Dolter surface-
contact system was short-lived. The whole line had only been open for little more
than a year. In their defence, the Dolter company wrote that although the six-and-
a-half route-miles installed in Mexborough were not as efficient as they might have
been, Dolter ‘had made great improvements at Torquay and Hastings’.94 In fact,
the installations in those two towns were already experiencing problems. Buckley
described the Dolter system in Mexborough as ‘an unmitigated disaster, taking
nearly two years to build, much longer than any other system in the UK’.95

Fortunately for Mexborough & Swinton Tramways Company, their tramcars had
been equipped with trolley poles for through running on Rotherham Corporation’s
overhead system and no major alterations to the rolling stock were needed.96
Following the conversion, Rotherham Corporation cars ran to Parkgate on
weekdays and Ryecroft on Saturdays, and Mexborough trams operated to
Rotherham.97

95 Richard J Buckley, History of Tramways from Horse to Rapid Transit, Newton Abbot: David &
Charles, 1975, p.65.
97 Wingate H Bett and John C Gillham, The Tramways of South Yorkshire and Humberside,
5.6 Urban contrasts in London – the surface-contact areas

The largest city in the world at the end of the nineteenth century, London had a correspondingly complex townscape. This section describes the sharp contrasts between the urban landscapes of the East End and the western suburbs, and how the provision of public transport developed. In both areas, surface-contact traction was considered. In the west, quite distinct small towns already existed. The towns were separated from each other by extensive market gardens and nurseries along the route beyond Acton. From about 1850, the movement of population from central London began, but as most of the new residents continued to have workplaces in the central area, improved public transport assisted the process.

One of the largest urban areas in the west, Ealing contained many grand residences set in extensive gardens.\(^98\) Their influential owners largely relied on their carriages for transport. As the population expanded, Ealing quickly obtained its charter as a borough in July 1901.\(^99\) Further to the west was Hanwell, rapidly becoming a built-up suburb, into which there was already a steady influx of people from the more crowded areas of inner west London. Neighbouring Southall was a small self-contained market town at the time.\(^100\) The influx of new residents resulted in a decline of the social status of the area. This process gathered pace with the development of tramway services, and particularly when electrification began at the end of the century.\(^101\)

\(^100\) Jahn, ‘Suburban Development’, p.114.
\(^101\) Ibid, p.131.
Several companies operated both horse omnibuses and horse-drawn trams in London from 1870 onwards, but most were beset by financial problems in the early days. To serve the western suburbs, the West Metropolitan Tramways was formed on 12 August 1881. Although owned by Henry O'Hagan, a promoter specialising in steam tramways, the company's intention to operate with steam was blocked by local opposition from wealthy residents to that form of traction, and the company continued to operate with horse-drawn trams. The influential classes insisted that tramways would interfere with local amenities.102 There were also objections from Ealing, the self-styled Queen of the suburbs, on aesthetic grounds and potential damage to buildings.103 They also feared trams would attract an undesirable class of inhabitants. Before further extensions were made to the network, there was considerable opposition from property developers. One in particular, JT Carr, suggested to the Chiswick Improvement Commissioners that they should see 'if they could get a class of houses in the parish not dependent upon a cheaper kind of traffic'.104 Clearly, in this area tramways were viewed as socially unacceptable.

The LCC was controlled at that time by the radical Liberal Progressive Party which actively campaigned for cheap travel from the suburbs. The chairman of the LCC Highways Committee, Sir John Benn called London's trams 'an inestimable boon to the workers' and 'the people's carriage' in his election address in 1895.105 The Liberal social critic, CFG Masterman, commented that the 'two greatest boons that have come to our working people are the gas stove and the fast electric tram. Each workman has had an hour added to his life'.106

105 *Daily Chronicle*, 20 June 1895.
106 Lucy Masterman, *CFG Masterman: A Biography*, London: Nicholson & Watson, 1939, p.83. At the turn of the century, Masterman had lived for eight years in a tenement in Camberwell, a very poor district of south London in order to study the conditions of the working class.
After making heavy losses, the West Metropolitan Tramways Company was re-conveyed on 21 August 1894 to the London United Tramways (LUT). The Managing Director was James Clifton Robinson, subsequently knighted in 1905 for his services to tramway systems. He was a strong advocate of electrification of the system based on overhead trolley lines. His plans for the LUT immediately ran into fierce opposition. In particular, the Hammersmith Vestry raised objections on aesthetic grounds, but were won over when Clifton Robinson took their surveyor to France to view the recently installed overhead system at Le Havre.

Members of the LCC were less enthusiastic, and when LUT applied for permission to install overhead lines, a councillor during a debate proclaimed to thunderous applause: 'my objection is that these people - these monopolists - these Company monopolists - are going to obscure the blue vault of heaven'. Reporting on the event, the Daily Chronicle spoke of a network of wires disfiguring the streets. The LCC, through whose area some LUT lines ran, wanted the much more expensive conduit system, which they had insisted on elsewhere.

The ensuing political debate sparked off suspicions surrounding private ownership and the dangers of company monopolists, which eventually spilled over into traction choices. The Progressive party held the view that:

London was the richest field of exploitation in the world, and was delivered over entirely to private adventure. Companies operated in the interests of shareholders without any comprehensive policy or co-ordinated method.

109 Ibid.
Sir John Benn pointed out that when the LCC was formed, there were thirteen separate tramway companies, each acting independently, and without even a uniform gauge. Clearly, there were similarities with the situation pertaining in the Black Country where the BET were attempting to introduce a unified system. In Benn's scathing words:

...a more pitiable example of private enterprise in a public service can hardly be imagined. The companies had selected the most populous parts for their schemes, and in some cases had increased rather than relieved congestion. Districts sadly needing tramways and housing were neglected.¹¹¹

Private interests frequently had powerful friends in the Council, and the idea that tramways were the legitimate plunder of the private adventurer was too deeply engrained to be surrendered without a struggle. Even so, Benn continued to press for public ownership. Under the terms of the 1870 Tramways Act, past and future profits were excluded in any purchase settlement. In an attempt to exploit a perceived loophole in the law, the Moderates in London contended that present day profits should be included. Consequently, they urged companies to circumvent the regulation by submitting a year's profits to coincide with the actual day of purchase. The case eventually went to arbitration, but the Board of Trade decided in favour of the Council and the Progressive party. The companies were discontent and challenged the judgement in the High Court. The High Court upheld the Board

¹¹¹ Gardiner, John Benn, p.214.
of Trade's decision, and judgement was finally given against the companies in July 1894.112

Before municipalisation proceeded, there was an election in 1895 which resulted in an equal number of Progressive and Moderate councillors. Together with the election of a Conservative government later in the same year, the effect was to delay progress on Benn's plan until the return of a Progressive majority in 1898.113 The apparent profitability of some undertakings was seen as a means to reduce the rate burden and as a potential gold mine for the council.114 Others thought greater operational efficiency would follow. The more enlightened viewed it as an opportunity to improve working conditions for the employees. Benn saw municipalisation as a great opportunity to introduce model labour conditions, ample workmen's cars, uniform management, more frequent service for passengers, improved vehicles, and 'a score of other advantages'.115 It was to be three years later before his plan came to fruition and a six-day and sixty-hour working week was adopted, without reduction of the average weekly wage.116

Meanwhile in 1898, LUT placed their first bill for electric traction before Parliament, and Clifton Robinson 'produced a vigorous campaign of propaganda'.117 Gradually, the individual local authorities were won over, with only Ealing Urban District Council and Richmond in opposition, the former because its residents were 'horror struck at the idea of overhead trolley systems'118, the latter by contrast fearing

112 Gardiner, John Benn, p.219.
113 Ibid, p.226.
114 Ibid, p.376.
115 Ibid, p.221.
116 Ibid, p.227.
117 Connelly, The London United Tramways, p.7.
118 Smeeton, The London United Tramways, p.48.
interference with the instruments at Kew Observatory, where delicate research equipment was housed.

Ealing also argued that 'trams bring a different element into the neighbourhood. The old order disappears, the jerry builder appears and the character of the neighbourhood alters'.119 To counter this argument, the Town Clerk of Dublin was summoned to give evidence that tramways did not necessarily lead to deterioration in property prices. In the northern suburb of Clontarf, expensive houses were being built in anticipation of better transport links with the city.120 The authorities of Acton, Hanwell, and Southall-Norwood also raised strong opposition, and seized an opportunity to obstruct with demands for generous concessions at the company's expense. This process took time. One argument put forward by local residents was that trams 'would bring in hordes of undesirables from the East End of London'.121 All sought to drive a hard bargain with the LUT.

The terms of the agreement with Ealing were particularly onerous. LUT had to reimburse the £900 cost of Ealing's opposition, make an annual payment of £500, and pay general rates of between £400 and £500 per annum.122 Hanwell had only two-thirds of a route-mile in their area but still insisted on a way-leave payment of £230 per annum, while Southall-Norwood demanded the fixing of lighting to traction poles, and the paving of a section of road with wood blocks within the rails, and granite setts outside.123 While the extraction of these concessions from tramway companies was not dramatic, they are examples of how cultural values helped to shape technology.124

120 Jahn, 'Suburban Development', p.135.
121 Smeeton, \textit{The London United Tramways}, p.50.
122 Ibid, p.74.
123 Ibid, p.75.
124 Schatzberg, 'Culture and Technology', p.83.
LUT eventually became a large system, extending way beyond the boundaries of London's suburbs. It was intended to serve Staines, Sunbury, Esher, Epsom and Uxbridge. The last was a country town with a market, separated from built-up areas by large stretches of open country, but the ultimate tramway target was Maidenhead. Although surface-contact traction was considered in west London by Clifton Robinson, eventually the cheaper overhead system was installed.

In complete contrast to the wealthy western suburbs, the East End was a socially deprived area. It was the 'home of industry, the docks, and working class communities'. By 1880 unemployment was high and London was near economic collapse, with fears of serious social disorder brought about by population growth and pressure on space. The perceived threat from working-class East Enders, who lacked privilege or opportunities, caused great anxiety to the middle classes. The East End was 'a shocking place, full of slums and about as unexplored as Timbuctoo'. Clearly, there were parallels with the Caribee island district of Wolverhampton, although on a much larger scale. The upper classes feared anarchy, and even revolution. Within ten years, however, the economic situation improved and these fears had largely evaporated, but the East End remained smoky, murky and drably utilitarian. Roads were little more than a churned trench of mud, in which carriages became bogged down. It was no wonder that the prospect of a mobile East End population, possibly infiltrating middle class areas, fuelled opposition to any new form of transport that facilitated travel to the more pleasant suburbs.

125 Cannadine, Lords and Landlords, p.396.
127 Ibid.
128 The Builder, August 1872.
129 Gardiner, John Benn, p.214.
The burden of the electrification of London's tramway system fell on John Benn. He devoted three years from 1899 to the task of mapping out a system for the whole of the city 'with great enthusiasm and confidence'. Benn considered the LCC tramways as 'almost his personal hobby and obsession, and ventilated his views with rash vehemence'. The role of committee chairman appeared to attract forceful, single-minded people. In Wolverhampton, Mander and his eventual successor Craddock were described in the newspapers as having 'tramways on the brain'. The following six years were believed by some to be the most important in the history of London's tramways. During that time, Benn was largely responsible for the LCC's electrification programme and the adoption of the conduit system of traction. Open-conduit traction was chosen to protect the inner London townscape, but was strongly opposed by the Moderate party on the grounds of its capital cost. The plans for the outer suburbs were to install the much cheaper overhead system, although surface-contact was considered in the northern suburbs but rejected on cost grounds. (see section 2.13).

Prior to the London County Council elections of 1907, the press had levelled accusations against the ruling Progressive party of 'waste bordering on corruption' with respect to its tramway operations. Likening the Progressives to the corrupt officials of Tammany Hall in New York, the Standard regretted that 'where members have the spending of other people's money, there is a tendency to put that money into the pockets of their friends. They throw away money by giving

130 Gardiner, John Benn, p.231.
132 Wolverhampton Chronicle, 13 January 1897.
133 Gardiner, John Benn, p.379.
135 Gardiner, John Benn, p.359.
good prices to friendly contractors, and their method of book-keeping has been such that the public has been lied to.136 By employing such insider construction dealing, according to the \textit{Standard}, the LCC had spent fifty per cent more than if the tram system had been managed by private companies. The Progressive members of the Highways committee took legal action against the newspaper and won their case, but the party had been damaged and it was heavily defeated in the ensuing election.

After the election of the Moderate party in 1907, they immediately attacked the open-conduit system and proposed the cheaper Griffiths-Bedell surface-contact technology. They estimated that installation would cost from £10,000 to £11,000 per mile compared with the conduit's £17,000 per mile. The intention was to install it over the whole of the northern area, with an initial twenty-mile network. At the instigation of the new committee chairman, Sir Whittaker Thompson, £500,000 was included in the tramway estimates to finance the work.137 Benn strongly opposed the proposal, arguing that the cheapest system was not necessarily the most economical in the longer term.138 He recommended open-conduits rather than either the surface-contact system or overhead wires, despite the capital cost. The overhead system was 'not ornamental at best, and if they were to be accompanied by the ugly trapeze poles of the trolley, the opposition to the extension of the lines in many districts where they were much needed, would be gravely aggravated'.139

Facing such strong opposition, the Highways Committee decided to seek impartial advice from an eminent engineer, Sir Alexander Kennedy. He advised that

136 \textit{The Standard}, 17 January 1907.
137 Gardiner, \textit{John Benn}, p.382.
138 Ibid, p.379.
139 Ibid, p.229.
overhead systems would not be tolerated in London, given the environmental impact on great squares like Piccadilly Circus. He concluded that the open-conduit system would be more appropriate, despite the extra costs involved.¹⁴⁰

In the east, Stepney Borough Council's objection to overhead wires was a prime example of local autonomy and the difficulties of a co-ordinated approach. The LCC wanted to install overhead wires, but Stepney refused to allow overhead traction to operate through their area. The arterial tramway along the Mile End Road headed towards the populous districts of Stratford, West Ham and East Ham and offered a natural corridor into London. Despite its areas of social deprivation, Stepney council objected strongly on aesthetic grounds to overhead wires along the Mile End Road between Aldgate and Bow Bridge. They preferred a continuation of the conduit system which was being installed from the city to Aldgate. Unfortunately, the surface of the Mile End Road was too close to the soffit of a shallow railway tunnel to allow conduits.¹⁴¹ As a compromise, it was agreed to conduct trials with the Griffiths-Bedell surface-contact system in 1908. Although other towns had expressed an interest in the Griffiths-Bedell system, most notably Hastings¹⁴², the only other actual installation was the short section in Lincoln.

The system became a celebrated political issue between the Progressives and the Moderates, and was adopted as a key factor in the election campaign in 1907.¹⁴³ Gardiner commented in his biography of Benn:

¹⁴⁰ Gardiner, John Benn, p.230.
¹⁴² Lewes, East Sussex County Council Archives, Hastings Council Minutes, file DHB 33/4, 22 November 1903, p.255.
On the face of it, the method of running a tramway was a purely technical question which concerned experts alone, and in regard to which party politics were wholly irrelevant. But the angry spirit which was the legacy of the election of 1907 converted a question which should have been left to the engineering expert into a political issue, and it was the part of a loyal Moderate to support the stud tram as it was the part of a loyal Progressive to oppose it.144

The fight was even fiercer than the earlier conflict in London over the relative merits of the overhead and open-conduit systems. The defeated Progressives attacked the Moderates' surface-contact policy as a fiasco and an example of waste, referring to jerry-built tramways.145 They alleged that the Moderates were enamoured by the proposal to pay royalties to the company of £500 per mile up to 30 miles, and £250 per mile beyond.146 It was suggested that these were persuasive hidden costs and no such payments were incurred for the open-conduit system. The criticisms were so vitriolic that the Griffiths-Bedell patentees entered an action for libel against the Progressive party's leader, Sir John Benn.147 The court hearing became a land-mark case, in which the right to free criticism of public affairs was challenged.148

In his defence, Benn claimed that his criticisms were not against the Griffiths-Bedell system itself, but were a political attack on the Moderates who had earlier charged the Progressives with extravagance prior to the election. In his ruling on the libel action, Lord Justice Moulton found it strange that opposing political parties

144 Gardiner, John Benn, p.378.
146 Ibid, p.383.
147 Klapper, The Golden Age, p.78.
148 Gardiner, John Benn, p.387.
should become identified with the open-conduit and surface-contact systems.149

The controversy reinforces the point that politics and power are sometimes significant ingredients in technological decision-making, and offers striking examples of interest group politics, bureaucracy, and class struggles.

Clearly, there were safety issues with the Griffiths-Bedell system. In a three-week period of operation, 927 live studs were encountered along the three-mile stretch, although unsuccessful attempts were made at modification.150 A horse was killed and on another occasion, a tramcar caught fire, all of which caused alarm bordering on panic in the East End.151 There were explosions, and manhole cover lids weighing more than a hundredweight were blown to twice the height of the tramcar.152 There were numerous anecdotal complaints of injured people, roasted horses, fireworks at night, and the danger of fatal accidents to anyone who chanced to step on a live stud.153 Feeling was so strong that the system was quickly withdrawn in view of the danger to the public and in the interests of efficient working of the tramways. In general, such incidents, however unpleasant, had a positive side effect. Manufacturers and operators were compelled to introduce better insulation.154

The system lasted for only twenty-three days before it was replaced, but not before Sir Alexander Kennedy, had been asked to report again. He discovered that the 'experimental' system had cost more than £52,000, which was a considerable sum of money at the time. Kennedy observed that:

149 Gardiner, John Benn, p.387.
150 Ibid, p.382.
151 Ibid, p.380.
152 Ibid, p.384.
153 Ibid, p.383.
a serious disadvantage with all surface-contact systems is our moist climate. The working of the system depends on the permanence of a very large number (from 300 to 1500 per mile of single line) of coils of fine wire placed in switch boxes or in separate chambers underground, along or beside the line. After full consideration, until it is experimentally demonstrated that these coils will remain permanently in good order, and well insulated under the conditions of ordinary traffic in this country, they appear to constitute a serious drawback to the system.155

It is somewhat surprising that the Lincoln system installed three years earlier did not appear to suffer from the same problems. Similarly, the professional \textit{Electrical Review} had identified no potential drawbacks.

5.7 Conclusions

In the nineteenth century, local government reform resulted in the representation of wider interests in the decision-making process. The middle classes became more influential and in many towns, embarked on a programme of promoting civic pride. This new-found freedom often engendered a desire to be different, not least with the introduction of electric trams, where towns were able to choose the form of traction they felt most appropriate for them.

In Torquay, however, caution prevailed. It was feared the noise and visual intrusion of trams would deter wealthy visitors on whom the local economy depended. Aesthetic and environmental considerations thus featured prominently

155 Gardiner, John Benn, p. 380.
in discussions, although it was commercial pressures that finally persuaded the council to adopt the Dolter surface-contact system. The system was promoted through the tramways company, a subsidiary of the NECC. Similar commercial pressure from the NECC resulted in the Dolter system being installed in Mexborough, although aesthetic concerns were not so evident there. Neither system was particularly successful, but the larger Torquay network lasted for four years.

The NECC's aims were similar to those of the BET but its operations were on a much smaller scale. They were clearly champions of the Dolter system and pressurised subsidiaries such as the Torquay and Mexborough tramway operators to accept Dolter traction. The close arrangement inevitably led to problems, particularly when NECC admitted they were misled by an optimistic report on Dolter’s Paris operations.\(^{156}\)

There was less controversy in Lincoln where the tramways were owned by the corporation. The Griffiths-Bedell system was adopted for aesthetic reasons on a short linear route. The alignment passed through the historic centre of the city where environmental protection was vital. Although less than two route-miles long, the system operated for fourteen years before being replaced by overhead wires. The lack of traffic, and hence less wear and tear on the ground level equipment, would partly explain why it lasted for so long.

In London, metropolitan boroughs were required to agree with their neighbouring authorities about the introduction of any new form of tramway system. Such governmental confusion led to frequent disputes, and was the chief obstacle to the

unification of the network and the introduction of standard traction. The plethora of local authorities, arbitrary boundaries and local vested interests created tension, and the continued expansion of settlements beyond the LCC's boundaries delayed a common solution.

Local authorities in west London used the aesthetic argument to extract concessions from tramway companies who wanted to install overhead traction. In east London, the surface-contact controversy became entangled with urban politics and localism, and became a victim of party infighting. There, the Griffiths-Bedell system was a complete failure because of technical shortcomings that resulted in serious safety concerns and, as a consequence, its rapid abandonment. Given the debates surrounding the use of surface-contact traction, particularly the Dolter in Mexborough, it was surprising that such an eminent body as the LCC even considered the system for the Mile End Road between Aldgate and Bow.

There was no common pattern to the course of discussions in any of the towns. In most cases, it took several years of intense debate before a consensus was achieved. It is clear that issues around power and authority, culture, politics, and commercial considerations as well as aesthetics and the environment, all had a part to play in how each town decided the form of traction most suitable for its needs.

157 Gardiner, John Benn, p.232.
158 Ibid.
CHAPTER 6 – CONCLUSIONS

'A technology does not succeed because it is technologically superior, but it is considered technologically superior because it has sociologically succeeded'.

Many transport historians (Klapper, Buckley and to a lesser extent McKay) have dismissed surface-contact traction as a technological dead end, from which nothing developed. The comment by Klapper at the head of chapter one is typical, describing the Griffiths-Bedell surface-contact 'experiment' in east London as

one of the few striking engineering failures of the century, comparable with the atmospheric railway of seventy years previously, even if not the disastrous nature of the Tay Bridge collapse.

Klapper's dismissive comment ignores the fact that the system in East London was not solely a technological issue, but a politically controversial one, in this case between the warring factions within the London County Council. In fact, it was an illustration of how an artefact can become a political football given certain circumstances, as I have argued in the cases of Hastings and Wolverhampton.

In this thesis, I have argued that there are grounds for judging some surface-contact systems as a success. In the history of the development of a given technology, there is an assumption that if an artefact was successful, there is no need to investigate what are perceived with hindsight as failures. Such a linear interpretation has been described as having an asymmetrical focus. Until recently,

most historians of technology have written ‘from the victor’s viewpoint’. This thesis has attempted to avoid that trap by looking closely at all aspects of surface-contact development and its subsequent application. I have attempted to show that the success or failure of a particular form of tram traction, ‘can be understood as a social construct’.

Trams had different meanings to different people. To some, they were merely a transport mode. To others, they were murderous vehicles. Although they offered a superior form of travel in terms of comfort and speed beyond anything before, they were unfamiliar items on the streets, and many regarded them as incomprehensible. Opposition became part of ‘a long struggle over control of the streets’. Early horse-drawn trams were fitted with plush interiors in order to attract the mainly middle-class passengers able to afford the fares. Tram travel became fashionable and desirable, and offered vantage points and a platform for passengers to view events and surroundings as never before. Middle-class passengers could look down on, in their eyes, the riff-raff, thereby helping to perpetuate class differences. Later, electric tram design became more utilitarian and reduced to basic elements, but trams remained full of character. Eventually, tramways helped liberate the masses from their confined residential areas and influenced the change in habits and customs of the people. By increasing urban mobility, they offered greater opportunities for leisure and new possibilities for work.

5 Pinch and Bijker, ‘Social Construction’, p.25.
Unintended consequences of tram travel followed. Trams became social meeting places where new codes of conduct were learned. There was a passing intimacy with fellow strangers, where activities took place which did not happen elsewhere. Games were suggested, particularly in Hastings where the Dolter system's unreliability was converted to frivolous social activity on board. Outside the tram, children absorbed the tramcar into their play. They quickly discovered that placing metal items on the tram-track before the passage of a tram would transform the crushed item into a variety of shapes. Such games offered the added excitement of danger, and indeed children were sometimes injured in their pursuits.

Before the arrival of surface-contact, various forms of tram traction had been considered but found wanting. Wolverhampton had experimented with steam traction, but it was noisy, dirty and malodorous. Although not so noisy, battery-driven trams generated acidic fumes. Occasionally fluids leaked, spoiling the clothes of passengers. Electric traction was unsuitable because of the intrusive nature of overhead wires, and for a time in the USA, both battery-driven and underground-conduit traction was considered to be 'more progressive'.

The journey towards surface-contact involved no common path of development in the target towns. Unlike the systems in Wolverhampton and Lincoln, public transport in Hastings, Torquay, and Mexborough did not develop in a linear fashion from horse-drawn traction. The two seaside towns relied on omnibuses or the carriage-owning community for urban mobility. Apart from occasional excursions into the larger towns of Rotherham and Doncaster, Mexborough remained a walking town, workers residing within reach of their workplaces.

9 Nye, Electrifying America, p.102.
10 Schatzberg, 'Culture and Technology', p.73.
Due to the strength of objections from influential residents, no tramway systems were built in Hastings and Torquay until the early 1900s. By then, moral qualms about the maltreatment of horses were gaining in importance, rendering horse-drawn vehicles largely unacceptable. Furthermore, before the arrival of trams, both Hastings and Torquay had a spell of potential competition from motor and steam buses, thereby upsetting any tidy linear sequence of urban transport innovations. In 1903, the Hastings & St Leonards Omnibus Company announced their intention to introduce ten Milnes-Daimler motor buses with immediate effect. In the same year, Torquay began the introduction of a fleet of seven Clarkson steam-powered buses along with five Milnes-Daimler motor buses. Perhaps surprisingly to any proponent of a Whiggish view of the history of urban transport, the motor buses were quickly considered to be old-fashioned inferior technology in Hastings and were sold at a considerable loss as soon as trams were installed. The buses in Torquay were similarly relegated to subsidiary feeder roles for the trams. Consequently, the threat to trams from motor-buses did not materialise for many years in those two towns.

A revolution in tram traction came about through the application of electricity as a power source. Given a horse-drawn tram and an electrical supply system, it was inevitable that an electrically propelled tram would be developed.11 The conundrum was the form that electrical traction should take, and whether it could meet contemporary aesthetic values.

11 Donald Mackenzie and Judy Wajcman (eds), 'Introductory Essay: the Social Shaping of Technology', in The Social Shaping of Technology, Maidenhead: Open University Press, 1985, p.8. An analogy with their steamboat theory, wherein they state that 'given the boat and the steam engine, is not the steamboat inevitable?'
The main opposition to overhead traction was founded on perceived visual intrusion and urban clutter. Overhead wires were seen as ugly and an infestation of streets. Schmucki has suggested that opposition on aesthetic grounds may have been a surrogate for other reasons. There were indeed other objections about noise, safety, and in the USA, the rapacity and corruption of tramway companies. But while there were many underlying, and at times complex factors influencing the choice of surface-contact, it was the genuinely aesthetic ideal that weighed heavily in the decision-making in some towns, regardless of the economics. The final solution to aesthetic requirements was always considered to be 'just around the corner', but to many it remained out of reach.

Wolverhampton and other towns were persuaded that surface-contact systems were status symbols, at the cutting edge of technology: a far cry from the retrospective judgements of later transport historians. I have therefore attempted to show how the social shaping of electric traction in the five towns was driven not only by economic, social and political considerations, but also notions of civic pride, modernity and inter-urban rivalries.

Within an admittedly narrow field, the development of surface-contact systems underwent a degree of development in an equally narrow time frame. To improve efficiency and meet safety concerns, different systems were developed, modified and refined. These changes were driven largely by commercial considerations and also Board of Trade requirements, reflecting the importance of state regulation in the UK as a framework for both municipal and private tramway services. The producers, and later the operators, used a creative, innovative, and imaginative

12 Schatzberg, 'Culture and Technology', p.69.
13 Schmucki, 'The Machine in the City', p.1071.
process to develop their equipment. But they still had to be sold. Clearly, there was a market, sometimes in the most improbable places. Some towns saw the products as off-the-shelf ready-mades, the perfect answer to aesthetic and environmental objections. On the other hand, the London County Council tried unsuccessfully to modify the Griffiths-Bedell system themselves, an action which resulted in a prolonged law suit with the manufacturers.

Decisions to install surface-contact systems were not reached easily, and debates continued for several years. Networks of influential people on both sides of the debate played a part, as did the officials responsible for guiding and implementing the decisions of the various councils. Commercial pressures exerted by promoters and manufacturers, referred to by Schatzberg as the ‘rapacity of commercial concerns’, also lurked behind the scenes. Apart from the five towns which eventually adopted surface-contact, several others also considered the system but opted in the end for overhead traction as opposition to the cheaper but more visually intrusive alternative decreased.

Towns in the UK were quite unlike those in the USA, where transport planning took place on a regional scale, an approach that was only adopted in the UK later in the twentieth century. The USA also had the benefit of greater spatial separation. Towns had seldom developed over many centuries within a few days’ walk of each other. The development of European cities and the public transport which served them was more like that in the UK, except that ancient walled city centres tended to be better protected. It was within those centres where aesthetic objections to overhead wires were strongest, and where hybrid solutions were

15 Schatzberg, 'Culture and Technology', p.72.
preferred. Overhead traction was suitable for the suburbs, but surface-contact or open-conduit was the preferred system within the city walls.

Despite some shared characteristics with the other towns, Wolverhampton displayed significant differences. It was a vibrant and dynamic city with a diverse industrial base. While the surface-contact system was associated with spatial growth there, it facilitated rather than led it. The same cannot be said of the other towns, where networks were too small to have any major impact.

Wolverhampton's city fathers were making a statement and projecting their idea of modernity by adopting surface-contact traction, though there was no Otto Wagner or Baron Haussman present to guide development. Rather it stemmed from a strong sense of civic identity on the part of the city's leaders, for whom the new system was a 'visual sign of the city's prestige' and technological progress.16

There was also an urge to flex their muscles against powerful Birmingham, its own adjacent Black Country upstarts, and the BET.

The five towns which adopted surface-contact traction varied both topographically and geologically. The Victorian leisure resorts of Hastings and Torquay were seaside towns surrounded by woods and open countryside. Industrial activity was on a small scale compared with Wolverhampton. Apart from tourism, the ancient cathedral city of Lincoln had a sophisticated agriculturally-based iron industry17, while Mexborough was mainly a coal-mining district.

16 Schmuckl, 'The Machine in the City', p.1075.
The consequent demographic composition gave each town its own distinct identity. Although all of them were subject to migration, none absorbed more than Wolverhampton, where the influx helped develop the industrial base. There was intense rivalry between Hastings and neighbouring Bexhill, but Wolverhampton tended to consider itself superior to adjacent Black Country towns.

In each town, the location of power was instrumental in determining traction choice. Unlike the other towns, landowners clearly influenced the development of Hastings and Torquay, and their associated public transport systems. The development of the Hastings suburb of St Leonards gave no consideration to the transport needs of other citizens. The wealthy residents were firmly wedded to their horse-drawn carriages.

Hastings and Wolverhampton conformed to the Weberian model of urban areas as places where domination and ongoing conflict were prevalent. 'Virtually no arena of urban social, political and cultural relations was exempt'.

Trams and their traction systems were a continuing source of conflict between opposing sides, and even Sabbatarians entered the fray. The city and its intrinsic factories and transport 'machines' were viewed as godless entities to be opposed, rather than as symbols of progress.

When looking at the deciding factors in traction choices, it is impossible to separate technology and culture since both cultural and social attitudes impact on technological choices. Debates over trams frequently resembled a class

struggle, and tensions ran high. However, power was not necessarily confined to the wealthier sections of society.

Given the way in which more general considerations both for and against surface-contact traction were usually finely balanced, personalities were often of paramount importance in the decisions to adopt surface-contact systems. Ambitious politicians were often at the forefront of opposition to overhead traction, especially in Wolverhampton where the dictates of the committee chairmen eventually overcame any objections to surface-contact.20 The leading figures here were the chairman of the Tramways Committee, Sir Charles Mander, and the town clerk Sir Horatio Brevitt. They were assisted by the electrical engineer CEC Shawfield, although he appears to have been dominated by their more powerful personalities.

It is ironic that in Wolverhampton, as in other places, the wealthy and influential people who objected most to overhead electric traction were those who had made their fortunes through heavy industry. Sir Charles Mander himself was a household paint magnate who lived in the leafy suburb of Tettenhall while his factories polluted the poorer working class suburbs in the east with chemical waste, the by-product of his industrial processing plant.

Whereas in Wolverhampton, the primary actors were mainly the councillors and shopkeepers, in Hastings it was the powerful wealthy residents, and to some extent newspaper proprietors, who showed bias on both sides of the argument.

Users and non-users of the tramway systems also had strong voices, as indeed

did the employees of the tramways companies, particularly in Hastings. Objections cascaded upwards and downwards from the upper classes, who wanted no form of tramway in their town, through the middle classes who feared economic sterility caused by isolation, to company employees, road-users and passengers who found the operation of surface-contact systems troublesome. All were influential as the controversy raged.

There was no obvious empowerment of the people during the decision-making process. Indeed, the 'socially invisible' classes were rarely consulted. As they were consumers of cheap workers' fares, we can assume that they welcomed any attempt to ease their financial burden, though there is little written evidence to support that view. Much of the available evidence, whether from newspaper reports or minutes of council meetings, is culturally situated and does not accurately represent the views of the 'humbler classes'. Letters to the editor frequently expressed attitudes and emotions, and offer a better insight into local feelings than local government archives, though they too offer little insights into working class attitudes. However, despite any bias, newspaper owners played a significant role as a mediation device. Often as in Hastings, the stand in favour of surface-contact or against it would change with a new editor.

Wherever power was exercised, resistance was generated. In the early twentieth century, working-class pressure groups began to assert their strength. In Hastings, employees of the tramway company threatened strike action unless the Dolter system was replaced. In Wolverhampton, the fears of economic isolation caused by the Lorain system were raised by shopkeepers and commercial

enterprises, but were quickly brushed aside. This power/resistance dyad is also evident in the Griffiths-Bedell controversy in east London, but there the debates were proxies for political interests.

The selection process frequently followed clearly defined stages, with elected officials reflecting public concern, and sometimes their own self-interest, while engineers evaluated techniques. Wolverhampton and Hastings were typical in this respect. There was what might loosely be described as 'a normal pattern of enquiry and deliberation'. Having said that, social shaping was a process in which there was no single dominant shaping force. The five towns were subject to different pressures and there was no one set of human actors playing a dominant role across them over time. Influences consisted of impulses and reactions until resolution was reached.

Whether the exercise of power resulted in the best resolution of the townspeople's needs is debateable. Ultimately, what is seen as best for one set of actors may not be seen as best for another. Factors, such as aesthetics, environmental protection, economics, commercial pressures, civic pride and interurban rivalries, were considered to have varying degrees of importance in those instances when surface-contact finally won the day.

Commercial pressures were always present. Wolverhampton had to fight to prevent the BET from taking control and installing their overhead system to complement their own operations and allow through running to neighbouring

26 McKay, Tramways and Trolleys, p.88.
27 Ibid, p.89.
28 Mackenzie and Wajcman, The Social Shaping of Technology, p.16.
towns. In Torquay and Mexborough and Swinton, the Dolter Company worked hand-in-hand with the National Electric Construction Company, of which the local tramway companies were subsidiaries.

Surface-contact systems brought with them new operational structures and a plethora of consulting engineering firms and holding companies. The new designers were 'not only technically expert but also politically adept'. In Hastings it was the powerful Irish commercial entrepreneur William Murphy who pressurised the council and cajoled them into adopting an unwanted system, almost as a last resort. Having persuaded the council to install overhead traction in Hastings and Bexhill, the compromise was to adopt surface-contact along the sea front in the face of powerful resistance to the overhead system from the wealthy residents. All had either political or commercial reasons for resolving and implementing the schemes.

In the national context, Britain had a powerful self-image. The country was the dominant world power, and there was an alarmed reaction to foreign innovations, especially from France or the USA. Yet the aesthetic ideal necessitated a compromise between those views and the intensely held beliefs of the aesthetes and modernizing townspeople. The reconciliation of these differences was a lengthy process.

The Dolter system in particular was the very embodiment of French design values and culture. In many branches of technology, French academic style was heavily influenced by the aesthetic movement of the late nineteenth century, and the

Dolter system was no exception. Other types of surface-contact embraced the same values, although the Lorain system was an American product. The USA had a practical approach to design. It was functional and more pragmatic, in direct contrast to the high established culture of continental Europe. Debates about costs and benefits 'involved technological choice' and assisted the development of specific systems.\(^\text{30}\) For the pragmatists, however, surface-contact traction was whimsical and uneconomic compared with overhead, and was therefore ultimately destined for failure in their eyes.

The 1870 Tramways Act and the 1896 Light Railways Act specified the practices to be adopted by local authorities, and defined powers and operating parameters. The Light Railways Act enabled rail companies to object if tramlines were parallel with existing train services. The ploy enabled the London and South Coast Railway Company to join forces with the Anti-Trammites in Hastings in opposition to tram services between Hastings and Bexhill. Although opposition delayed matters, in the end trams were approved.

Board of Trade regulations and the approval process were sometimes blamed for delays in adopting new urban transport technology in the UK. The confused and changing local government set-up, and the conglomeration of small but powerful councils, each with a particular axe to grind, hardly helped. Bagwell refers to this state of affairs as 'the mid century chaos of local administration' although it did in fact continue until the 1890s.\(^\text{31}\) Generally, there were more constraints than in the private enterprise culture in the US. An American observer commented on the 'strict regulation in Europe exercised over companies by municipalities or other

\(^{30}\) Schatzberg, 'Culture and Technology', p.58.

governing authorities, interfering in the operation in a way unknown in this country.32 The historic centres of Europe had other ideals.

For most towns, the economic benefits of overhead systems were more important than the environmental considerations associated with non-standard traction. But the assessment of economic benefits involves assumptions and so perceived economic advantage cannot fully explain why surface-contact was not more widespread. The difficulty lies in understanding the value ascribed to environmental protection in those instances where surface-contact was chosen. Clearly, to some decision-makers, the environment and people's well-being was of the utmost importance and outweighed economic gain, although final resolutions may well have been surrogates for other factors, as Schmucki suggests. To others, issues of aesthetics were of less value than the pursuit of progress.

In the development process, the manufacturers were unable to estimate future costs, future profits, and the potential market with any great accuracy. While that was an admittedly difficult process, the inherent risks were great. Consequently, many surface-contact systems had a short life, particularly the Dolter Company's design. For the operating companies who had to satisfy shareholders, economic benefit was equally important.

There was another angle to the economic debate. The need for passengers to change trams in order to proceed beyond Wolverhampton's boundaries should have sounded the death knell for the Lorain system. Clearly it did not, despite fears expressed by shopkeepers and commercial operators about isolation if the planned surface-contact system proceeded. The city fathers felt sufficiently

32 McKay, \textit{Tramways and Trolleys}, p.88.
confident economically not to worry about adjacent systems. Economic growth was not stunted, and Wolverhampton continued to prosper without the need to consider its neighbours.

Although there were problems, surface-contact traction cannot be judged either a failure, or an unfortunate deviation from the true path to overhead electric traction. The system endured for many years in Wolverhampton and Lincoln, and to a lesser extent in Hastings and Torquay. In those towns, the social issues surrounding tram traction choice were clearly powerful enough to persuade the decision-makers to opt for surface-contact instead of the almost universal overhead system.

If surface-contact traction was no outright failure, what factors prevented its wider penetration into the market when there was a clear demand from some quarters? All surface-contact systems met aesthetic and environmental requirements, but all had economic drawbacks, particularly the expense of installation. However, while economic indicators are a measure of relative lack of success, they should not be divorced from the factors that led to ultimate failure. In this respect, technical and safety factors were predominant. The inability to develop a stud system which remained dead after the passage of a tram resulted in narrow technological margins, which in turn were reflected in costs of maintenance and operation. In fact there is no evidence that surface-contact studs posed a significant threat to humans. If studs remained alive after the passage of a tram, they could give a shock. At around 500 volts, the electric shock would be unpleasant, but leading engineers 'claimed to have taken the full voltage numerous times with no ill effect',

although none would demonstrate this in public.34 Horses were a different matter. Iron horse-shoes quickly conducted electrical charges to their nervous systems which sometimes resulted in fatalities, thereby affecting the livelihoods of the owners. Although all systems required continued attention and repair, some operators ignored such requirements.35 Safety alone was an inadequate reason for the aversion to surface-contact, but the necessity of having a stand-by arrangement for ensuring that studs remained dead added to the financial discomfort of the operators. These technological defects also crucially led to waning user support and to the increasingly baleful scrutiny of the tramway regulators.

The Lorain system in Wolverhampton was the most successful example, operating for nineteen years. Early problems, both social and technical, combined with pressure from users, forced design changes, a prime example of an interactive process helping to shape technology. The system was finally replaced in 1921 when operating costs became too high through scarcity of spare parts in the aftermath of the First World War. It was a tribute to the ingenuity, tenacity and enthusiasm of the tramways department's maintenance teams that they were able to keep the system running for so long. By then the manufacturing companies had either ceased to exist, or no longer provided spare parts. In view of the length of time surface-contact operated in Wolverhampton, and also in Lincoln, it was rather more than a sideshow or aberration as claimed by some transport historians. The reasons for its ultimate demise are clearly more complex than a simple calculation of economic benefits; they also say something about the importance of technological momentum in the success or failure of technological innovations.

34 Schatzberg, 'Culture and Technology', p.71.
First generation surface-contact traction was best suited to certain niche areas at a
certain time. Consequently, surface-contact systems remained a tiny percentage
of the total UK electrified network, although it remained a viable alternative and
was still negotiable until the manufacturing companies ceased business in the
years before the First World War. Ultimately, the aesthetic ideal was a vitally
important but nevertheless impermanent contextual factor in relation to tramway
traction choices. Sensibilities changed: the public's tolerance of overhead wires
grew, and more care was taken with the design of overhead equipment. The
Lorain system was finally replaced by overhead traction in Wolverhampton.
Ironically, overhead traction had a lifespan of only three years in the city before a
programme of replacement by trolley buses began.

To reinforce the view that surface-contact was not a failure, after an interval of
eighty years, the French company Alstom has marketed a second generation
version of surface-contact traction called *alimentation par sol* (APS), or ground
supply.\(^{36}\) APS relies on equipment on board the tram to energise the contact studs
when directly above the live conductor, similar to the first generation systems. APS
was installed in Bordeaux in 2003, and since then the cities of Angers, Reims, and
Orléans in France, and the Gulf States of Dubai and Abu Dhabi have adopted it.\(^{37}\)
The reasons are said to be aesthetic, in the French cities to protect attractive
historic centres, and in the Gulf States to prevent the visual intrusion of overhead
wires. Other cities in Europe are now investigating the installation of APS.\(^{38}\) The
second generation version achieved impressive reliability figures of 99.8% by

\(^{36}\) Mott MacDonald, 'Power Distribution for Trams and Electric Trains', *Technical Note No 7* (July
\(^{37}\) Ibid, p.48.
\(^{38}\) Ibid.
March 2007, and the University of Bordeaux is involved in research ‘to improve the technology further’. 39

I have attempted to show the justification for judging surface-contact to be a success and to show why the adoption and eventual scrapping of first generation surface-contact tramway systems cannot be reduced to matters of economic viability and technological efficiency, vitally important though these considerations were. The striking fact that these decisions were taken in such diverse locations frustrates any attempt to construct a grand unified theory of the appeal of non-standard electric traction. But this conclusion is nevertheless of great value for the historian of urban transport and mobility. It shows that the reasons for traction choices, at a time of notable experimentation and competition between and within different urban transport modes, depends in each case on a peculiar mix of social class, political divisions, religious affiliations, topography, geographical location, economic function, urban morphology, position in an urban network, and so on. Above all, it shows the limitations of a linear, Whiggish account of urban transport history.

BIBLIOGRAPHY

PRIMARY SOURCES

Archives

Lewes; The East Sussex County Council Archives, Hastings Council Minutes, file DH/B 19/16 21 November 1879: 3 December 1879.

Hastings Council Minutes, file DH/B 18/2 19 September 1895:

Hastings Council Minutes, file DH/B 33/4, 22 November 1903.

Hastings Tramways, file QDP/449, 29 November 1879;

Hastings Tramways, file PAR/365/22/7, 29 November 1879

London; The Institution of Civil Engineers

Bruce, George B., 'Memorandum on street railways', Westminster: (paper presented at the Institution of Civil Engineers, London, June 1860).

London; The Institution of Engineering and Technology

The Electrician, Volume 47 (1901): Volume 51 (April, June, July and October 1903).

The Engineering Review, Volume 12 (December 1905).

The Street Railway Journal, (Volume 15, 1899: Volume 16 (1900).

London; The National Archives, Mexborough Tramways safety, file MT 6/2179/9, February 1908.

Mexborough Tramways, Dolter letter to Board of Trade, R 174, file MT 6/2179/9, December 1908.

Torquay Tramways replacement, file MT 6/2179/9, January-March 1911.

Hastings Tramways, Board of Trade report, file MT 6/2299/1, 3 July 1912.

Hastings Tramways Accidents, file MT 6/2299/1, various dates between July 1912 and December 1914.

Hastings Tramways safety issues, folio R 3848, file MT 6/2299/1, 28 March 1914.

Hastings Tramways legal action threat, folio R 4017, file MT 6/2299/1, 28 March 1914.
Hastings Tramways system replacement, folio R 8959, file MT 6/2350/10, 23 July 1914.

Wolverhampton; The City Archives, Minutes of the Streets and General Purposes Committee, 20 September 1881.

L352, Report of Tramways Committee to Council, 25 October 1900; Council Minutes and reports, 1902-03; Council Minutes and Reports 1903-04.

L07 The Wolverhampton Journal, Nos 1-12, 1902

Folio L6213p; papers concerning contractual arrangements with Lorain Company

Letter from H Lea to City Council, 7 March 1902.

Council Minute book, June/July 1902.

L388 Report on the Lorain system, March 1903.

Lorain Steel Company Brochure

Books

Howe, Frederic C., European Cities at Work, New York: Charles Scribner's Sons, 1913.

Edited books

Articles in Journals

Cox, J.H., 'Street tramways and electric traction', The Electrical Engineer, Volume 10 (1892), pp.81-90.

Journals

Chamber's Journal, Volume 13, No.328 (14 April 1860).

Journal of Political Economy (Volume 14, No 9, November 1906).

Mexborough Trade Directory, 1899 yearbook.

The Statist, 30 June 1906.

The Street Railway Journal, Volume 15, No 10 (October, 1899).

Magazines

The Builder, (August 1872).

The Car, (April 1903)

The Dart Magazine (Number 328, February 1883).

Fun Magazine, Issue 968 (28 November 1883).
Provincial Tramways Prospectus, (June 1872).

Newspapers

The Daily Chronicle, 20 June 1895.

Hastings & St Leonards Advertiser, 23 November 1909.

Hastings & St Leonards Chronicle, 5 March 1869: 10 December 1879: 1 November 1897:

The Hastings Argus, 23 July 1914.

Hastings Chronicle, 18 April 1909.

The Midland Evening News

The Railway Times, 18 April 1891.

The Standard, 17 January 1907.

The Times, 27 March 1861.

Wolverhampton Chronicle, 17 August 1849: 13 January 1897: 14 October 1903.

Wolverhampton Express and Star, 1 May 1900: 2 November 1903.

The Yorkshire Telegraph and Star, 14 December 1907.

Government publications

Board of Trade,
Returns of Street and Road Tramways, Parliamentary Papers, London: House of Commons Session 1880, Volume 64, No 264.

Board of Trade,
Returns of Street and Road Tramways, Parliamentary Papers, London: House of Commons Session 1895, Volume 68.

SECONDARY SOURCES

Books

Fraser, Derek and Sutcliffe Anthony, (eds), *The Pursuit of Urban History*, London: Edward Arnold, 1983.

Williams, Ned, By Road and Rail to Tettenhall, Wolverhampton: Uralia Press, 1980.

Edited books

Articles in Journals

Journals

Journal of Transport History (New Series Volume 3 1975-76: Third series, Volume 24, Issue 2, September 2003:

Tramfare, Issue 220 (July/August 2004).

Papers

Mott MacDonald, 'Power distribution for trams and electric trains', *Technical Note No 7, July 2008*.

PhD Theses

Reports

Web sources

Electricity supply in Wolverhampton, at http://www.historywebsite.co.uk/articles/electricity/Electricity.htm#menu (accessed on 7 October 2010).

Introduction to Emile Garcke, at http://www.historywebsite.co.uk/Museum/Engineering/Electrical/TheECC.htm (accessed on 1 April 2012).

Map of St Leonards, Hastings, at http://www.1066online.co.uk/hastingshistory.htm (accessed on 11 April 2010).

Wednesfield demographics, at http://www.historywebsite.co.uk/articles/Wednesfield.nineteenth.htm (accessed on 10 July 2009).

Appendix 1 – Chronological Charts from 1820 to 1919

<table>
<thead>
<tr>
<th>Location</th>
<th>1820s</th>
<th>1830s</th>
<th>1840s</th>
<th>1850s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wolverhampton</td>
<td></td>
<td>Horse-drawn omnibuses in 1833.</td>
<td></td>
<td>Regular omnibus services began</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>lasting until well after horse-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>drawn trams introduced.</td>
</tr>
<tr>
<td>Hastings</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lincoln</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Torquay</td>
<td></td>
<td></td>
<td>Horse-drawn omnibuses introduced in 1842.</td>
<td></td>
</tr>
<tr>
<td>Mexborough and Swinton</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>London</td>
<td>Horse-drawn omnibuses in London in 1829.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Others</td>
<td>First horse-drawn omnibuses in Nantes in 1826.</td>
<td>Faraday developed the dynamo.</td>
<td></td>
<td>Loubat introduced horse-drawn trams to Paris in 1852/53.</td>
</tr>
<tr>
<td>Year</td>
<td>1860</td>
<td>1861</td>
<td>1862</td>
<td>1863</td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>Wolverhampton</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hastings</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lincoln</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Torquay</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mexborough and Swinton</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>London</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>USA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Others</td>
<td>Entrepreneur GF Train installed horse-drawn trams in Birkenhead.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year</td>
<td>1870</td>
<td>1871</td>
<td>1872</td>
<td>1873</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>Wolverhampton</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hastings</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Torquay</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mexborough</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UK Parliament</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>USA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Others</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **1870:** Wolverhampton Tramways company formed.
- **1871:** Tramways Order confirmed.
- **1872:** Horse flu epidemic.
- **1873:** Tramway service began.
- **1874:** First attempt at horse trams rejected.
- **1875:** Second attempt at horse trams rejected.
- **1876:** First attempt at horse trams not proceeded with.
- **1877:** Deliberations by three separate House of Lords Select Committees on steam trams policy.
<table>
<thead>
<tr>
<th>Year</th>
<th>Wolverhampton</th>
<th>Lincoln</th>
<th>London</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>1880</td>
<td>Wolverhampton (Mechanical Power) Order.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Experimental steam trams on Tettenhall Road from May to November.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1881</td>
<td>Line to Dudley opened by D, S & W Co.</td>
<td>Lincoln Tramways Company formed.</td>
<td>Horse-drawn trams began.</td>
<td></td>
</tr>
<tr>
<td>1882</td>
<td>Order for steam on Dudley line.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1883</td>
<td>Horse traction ceased on Dudley line.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1884</td>
<td>Steam on route to Dudley began.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1885</td>
<td>D.S & W Company in liquidation.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1886</td>
<td>Midland Tramways Company (MTC) take over.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1887</td>
<td>Kingsland approach.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1888</td>
<td>Horse traction ceased on Dudley line.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1889</td>
<td>Horse traction ceased on Dudley line.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- 1880: Wolverhampton (Mechanical Power) Order.
- 1881: Experimental steam trams on Tettenhall Road from May to November.
- 1882: Line to Dudley opened by D, S & W Co.
- 1883: Order for steam on Dudley line.
- 1884: Horse traction ceased on Dudley line.
- 1885: Steam on route to Dudley began.
- 1886: D.S & W Company in liquidation.
- 1887: Midland Tramways Company (MTC) take over.
- 1888: Kingsland approach.
- 1889: Horse traction ceased on Dudley line.
<table>
<thead>
<tr>
<th>Year</th>
<th>Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>1890</td>
<td></td>
</tr>
<tr>
<td>1891</td>
<td></td>
</tr>
<tr>
<td>1892</td>
<td></td>
</tr>
<tr>
<td>1893</td>
<td></td>
</tr>
<tr>
<td>1894</td>
<td></td>
</tr>
<tr>
<td>1895</td>
<td></td>
</tr>
<tr>
<td>1896</td>
<td></td>
</tr>
<tr>
<td>1897</td>
<td></td>
</tr>
<tr>
<td>1898</td>
<td></td>
</tr>
<tr>
<td>1899</td>
<td></td>
</tr>
<tr>
<td>1890-1899</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Others</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Year</td>
<td>Event</td>
</tr>
<tr>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>1900</td>
<td>Committee recommend overhead again.</td>
</tr>
<tr>
<td>1901</td>
<td>Kingsland experimental system dropped.</td>
</tr>
<tr>
<td>1902</td>
<td>Committee visited Dolter system in Paris.</td>
</tr>
<tr>
<td>1903</td>
<td>Lorain and Dolter systems explained to Committee.</td>
</tr>
<tr>
<td>1904</td>
<td>Councillor Thorne claims Lorain too costly.</td>
</tr>
<tr>
<td>1905</td>
<td>Twelvetrees – Lorain a financial success.</td>
</tr>
<tr>
<td>1906</td>
<td>Hastings Tramways Act confirmed.</td>
</tr>
<tr>
<td>1907</td>
<td>Approach made to install Kingsland.</td>
</tr>
<tr>
<td>1908</td>
<td>Overhead opened but not along seafront.</td>
</tr>
<tr>
<td>1909</td>
<td>Dolter system installed on seafront.</td>
</tr>
<tr>
<td>1910</td>
<td>Motor buses introduced.</td>
</tr>
<tr>
<td>1911</td>
<td>Motor buses withdrawn.</td>
</tr>
<tr>
<td>1912</td>
<td>Omnibus company wound up.</td>
</tr>
<tr>
<td>1913</td>
<td>Railways & Tramways Committee formed.</td>
</tr>
<tr>
<td>1914</td>
<td>Council purchase tramways company.</td>
</tr>
<tr>
<td>1915</td>
<td>Griffiths Bedell installed.</td>
</tr>
<tr>
<td>1916</td>
<td>Committee set up to visit Dolter in Paris.</td>
</tr>
<tr>
<td>1917</td>
<td>Committee visited Wolverhampton.</td>
</tr>
<tr>
<td>1918</td>
<td>Motor omnibus company formed.</td>
</tr>
<tr>
<td>1919</td>
<td>Torquay Tramways Act confirmed.</td>
</tr>
<tr>
<td>1920</td>
<td>Dolter surface-contact system installed.</td>
</tr>
<tr>
<td>1921</td>
<td>Mexborough & Swinton Act confirmed.</td>
</tr>
<tr>
<td>1922</td>
<td>NECC agree to install Dolter system.</td>
</tr>
<tr>
<td>1923</td>
<td>Dolter surface-contact system installed.</td>
</tr>
<tr>
<td>1924</td>
<td>BOT ordered closure.</td>
</tr>
<tr>
<td>1925</td>
<td>Ceased to operate on 30 July.</td>
</tr>
<tr>
<td>1926</td>
<td>Most tram operations have overhead.</td>
</tr>
<tr>
<td>1927</td>
<td>Griffiths-Bedell experiment in Stepney.</td>
</tr>
<tr>
<td>1928</td>
<td>Last urban steam tram in UK.</td>
</tr>
<tr>
<td>Location</td>
<td>1910</td>
</tr>
<tr>
<td>----------</td>
<td>------</td>
</tr>
<tr>
<td>Wolverhampton</td>
<td></td>
</tr>
<tr>
<td>Hastings</td>
<td></td>
</tr>
<tr>
<td>Lincoln</td>
<td></td>
</tr>
<tr>
<td>Torquay</td>
<td>Dolter replacement by overhead agreed. Agreement with Dolter expired on 8 October. Bt extended licence until end of 1910.</td>
</tr>
<tr>
<td>Other</td>
<td>Most surface-contact removed in Paris after flooding.</td>
</tr>
</tbody>
</table>
Appendix 2

An illustration of the attitude of some sections of the community to the introduction of steam trams on the streets.

1 The Dart Magazine, Number 328, February 1883.
Appendix 3 - Cable traction system
Appendix 4 - The Dolter surface-contact system

Tram skates approaching, circuit open, arm dropped

Skates over Dolter pads, arm raised and circuit made

With acknowledgements to the South Western Electricity History Society
Appendix 5 - Advertisement for the Dolter surface-contact system

THE

DOLTER SURFACE-CONTACT SYSTEM

Obviates the use of overhead wires in picturesque towns, and has worked with great success in Paris from the Forte Maillot to Bois de Boulogne, Longchamps, and St Cloud Racecourses, carrying a large traffic without any accident or hitch.

One important feature of the Dolter System is that it lends itself admirably to a combination with the Overhead System. It is quite easy to use the Dolter Surface-Contact System in the middle or busy parts of a town, employing the trolley for the outskirts or for parts where it is not considered necessary to use the Surface-Contact System.

The Dolter Electric Traction Limited is prepared to put down Surface-Contact Systems on the whole or parts of any Tramway lines, and to guarantee the satisfactory working of the system for any required time.

The Dolter Electric Traction Ltd.,
3 & 4 Great Winchester St., LONDON, E.C.

Telegraphic Address—
"HAUVEITE, LONDON."

Telephone—
"1649 LONDON WALL."
Appendix 6 - Sector model of Wolverhampton (After Hoyt)

Central business district
Heavy industry and mining
High class residential
Middle class residential
Low class residential
Light industry
Appendix 7 - Population growth rates
Appendix 8

Other actors and a brief description of their roles in Wolverhampton

In 1858, Sir Henry H Fowler, a solicitor by profession, was elected to the Council, becoming mayor in 1862/63. In the 1860s and 1870s, he was renowned as one of the leading municipal activists in the country. He urged municipal enterprise even before Joseph Chamberlain did in Birmingham. He was not a radical liberal, being a Wesleyan Methodist with conservative inclinations, but was nevertheless considered to be a Progressive.

He was elected to Parliament in 1880 as the Liberal MP for Wolverhampton East, and was admitted to the Cabinet in 1892. He later became Lord Wolverhampton and Secretary of State for India in 1894. He resigned from the Council in 1884 to devote his energy to his new position, but continued his close interest in council activities. Although he was a leading proponent of municipal enterprise, he does not appear to have entered into the electrification debate.

WH Jones was elected Councillor in 1864, mayor in 1873/74, chairman of the Streets Committee for 18 years from 1875 to 1893, and chairman of the Watch Committee from 1893 to 1903. He was a leading industrialist in Wolverhampton, owning a successful japanning and tin ware business. In 1903 he published a book about municipal life in Wolverhampton from its earliest days.

Sir Alfred Hickman (1830-1910) was the leading spokesman of the iron and coal industries in the Black Country. He had built up the most successful iron and steel company in Wolverhampton's suburbs. He was elected to be the Conservative Member of Parliament for Wolverhampton West constituency in 1885, lost the seat

1 George W Jones, Borough Politics, p.26
one year later, but regained it in 1892. He was made a freeman of the city in 1902. He was a national figure, knighted in 1891 and made a baronet in 1903. He was president of the Wolverhampton Chamber of Commerce and a leading figure in linking the Black Country to the world beyond.

The Organisation of Wolverhampton Council

The main committees in 1902 were:

The Watch Committee (Chairman WH Jones), which controlled the police force, and the granting of licences,
The Streets Committee (Mr Plant) for repairs of streets and roads, and building new streets,
The Lighting Committee (Mr Crosbie) for electric lighting, the generating station and lighting of streets,
The Tramways Committee (Sir Charles Mander, acting chairman Stephen Craddock) for the electric tramways,
and another 16 committees, each reporting to the Council and seeking confirmation for its actions.

The original Wolverhampton Tramways Company

3 Richard J Trainor, *Black Country Elites*, p.132
In December 1877, Wolverhampton Tramways Company Limited had offices at 23 Queen Victoria Street in London, and the directors were: ⁴

*Sir Wilfred Brett, KCMG, Chairman, Sheffield Tramways Company

T M Mackay, Chairman, Dublin Tramways Company

J M Gillies, Deputy Chairman, North Metropolitan Tramways Company

*C E Davison, Director, Sheffield Tramways Company

A J Lambert, Director, Tramways & General Works Company

T Selby, Secretary

*Both men were also directors of the West Metropolitan Tramways Company in London. ⁵

⁴ Stanley Webb and Paul Addenbrook, A History of Wolverhampton, p.10

⁵ CS Smeeton, London United Trams, p.18.
Appendix 9

WOLVERHAMPTON HORSE TRAMWAYS
1884

KEY
- Wolverhampton Tramways Company Limited.
- Track not normally used in passenger service.
- Dudley, Sedgley and Wolverhampton Tramways Company Limited (and successors).
- Other principal roads.

Wolverhampton Tramways,
Stanley Webb and Paul Addenbrooke, 'A History of Wolverhampton Transport', p.9
Appendix 10 - The Lorain System

Fig. 3.—LONGITUDINAL SECTION OF TRACK AND MOTOR TRUCK.

Fig. 4.—PLAN AND SECTIONAL ELEVATION OF MAGNETS AND SHOE.
4—The Lorain Steel Company's System of Electric Traction.

Fig. 1.—THE LORAIN STEEL COMPANY'S SYSTEM OF ELECTRIC TRACTION AS LAID DOWN AT WASHINGTON.
Appendix 12 - Tramway support poles

Typical ornate tramway support poles manufactured by the Mannesmann company of Düsseldorf1.

1 McKay, Tramways and Trolleys, p.104
Appendix 13

The Hastings Borough Engineer's report dated 20 September 1897 to a specially convened Tramways Committee.

PH Palmer presented the results of a questionnaire on 27 September 1897.¹ His report revealed that most towns had well equipped systems, the majority using electrical traction. A few still used horse-drawn or steam trams, although both forms of power were slowly being replaced. Most systems were built to standard gauge, with 18" each side of stone pitching. This was cheaper but hard wood was quieter. The objections from carriage-owners about the difficulty of driving from macadam to stone pitching were 'considerable' but could be overcome by using wood blocks.

Cost comparisons were difficult, as labour and materials varied considerably, but UK construction and maintenance was more expensive as general rule.

Many systems were in operation. Overhead lines were far cheaper to build and maintain, and generally in use on the continent. Tramcars with trolley poles were more satisfactory to operate, being easier to manoeuvre forward, back, and at slower speeds. General interference with traffic was less, roads were not disturbed in case of electrical derangement, and repairs were effected with minimum trouble, delay, and expense. Construction was quicker with less interference to the surface of streets and traffic. The main objection was unsightliness, but ornamental columns could mitigate this problem.

There were nineteen different conduit systems in operation, the main ones being Holroyd-Smith in Blackpool, Siemens and Halske in Budapest and under

¹ Lewes: East Sussex County Council Archives, Hastings Council Minutes DH/B18/3, p.220.
consideration in Berlin, Thomson-Houston under consideration in Berlin and Brussels, and in use in one part of New York, and the Love system which was an experimental line in Chicago and Washington.

The main disadvantages of conduits was that they were very expensive to build and maintain, caused prolonged interference with streets during construction and repair, gave great difficulty in locating defects underground, and made sewerage and pipe laying difficult and expensive. Slots varying from 5/8” to 2” caused problems to bikes and other wheeled vehicles, and keeping the conduits clean and well insulated was difficult. Overall, the evidence was that they were at least four times as expensive as overhead systems to construct and operate.

The Serpollet steam traction system was an improvement on the previous form but had obvious disadvantages compared with electricity.

Compressed air was in use in Paris, but was expensive and not adapted to steep gradients.

Gas cars were used experimentally in Blackpool, but were considered to be smelly and unreliable.

Cable cars had advantages, especially in hilly areas, but were not as good as electrical traction.

Accumulator cars had no overhead wires or slots, but had great extra weight, with accumulators weighing up to 3 tons. Their use was prohibitive on steep gradients due to their weight and resulting range reduction. They were costly to maintain, and needed constant recharging. They also gave off an objectionable smell of acid, and there was a possible risk of injury to passengers and damage to clothes.

The cost of compensation involved for such damage could have been considerable.
The questionnaire also revealed that the costs of working double lines of track were less than single, excluding construction costs, but double track depended on the width of road available and the nature of the district traversed.

The risk of accidents with overhead was much less as the speed of cars was restricted to eight miles per hour, wire breakages were low, and the Board of Trade limited currents to 500 volts, which was not considered to be fatal.

It was better for municipalities to construct lines themselves as they could borrow cash at cheaper rates than public companies. The optimum solution was to build and lease to operators on agreed terms.

The report recommended that overhead traction was the most suitable, and it could be worked in conjunction with street lighting.
Appendix 14 - Secret funding of anti-tram movement

Hastings & St Leonards Weekly Mail and Times, 25 March 1898

1 Hastings & St Leonards Weekly Mail and Times, 25 March 1898.
Appendix 15

Dolter Trams in the North

The trams are here, my brothers
The same we've looked for long
Hurrah! We cry as they flash by
The pleased admiring throng
Hurrah for the graceful tramcar
That glideth like a swan
For the hidden might that gives it light
And speeds it grandly on

The trams are democratic
We all 'first class' may ride
The high and low together go
And lose their bit 'o pride
Then hail the smart conductor
Your wife and bairnies bring
And if you're square regarding fare
He'll treat you like a king

The trams are bright and pleasant
Not like the ancient 'bus
Whose lurch and shake oft made us ache
And sometimes think a cuss
The 'bus to some museum
Of antiquated fads
Posterity will smile to see
How rode their great-grand-dads

The trams in dear awd Rawmarsh
What would our grand-sires say?
They'd think the world was being hurled
Upon some novel way
No doubt they'd strictly warn us
And maybe rate and ban
Our latest code and 'a la mode'
Of things Parisian

But in this age of progress
We flout these sages old
And hail, elate, the up to date
And seek an age of gold.
The trams are here my brothers
Success to them I say
A people's boon, I trust they'll soon
All enterprise repay.

Poem about the Dolter System in Hastings

1 Hastings & St Leonards Observer, 16 February 1907.
2 Hastings & St Leonards Observer, 16 February 1907.
Have you felt the new sensation
Trams are running by the sea
They will give you palpitations
If you board them, you will see
Electric light bobs up and down
And lightnings flash upon the ground.
With a cling clang, rap tap tap.

These blinking monsters are the choice
Of Hastings' clever sages,
A nuisance upon all to foist
Our visual organ's dazes.
Our nerves to shatter, to do their best
And take from invalids their rest.
With a cling clang, rap tap tap.

Seven days and nights we have cling clang,
A ceaseless whirl of tram wheels
Electric fireworks with a bang
And free galvanic shock feels.
The lights go out and it is dark,
A chance for thieves to make their mark.
With a cling clang, rap tap tap.

Allan Chase³

This is an age of knowledge, for we find
Our learned men resolved that she must reign
Till everyone on earth of human kind
Is subject to her rule and to obtain
So great a victory, they are not content
That steam the mighty purpose should display;
They've snatched the lightning from its element
And made it serve to speed her on her way.

By John Corfield

³ 'The story of electrical supply in the Wolverhampton area', chapter 1, p.1
http://www.historywebsites.co.uk/articles/electricity/Electricity.htm#menu (accessed on 10 July 2011)
Appendix 16 - Torquay Tramways

Barham, Torbay Transport, pp.24-25
Appendix 17 - Mexborough tramways

THE ELECTRIC TRAMWAYS OF SOUTH YORKSHIRE

SCALE 0 1 2 3 4 5 6 7 8 MILES

--- ELECTRIC TRAMWAYS CONSTRUCTED, ALL 4'-8½" GAUGE ---
--- AUTHORISED EXTENSIONS NOT BUILT ---
--- PROPOSED EXTENSIONS NOT AUTHORISED ---
--- RESERVED SLEEPER-TRACK TRAMWAYS ---
--- TROLLEYBUS EXTENSIONS BEYOND TRAM ROUTES ---
--- AUTHORISED TROLLEYBUS EXTENSIONS NOT BUILT ---
--- ABBREVIATED NAMES OF OWNERS, & BOUNDARIES BETWEEN THEM ---
--- CAR DEPOTS ---

LIST OF TRAMWAY-OWNING AUTHORITIES, with Maximum Route Mileages (not all simultaneously):

<table>
<thead>
<tr>
<th>Authority</th>
<th>Maximum Route Mileages</th>
</tr>
</thead>
<tbody>
<tr>
<td>DONCASTER CORPORATION TRAMWAYS</td>
<td>15-04 - 13-40 2-19</td>
</tr>
<tr>
<td>BARKSLEY & DISTRICT ELECTRIC TRACTION CO LTD</td>
<td>3-06 4-45</td>
</tr>
<tr>
<td>DEARNE DISTRICT LIGHT RAILWAYS JOINT COMMITTEE</td>
<td>1-14 0-93</td>
</tr>
<tr>
<td>MEXBOROUGH AND SWINTON TRACTION COMPANY</td>
<td>4-00 1-31 12-63 0-83</td>
</tr>
<tr>
<td>Rotherham U.D.C. (Powers later purchased by M.S.E.)</td>
<td>2-48 0-87</td>
</tr>
<tr>
<td>SHEFFIELD TRAMWAYS (for light Tram Govt Dept)</td>
<td>52-05 14-57 9-21</td>
</tr>
<tr>
<td>CHESTERFIELD CORPORATION TRAMWAYS (Derbyshire)</td>
<td>3-0 578 5-42</td>
</tr>
</tbody>
</table>

SWA Including 128 miles from Tinsley to Templeborough, purchased by Sheffield from Rotherham in 1926, which had been built by R. when Tinsley was a separate U.D.C.

TRAMWAY RUNNING POWERS OVER OTHER SYSTEMS:

- MEXBOROUGH & SWINTON: 0-80 miles from Rotherham Bridge to ROTHERHAM HIGH ST.
- ROTHERHAM Corporation: 0-76
- PARKGATE CROSSROADS
- ROTHERHAM Corporation: 0-41
- Templeborough & SHEFFIELD/HAYMARKET
- SHEFFIELD City Tramways: 1-91

WH Brett and JH Gillham, *The Tramways of South Yorkshire and Humberside*, p.2
Appendix 19 - Tramway Statistics for Wolverhampton and Lincoln

<table>
<thead>
<tr>
<th>Years in which Acts passed</th>
<th>Gauge</th>
<th>Capital expended</th>
<th>Authorised length</th>
<th>Length open</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>On opened lines</td>
<td>Lines under</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>On horses</td>
<td>construction</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>On locomotive</td>
<td>engines</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>On tramcars</td>
<td>Legal and</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Parliamentary</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sundries</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Total</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Double line</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Single line</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Total</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Double line</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Single line</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Total</td>
<td></td>
</tr>
<tr>
<td>1877-1881</td>
<td>4ft 8½"</td>
<td>£ 74,362</td>
<td>- 2,236</td>
<td>- 4,558</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 3,397</td>
<td>569</td>
<td>85,122</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>170</td>
<td>- 8 65</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>170</td>
<td>- 8 55</td>
</tr>
</tbody>
</table>

Within the same table, Clark also stated that mechanical power had been authorised for use on the network, subject to Board of Trade approval. At that time, the only instance had been a six-month steam traction experiment on the route to Tettenhall in 1881. An extension to the time was refused. Another enterprise, the Dudley, Sedgley, and Wolverhampton Tramways Company and its successors, operated the following along the line from Dudley to Wolverhampton, a distance of 5.78 miles. This Company was also authorised to operate with mechanical power, subject to Board of Trade approval.

<table>
<thead>
<tr>
<th>Years in which Acts passed</th>
<th>Gauge</th>
<th>Capital expended</th>
<th>Authorised length</th>
<th>Length open</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>On opened lines</td>
<td>Lines under</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>On horses</td>
<td>construction</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>On locomotive</td>
<td>engines</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>On tramcars</td>
<td>Legal and</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Parliamentary</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sundries</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Total</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Double line</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Single line</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Total</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Double line</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Single line</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Total</td>
<td></td>
</tr>
<tr>
<td>1880-1885</td>
<td>4ft 8½"</td>
<td>- -</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Of the other towns which were later to consider the use of surface-contact electrification, only Lincoln appears in the statistics, as below:

<table>
<thead>
<tr>
<th>Years in which Acts passed</th>
<th>Gauge</th>
<th>Capital expended</th>
<th>Authorised length</th>
<th>Length open</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>On opened lines</td>
<td>Lines under</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>On horses</td>
<td>construction</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>On locomotive</td>
<td>engines</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>On tramcars</td>
<td>Legal and</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Parliamentary</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sundries</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Total</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Double line</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Single line</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Total</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Double line</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Single line</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Total</td>
<td></td>
</tr>
<tr>
<td>1881-1882</td>
<td>3ft 6"</td>
<td>£ 8,625</td>
<td>- 298</td>
<td>- 860</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 420</td>
<td>-</td>
<td>10,203</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0 22</td>
<td>- 1 42</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0 22</td>
<td>- 1 42</td>
</tr>
</tbody>
</table>

Of the other towns which were later to consider the use of surface-contact electrification, only Lincoln appears in the statistics, as below:
Appendix 20 - Capital Invesed in Tramways in the UK
Appendix 21- Conflicts in the decision making process
Appendix 22

Overhead Wires
Fun Magazine, Issue 968, London, 28 November 1883